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Abstract 

The paper examines the existence of long memory in the Indian stock market using ARFIMA, 
FIGARCH models. The data set consists of daily return of BSE and NSE stock indices and 
long memory tests are carried out both for the returns and volatilities of these series. The results 
of ARFIMA model suggests the absence of long memory in return series of the Indian stock 
market. The results of FIGARCH model indicate strong evidence of long memory in 
conditional variance of the stock indices. The long memory property of the BSE market is 
revealed to be stronger than NSE. 
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1. Introduction 

Long memory dynamics are important pointers for identifying presence of nonlinear relations 
in conditional mean and variance of financial time series. The modelling of stock market 
volatility has been a considerable field of research after the introduction of ARCH and 
GARCH classes of models by Engle(1982) and Bollerslev(1986). It has been found that stock 
market volatility is time varying and exhibits positive serial correlation (volatility 
clustering).This implies that changes in volatility are non-random. However, these models do 
not account for long memory in volatility. The long memory is often found in conditional mean 
and variance of a financial time series at the same time. Slow mean-reverting at hyperbolic rate 
decay in autocorrelation functions of return and volatility is defined as long memory in return 
and volatility. Based on this idea, the empirical works of Baillie, Han and Kwon(2002) and 
Beine, Laurent and Lecourt (2003) have focussed on analysing dual long memory property in 
conditional mean and variance. The empirical findings act as evidence for presence of long 
memory in return and volatility of returns.  

Mendes and Kolev(2006) found that the presence of long memory in conditional variance hid 
its true dependence structure. Madlebrot(1971) implied that the perfect arbitrage was not 
possible when returns displayed a long-range dependence. The derivative pricing models 
become ineffective in the presence of long-range dependence. Hence, the presence of long 
memory has important theoretical and practical implications. The study of long memory 
property in return and volatility of stock markets of India has received little attention. In the 
light of this background, the primary aim of this paper is to investigate the dual long memory 
property in the returns and volatility of Stock Markets of India using ARFIMA-FIGARCH 
model.  

The rest of the paper is organized as follows. Section 2 presents a brief review of previous work 
on long memory property in return and volatility. Section 3 discusses ARFIMA-GARCH 
model. Section 4 provides the statistical properties of data and the estimation results of the 
ARFIMA-FIGARCH models. Section 5 summarizes. 

2. Literature Review 

Modelling long memory properties in stock market return and volatility has become an 
interesting research area in recent years. The existence of long memory in returns and volatility 
suggests the presence of dependencies among observations. Kasman, Kasman and Torun(2009) 
found that Long memory in these series were related with the high autocorrelation function 
which decays hyperbolically and finally died out. In contrast, if correlation between distant 
observations is negligible, the series possesses short memory and exhibits exponential 
decaying observations.  

Granger and Joyeux(1980) and Hosking(1981) found that fractionally integrated series could 
capture long memory property and proposed fractionally integrated autoregressive moving 
average (ARFIMA) model. It is characterized by hyperbolic decaying of autocorrelation 
function. Lo (1991), Jacobson(1996), Crato and Lima(1994) and Tolvi(2003) used ARFIMA 
model to investigate the presence of long memory in stock market returns. Besides numerous 
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studies examine long memory in stock return, Ding and Granger(1996), Lobato and 
Savin(1998), Comte and Renaut(1998) and Andreano(2005) investigated the long memory in 
volatility. They showed that the autocorrelation function of the squared daily return decayed 
very slowly. Baillie et al.(1996) developed fractionally integrated generalized conditional 
heteroscedasticity(FIGARCH) model to allow for fractionally integrated process of 
conditional variance.  

Korkmaz, Cevik and Ozatae(2009) detected  long memory property in volatility of returns in 
Istanbul stock exchange of Turkey. Jeffery and Thupayagale (2008) found the evidences of 
long memory in volatility for South Aftica and Zimbabwe, whereas no such evidence was 
found in Botswana.  

Kang and Yoon (2007) suggest that ARFIMA-FIGARCH model can provide a useful way of 
examining the relationship between conditional mean and variance of a process exhibiting the 
long memory property. Moreover, Kasman et. Al (2009) found that these models offer greater 
flexibility to analyze long memory property in return and volatility with fractionally 
differencing process. 

Kumar( 2004) analyzed the long memory property of Indian stock markets of National Stock 
Exchange(NSE) and Bombay Stock Exchange(BSE) by examining trade volume series using 
ARFIMA-GARCH models during 1995 to 2003. The study found that the the trade volume 
series exhibited strong evidence of long memory.  The study has made no attempt to 
investigate long memory property in return and volatility of Indian stock indices. There has 
been no comprehensive study of long memory in return and volatility in India, which is one of 
the fasted growing emerging stock markets. Hence, the present paper is devoted to this issue in 
two premier Indian stock exchanges namely NSE and BSE. 

3. Methodology 

3.1 ARFIMA-FIGARCH model 

Granger and Joyeux (1980) and Hosking (1981) introduced ARFIMA to test long memory 
property in the asset returns. The purpose of this model to consider fractionally integrated 

process I(d) in the conditional mean. The ARFIMA ),,( sn   model can be expressed as 

follows: 

tt LyLL   )()()1)((         (1) 

ttt z   ,   )1,0(~ Nzt         (2) 

Where t is independent and identically distributed with variance 
2  and L denotes the lag 

operator and replacing with difference operator (1-L) of an ARIMA process with the fractional 

difference operator 
)1( L , where   denotes the degree of fractional integration. The 
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differencing parameter   need not be an integer, but the integer value of   leads to a 

traditional ARMA models. If 5.00   , all autocorrelations are positive implying long 

memory while they are negative if 05.0   . The negative values indicate that the 

process exhibits negative dependence between distant observation suggesting anti-persistence. 

The process is said to be stationary when 0 . For 1 , the process follows a unit root 

process. 

n
nLLLL  .....1)( 2

21  and 
s

sLLLL   .....1)( 2
21  

are the autoregressive (AR) and moving-average (MA) polynomials. 

The extension of the ARFIMA representation in squared errors (
2 ) is FIGARCH model of 

Baillie et al. The FIGARCH (p,d,q) can be expressed as follows: 

t
d LLL  )](1[)1)(( 2        (3) 

  
22
tttV    is mean zero serially  uncorrelated error, 

2
t  is the squared error of the 

GARCH process. The  }{ tV  process is integrated as the “innovations” for the conditional 

variance (
2
t ).     If d=0, the FIGARCH (p, d, q) process reduces to a GARCH (p,q) process 

and if d=1, the FIGARCH process becomes an integrated GARCH process. Rearranging the 
terms in Eq.(3), one can write the FIGARCH model as follows: 

.])1)((1[)](1[ 22
t

d
t LLL           (4) 

The conditional variance equation of  
2
t  is obtained by: 

22 )1()(1[
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where ....)( 2
21 LLL    Baillie et al. (1996) mention that the impact of a shock on 

conditional variance of FIGARCH(p,d,q) processes decrease at a hyperbolic rate when 

.10  d Hence, the long term dynamic is taken into account by the fractional integrated 

parameter d and the short dynamic is captured through traditional GARCH model parameters.  

Baillie et al (1996) through simulations demonstrated that Quasi maximum likelihood (QMLE) 
estimation method performs better in case of high frequency financial data.  Therefore, we use 
QMLE method to estimate the results of ARFIMA-FIGARCH model. 

3.2 The adjusted Pearson goodness-of-fit Test 

The adjusted Pearson goodness-of-fit test can access the relevance of various estimated 
distributions like normal and skewed Student-t distribution. It compares the empirical 
distribution with theoretical innovations. Palm and Vlaar(1997) classify the residuals in cells 
corresponding to their magnitude to implement the test. The Pearson goodness-of-fit statistics 
for a given number of cells denoted g is given as follows: 

i

g

i
ii

En

Enn
gP





 1

2)(
)(         (7) 

Where in  is the number of observations in cell i, and iEn  is the expected number of 

observations. Under the null hypothesis of a correct distribution, P(g) statistics is distributed as 

)1(2 g . Since there is no consensus on the proper choice of g in literature, we set g equal to 

60 for our sample size. 

4. Empirical Results 

4.1 Preliminary Analysis of Data 

We consider daily returns of two most popular and widely quoted stock indices-Bombay Stock 
Exchange and National Stock Exchange of India. The Bombay Stock Exchange is the oldest 
stock exchange in Asia. The BSE sensitivity index(SENSEX) is launched in 1986. It comprises 
30 shares and its base year is 1978-79. The major criteria for selection of a scrip in the BSE 
Sensex is large market capitalization. Besides this criteria, other criteria like number of trades, 
average value of shares traded per day as a percentage of total number of outstanding shares are 
considered for inclusion in Sensex. Another index which has become popular in a short span of 
time is the S&P CNX Nifty of National Stock Exchange of India. The National stock exchange 
began equity trading in November 1994. NSE introduced this index to reflect the market 
movements more accurately, provide for managers with a benchmark for measuring portfolio 
performance. The S&PCNX Nifty launched comprises of 50 scrips which are selected on the 
basis of low impact cost, high liquidity and market capitalization. The dataset consists of daily 
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closing prices starting from January 2, 2008 to August 10, 2011 covering 890 observations. 
The period is the most recent. The economy has also been affected by global financial crisis at 
different point in time during the period, leading to some fluctuations in the stock prices. This 
study which uses the  data set covering the crisis period is, therefore, relevant and instructive 
for the analysis. 

 The daily stock returns are defined as logarithmic difference of the daily closing price of 
respective indices. The descriptive statistics of these two indices are reported in Table 1. 

 
Table 1. Descriptive statistics of sample return series 

Descriptive Statistics BSE NSE 

Mean -0.0002 -0.0001 

Standard Deviation 0.0203 0.0199 

Skewness 0.2873 0.1705 

Kurtosis 9.6177 11.0789 

Jarque-Bera 1632.57 2419.23 

Q(20) 32.07 35.77 

Qs(20) 279.94 195.76 

 

All the return series reveal that they do not correspond with normal distribution assumption. 
Jarque-Bera statistics suggest that there are significant departures from normality. We examine 
the null hypothesis of white noise using the Box-Pierce statistics of the return residuals(Q(20) 
and squared return residuals Qs((20)). From the results, we certainly reject the null hypothesis 
of white noise. It also indicates that the series are autocorrelated. 

4.2 Unit Root Tests 

Before investigating the long memory in return and volatility, we check the series for a 
presence of unit root. We have employed  three unit root tests--ADF(Augmented Dickey 
Fuller), PP(Philips-Peron) and KPSS(Kwiatkowski, Phillips, Schmidt and Shin) to determine if 
the individual return series are stationary or not. Three tests differ in the null hypothesis. The 
null hypothesis of the ADF and PP test is that a time series contains unit root while KPSS test 
has the null hypothesis of stationarity. 

The empirical results of all the three tests are presented in Table 2. 

 
Table 2. Unit Test Results 

Test BSE NSE 

ADF  -27.65(0.000)* -28.32(0.00) 

PP -27.61(0.000)* -28.33(0.00) 

KPSS 0.264** 0.274 

Notes: * Mackinnon's 1% critical value is -3.435 for ADF and PP tests.  

** A KPSS critical value is 0.739 at 1% significant level. 
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Large negative values for ADF and PP tests for both return series reject the null hypothesis of a 
unit root at the 1% significant level. Additionally, the statistics of the KPSS test indicate that 
return series are stationary. Thus both the series are stationary and suitable for subsequent long 
memory tests in this study. 

4.3 Estimation Results of ARFIMA Models 

We estimate different orders of ARFIMA models of (n,s) and compare the performance of the 
ARFIMA models to determine the adequate orders in detecting long memory property in return 
series. Following Cheung(1993), we consider all possible combinations for the ARMA(n,s) 
with maximum n=0,1,2 and s=0,1,2.  

The results of the models are reported in Table 3. The results indicate that the long memory 

parameter     and coefficients of all AR and MA are insignificant in all cases. It clearly 

suggests that there is no evidence of long memory in both BSE and NSE return series. It is 
consistent with weak-form market efficiency. Model selection criteria select ARFIMA (0,0,0) 
model. We, therefore, consider ARMA (0,0) model with GARCH class of models to analyze 
long memory in volatility of return series. 

The diagnostic statistics in Table 3 indicate that the significant departure from normality with 
large excess kurtosis and skewness. The J-B statistics also suggest that the residuals appear to 
be leptokurtic. In addition, ARCH statistics are highly significant implying the presence of 
ARCH effects in the standardized residuals. It, therefore, implies that we need GARCH models 
to capture long memory property in the Indian stock market. 
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Table 3. Estimation of ARFIMA models for (a) BSE and (b) NSE 

(n, ,s) (0, ,0) (0, ,1) (0.  ,2) (1, ,0) (1, ,1) (1, ,2) (2, ,0) (2, ,1) (2, ,2)

(a)          

  -0.02 

(0.769) 

-0.02 

(0.78) 

-0.02 

(0.77) 

-0.01 

(0.79) 

-0.02 

(0.76) 

-0.02 

(0.76) 

-0.02 

(0.77) 

-0.01 

(0.81) 

-0.02 

(0.78) 

1  
   0.07 

(0.17) 

-0.37 

(0.67) 

0.76 

(0.00) 

0.08 

(0.201) 

0.57 

(0.08) 

0.07 

(0.9) 

2  
   -   -0.033 

(0.41) 

-0.02 

(0.19) 

-0.32 

(0.93) 

  
0.00 

(0.98) 

0.00 

(0.98) 

0.00 

(0.97) 

0.00 

(0.89) 

0.00 

(0.98) 

 0.00 

(0.97) 

0.00 

(0.98) 

0.00 

(0.96) 

1  
- 0.06 

(0.21) 

-0.02 

(0.77) 

- 0.36 

(0.77) 

-0.66 

(0.00) 

- -0.04 

(0.06) 

-0.00 

(0.99) 

2  
- - -0.03 

(0.12) 

- - -0.06 

(0.13) 

- - -0.00 

(0.99) 

ln(L) -1889.73 -1887.23 -1886.89 -1887.31 -1888.74 -1887.91 -1886.86 -1888.93 -1886.86

AIC 4.231 4.25 4.254 4.259 4.269 4.265 4.38 4.28 4.27 

Skewness 0.287** 0.31** 0.29** 0.31** 0.28** 0.33** 0.29** 0.34** 0.29** 

Excess 

Kurtosis 

6.62* 6.47* 6.45* 6.44* 6.63* 6.36* 6.46 6.02* 6.45* 

J-B 1632.6* 503.7* 505.2* 500* 525.78* 486.95* 504.56* 448.87* 506.78*

Q(20) 523.86* 1561.6* 1556.1* 1550.3* 1638.9* 1513.4* 1550.4* 1357.8* 1551.1*

ARCH(5) 13.63* 13.76* 13.58* 13.82* 13.64* 14.03* 13.60* 14.61* 13.56* 

(b)          

  -0.01 

(0.82) 

-0.014 

(0.84) 

 

-0.014 

(0.83) 

-0.01 

(0.84) 

-0.00 

(0.84) 

-0.02 

(0.85) 

-0.01 

(0.82) 

-0.014 

(0.8) 

-0.02 

(0.98) 

1  
- - - 0.05 

(0.36) 

-0.19 

(0.94) 

0.05 

(0.96) 

0.049 

(0.41) 

0.05 

(0.96) 

0.049 

(0.96) 

2  
- - -  - - -0.011 

(0.77) 

-0.01 

(0.89) 

 

-0.011 

(0.96) 

  
0.00 

(0.97) 

0.00 

(0.98) 

0.00 

(0.87) 

0.00 

(0.95) 

0.00 

(0.96) 

0.01 

(0.97) 

0.00 

(0.98) 

0.00 

(0.98) 

0.00 

(0.98) 

1  
- 0.04 

(0.39) 

0.05 

(0.42) 

- 0.21 

(0.93) 

0.00 

(0.98) 

- 0.00 

(0.99) 

-0.00 

(0.98) 

2  
- - -0.01 

(0.85) 

- - -0.01 

(0.91) 

- - -0.00 

(0.97) 

ln(L) -1875.6* -1874.5* -1874.5* -1874.4* -1895* -1894.49* -1874.4* -1874.5* -1874.0*

AIC 4.24 4.23 4.233 4.231 4.234 4.235 4.23 4.234 4.237 

Skewness 0.17** 0.19** 0.18** 0.20** 0.17** 0.18** 0.18** 0.19** 0.18** 
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Excess 

Kurtosis 

8.08* 7.91* 7.90 7.89* 8.02* 8.90* 7.89* 8.90* 7.89* 

J-B 2419.2* 2321* 2314.6 2307.1* 2383.8* 2313.3* 2312.1* 2313.6* 2312.4*

Q(20) 703.82 682.07 681.6* 678.77* 696.2* 681.3* 681.53* 681.6* 882.1* 

ARCH(5) 10.65* 10.84* 10.79* 10.89* 10.67* 10.78* 10.79* 10.77* 10.76* 

Notes: QMLE standard errors are reported in the parentheses below corresponding parameter estimates. Ln(L) is 

the value of the maximized Gaussian Likelihood and AIC is the Akaike Informatin criteria. The Q(20) is the Ljung 

Box test statistics with 20 degree of freedom based on the standardized residuals. The ARCH(5) denotes the 

ARCH test statistic with lag 5. The skewness and kurtosis are also based on standardized residuals. * and ** 

denote significance levels at 1% and 5% respectively. 

 

4.3 Estimation results of FIGARCH models 

We compare the performance of GARCH, IGARCH and FIGARCH models in modelling a 
long memory volatility process and determine its best fitting order. We used ARFIMA (0,0,0) 
model in mean equation. The results of the models are presented in Table 4. The model 
selection criteria based on AIC and Ljung-Box Q statistics. The model which has lowest AIC 
and passes Q-test simultaneously is used. The model selection criteria suggest 

FIGARCH(1,1,1) model in both the stock market of India. The sum of estimates of 1 and 1  

is close to one for all the indices, indicating that the volatility is highly persistence. In particular, 

the estimates of 1 in GARCH model are very high, suggesting a strong autoregressive 

component in the conditional variance process.  The long run memory parameter d is 
statistically significant in the Indian stock markets implying prevalent of long memory in 
volatility. Comparing the degree of parameter d between the BSE and NSE stock markets, the 
long memory property in NSE market is less than that in its counterpart. The reasons might be 
related to market microstructure. NSE has been providing investors’ better platform to adopt 
broader investment strategy and gather information through better usage of information 

technology. The results also indicate that the 1  estimates are lower in the FIGARCH than 

those of GARCH models. These results are in line with the findings of Baillie et al.(1996) who 
show that there is an upward bias in GARCH estimates in the presence of long memory due to 
the fact that GARCH model does not take into account the long memory component of the 
volatility process. 

Examining the distributional property, the standardized residuals exhibit excess kurtosis and 
skewness. This justifies the use of skewed Student-t distribution. The statistically insignificant 
value of P(60) test suggest the relevance of the Student-t distribution for the BSE and NSE 
returns. 
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Table 4. Estimation Results of GARCH models (a) BSE and (b) NSE 
(p,d,q) GARCH 

(1,0,1) 

IGARCH 

(1,1,1) 

FIGARCH 

(1,d,0) 

FIGARCH 

(1,d,1) 

(a)     

  0.046 

(0.33) 

0.047 

(0.33) 

0.065 

(0.21) 

0.047 

(0.30) 

  0.028 

(0.09) 

0.026 

(0.07) 

0.044 

(0.72) 

0.031 

(0.33) 

1  
0.889 

(0.00) 

0.889 

(0.00) 

0.787 

(0.00) 

0.712 

(0.00) 

d  - 1 0.854 

(0.00) 

0.702 

(0.00) 

1  
0.107 

(0.00) 

0.111 

(0.00) 

- 0.07 

(0.31) 

ln(L) -1694.45 -1694.5 -1704.5 -1688.91 

AIC 3.828 3.826 3.848 3.817 

Q(20) 19.15 

(0.51) 

19.11 

(0.51) 

20.249 

(0.44) 

20.173 

(0.44) 

Qs(20) 8.017 

(0.978) 

 

8.152 

(0.976) 

8.578 

(0.979) 

8.328 

(0.973) 

ARCH(5) 0.587 

(0.709) 

0.601 

(0.699) 

0.561 

(0.730) 

0.544 

(0.742) 

Skewness 0.15** 0.15** 0.12 0.14** 

Excess Kurtosis 2.14* 2.13* 2.22* 2.11* 

p(60) 44.57 

(0.83) 

54.30 

(0.50) 

61.73 

(0.24) 

60.51 

(0.22) 

(b)     

  0.057 

(0.25) 

0.058 

(0.24) 

0.068 

(0.13) 

 

0.059 

(0.23) 

  0.031 

(0.07) 

0.028 

(0.07) 

0.059 

(0.12) 

0.034 

(0.32) 

1  
0.888 

(0.00) 

0.888 

(0.00) 

0.693 

(0.036) 

0.649 

(0.00) 

d  - 1 0.743 

(0.04) 

0.650 

(0.00) 

1  
0.108 

(0.00) 

0.112 

(0.00) 

- 0.109 

(0.21) 

ln(L) -1685.75 -1685.81 -1684.66 -1683.86 

AIC 3.808 3.806 3.805 3.704 

Q(20) 17.45 

(0.56) 

18.35 

(0.56) 

19.84 

(0.47) 

19.11 

(0.51) 
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Qs(20) 5.80 

(0.99) 

5.96 

(0.98) 

6.48 

(0.99) 

5.91 

(0.99) 

ARCH(5) 0.338 

(0.89) 

0.348 

(0.88) 

0.416 

(0.84) 

0.323 

(0.123) 

Skewness 0.17* 0.17* 0.16* 0.18* 

Excess Kurtosis 3.40* 3.43* 3.64* 3.41* 

p(60) 54.29 

(0.46) 

47.81 

(0.74) 

63.08 

(0.18) 

71.73 

(0.13) 

Notes: P(60) is the Pearson goodness-of-fit statistic for 60 cells. The ARCH(5) and P(60) tests are computed 

on the standardized residuals. * and ** indicate rejection at 1% and 5% significance level, respectively. 

 

5. Conclusions 

The study examined the long memory property in the Indian stock markets. The results of 
ARFIMA model indicate that there is no existence of long memory property in the stock 
returns. The absence of long memory in asset returns supports the weak form market efficiency 
hypothesis. We investigate the long memory property in conditional variance series of Indian 
stock markets. The ARMA-GARCH(1,0,1), ARMA-IGARCH(1,1,1), ARMA-FIGARCH 
(1,d,0) and ARMA-FIGARCH(1,d,1) were  estimated. The estimation results indicate that 
ARMA-FIGARCH (1,d,1) model better explains long memory property in conditional 
variance of return series. The results suggest that there is a prevalence of long memory property 
in volatility of Indian stock markets. Therefore, long memory models such as FIGARCH are 
recommended for volatility forecasting. In addition, the long memory property of the BSE 
market is revealed to be much stronger than NSE. It could be said that NSE might be having 
better process of market development and greater participation of competing investors than 
BSE which could lead to better informational efficiency in volatility in comparison to BSE. 
The evidence of long memory in volatility, however, shows that uncertainty or risk is an 
important determinant of the behaviour of daily stock data in the Indian stock markets. High 
frequency data at minute frequency would be useful in understanding the dynamics of the 
markets. Diebold and Inoue (2001) detected the linkage between regime switching and long 
memory property. Therefore, non linear models like regime switching might provide valuable 
insight over the dynamics of stock return, which could be an area for future research. 
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