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Abstract 

Theoretical formulae for the natural frequencies of oscillations of a two-layer fluid due to 
surface and interface seiches are experimentally tested. It is shown that the formulae based on 
the strict dispersion relation of the linear theory of the potential motion are applicable in a 
wide range of the natural frequencies. The approximate formulae based on the long-wave 
approximation are also applicable but in a narrower frequency range, which is particularly 
typical for the natural seiches.  
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1. Introduction 

A seiche is a standing wave in an enclosed or partially enclosed body of water 
(http://en.wikipedia.org/wiki/Seiche). Seiches generate significant horizontal and vertical 
velocities of water movements. It is unpleasant for ships and is essential for ecology. Both 
surface and internal seiches exist in water with stable density stratification. There are the 
explicit theoretical formulae for the wavelengths and frequencies of the different seiche 
modes in the case of homogeneous initially quiescent fluid filling a rectangular basin with the 
flat horizontal bottom (Kochin et al., 1963). The linear theory of the potential motion of fluid 
is used in the theory so the fluid viscosity is not taken into account. The results of an 
experimental verification of these formulae are contained in Bukreev (2011). The empirical 
formulae for surface seiches in basins of more complex forms may be found in Rabinovich, 
(2009).  

The explicit formulae are available in Phillips (1967) and Dotsenko and Miklashevskaya 
(2010) or can also be derived (see below) in the case of a two-layer fluid. Only a two-layer 
fluid under a horizontal cover was considered in Phillips (1967). The so-cold long wave 
approximation in the framework of the cited theory was used in Dotsenko & Miklashevskaya, 
(2010). The theories give relative amplitudes of seiches only. Particular values of the 
amplitudes depend on the type of disturbance and its intensity. Verification of the theoretical 
formulae for the frequency oscillations due to surface and internal seiches in a two-layer fluid 
in controlled laboratory conditions was the main aim of the present work. 

Natural seiches are generated by wind and atmospheric pressure variations, seismic activity, 
tsunamis, landslides, etc. The total property of these disturbances is their relative brevity. As 
the results, progressive waves are generated at first (Boegman et al., 2005). Seiches are born 
after the reflection of the progressive waves and are superimposed on the last. As a rule, the 
same properties of perturbations and waves are typical for laboratory experiments. This is 
also true for the present work, in which the waves were generated just as it has been done in 
the experiments of Thorpe (1971); Horn et al. (2001); Boegman (2004); Boegman et al. 
(2005). Only internal waves were studied in these experiments. Thorpe (1971) received the 
classical patterns of the shear instability in a two-layer fluid. Progressive internal surges in 
the form of the moving hydraulic jump were the main object of attenuation in the experiment 
of Horn et al. (2001); Boegman (2004). 

Both surface and internal seiches are specially extracted in the present experiments and 
theoretical formulae for the wavelengths and frequencies of seiche oscillations are revised on 
this refined base. That is the main novelty of the present paper. 

2. Theoretical Formulae 

The wave numbers pk  of the set of the longitudinal seiches in a basin with horizontal 
bottom are determined by the following formula: 

Lpk p π=                                (1) 
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where =p 1, 2, 3, ... is the number of the normal mode, L  is the basin length. The 
corresponding oscillation frequencies pω  can be obtained from the dispersion relation 

( )kω  of the linear theory, assuming pkk =  in the relation ( k  is an arbitrary wave number, 

ω  is the corresponding circular frequency). The strict equation for ( )kω  in the problem 
considered has the form (Ovsyannikov et al., 1985): 

( ) ( ) ( ) ( ) 011 21
2

21
4

21
2 =−++−+ γΘΘωΘΘωΘΘγ kgkg               (2) 

where g  is the acceleration due to gravity, 

( )11 tanh kh=Θ , ( )22 tanh kh=Θ , 21 ρργ =                 (3) 

1h  and 2h  are the depths of the upper and lower layers, 1ρ , 2ρ  are the densities of those 
layers. Equation (1) at each pkk =  has four roots. The sign of the root determines the 
direction of wave propagation. Only two positive roots have a physical meaning for standing 
waves, namely: 
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Formulae (3) and (4) determine the natural frequencies of the surface and internal 
oscillations, accordingly. 

When hyperbolic tangent in equation (3) can be replaced by its argument (that is the long 
wave approximation), the following approximate formulae are obtained in Dotsenko and 
Miklashevskaya, (2010):  
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where 21 hhH += , γρρε −=−= 11 21 .  

If the density stratification is weak ( <<ε 1), formulae (6) and (7) take the next form 
(Dotsenko & Miklashevskaya, 2010): 
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The mutual influence of the surface and internal seiches is not taken into account in formulae 
(8) and (9). It should be noted that Coriolis acceleration is taken into consideration in 
Dotsenko and Miklashevskaya (2010). The corresponding term in formulae (6)–(9) is 
omitted. 

When a transition layer with thickness H<<δ  exists between the upper and lower layers, 
the values p2ω  can be estimated by the next approximate formula by Phillips (1967): 

( ) ( )21 ctanctan
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3. Experiment and Comparison with the Theory 

The diagram of experimental setup and fixed rectangular coordinate system are presented in 
Figure 1. The rectangular basin made of perspex had the length L =1.98 m, the width 
B =0.06 m and its bottom was flat. The basin could rotate in vertical direction around the 
support 5 which was located at the distance l =1.55 m from the coordinate system origin (see 
Figure 1). An analogous setup was used in the experiments of Horn et al. (2001) and 
Boegman (2004). The basin dimensions were large enough for the similarity of wave 
processes on the Froude criteria and the self-preservation on the Reynolds criteria to be true. 
Particularly, this was confirmed by the results of comparison of the received experimental 
data with the theory in which the Froude criteria is the only similarity criterion (see below). 

 

Figure 1. Diagram of the experimental setup 
Notes: 1, 2, 3, Wavegauges; 4, Device for rotate; 5, Support. 
 

The basin was firstly filled by a layer of tap water of density 1ρ  up to 1h  in depth. After 
that, a weak glycerin solution with the density 12 ρρ >  was slowly supplied into the basin 
bottom thus displacing the buoyant fresh water layer. The glycerin solution viscosity 
exceeded the tap water viscosity no more than 2.5%. The depth of the transition layer δ  
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after the filling of two layers was about 1 mm. Then the basin was rotated upwards by the 
angle β  with the help of device 4 (see Figure 1). When any movement of water was 
stopped, the basin was rotated to the horizontal position to generate surface and internal 
waves. The angle β  and the time τ  of the basin displacement to the horizontal position 
are substantial parameters of the problem. Variation of these parameters allows one to obtain 
different waves (Boegman, 2004). Such combination of the parameter was most suitable for 
the aim of the present work when waves are smooth and the relative contribution of 
progressive waves is small. Below, there are two relevant examples. They will be named as 
Experiment 1 and Experiment 2. 

Vertical oscillations ζ  of the free surface and interface were recorded by the resistive 
wavegauges 1, 2, and 3 (see Figure 1). The wavegauges could register the oscillations, which 
exceed 0.2 mm, without substantial errors. Their natural frequency was about 4 Hz. It is 
shown below that the highest frequencies in the oscillation spectra were less than 1 Hz. The 
wavegauge 1 was located at the distance of 3 cm from the right butt end of the basin. It 
registered internal waves. The wavegauge 2 was located in the basin midst and also registered 
internal waves. The wavegauge 3 was located at the distance of 3 cm from the basin left butt 
end and registered surface waves. 

The wavegauges registered the summary oscillations due to all normal modes. The spectral 
analysis was performed to determine frequencies of individual modes. The algorithm of Fast 
Fourier Transformation (FFT) of ζ -oscillations was used for this aim. Analysis was 
performed with the help of the software application Origin computer product. There are two 
versions of FFT in Origin named as FFT-amplitude and. FFT-energy. The FFT-amplitude 
version was more appropriate for unsteady deterministic processes, which are considered in 
the present paper. The FFT-energy version is used in an analysis of steady random processes, 
particularly in turbulent fluctuations. The energy of internal waves has been considered by 
Boegman (2004) and Boegman et al. (2005). 

Two problems should be solved at a spectral analysis. One problem is a choice of a time 
interval for the analysis. Fading ζ -oscillations take place in the experiments and a value of 
time, above which all ζ <0.2 mm, was used as the upper boundary of the interval. Second 
problem is the next. Finiteness of the time interval leads to the fact that the product of ζ  
function and the Heaviside step function (but not the function on demand) is analyzed. 
So-cold smoothing algorithm is used in order to eliminate the corresponding error. The 
software application Origin offers a choice of five smoothing algorithms. In the case of 
ζ -oscillations considered, discrete frequencies in spectra was segregated most clearly by 
using the “Blackman” algorithm, 

Synchronous records of the free surface and interface oscillations in Experiment 1 and 
Experiment 2 are given in Figures 2(a) and 2(b), respectively. Only given parameters β  and 
τ  were different in these experiments. Their values are given in the legend to Figure 2. 
Other parameters, in particular 1h =0.06 m, 2h =0.04 m, 1ρ =1000 kg/m3, 2ρ =1009.2 
kg/m3, were unchanged. In Figure 2, time t  is referred to the start of the basin movement to 
the horizontal position. The functions ( )tiζ  ( i =1, 2, 3) are the oscillations which were 
registered by the wavegauges 1, 2, and 3, respectively. Over the time, these functions attain 
constant asymptotic values corresponding to the state of rest. These asymptotic values are 
equal to zeros in Figure 2. 
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Figure 2. Oscillations of the interface ( 1ζ , 2ζ ) and surface ( 3ζ ) 

Notes: (a) Experiment 1: β =1.22o, τ =25 s; (b) Experiment 2: β =0.42o, τ =2 s. 

 

In Experiment 1, the free surface attained monotonically its asymptotical level almost just 
after the rotation of the basin to the horizontal position and the surface waves were very 
small. In Experiment 2, the surface waves were significant and affected the internal waves. 
All seiche modes have the antinodes at the basin ends. As the result, the summary oscillations 
are maximal here. In the basin middle, all odd seiche modes have the nodes so the oscillations 
are minimal here. The viscosity of water is not considered in the theory. Data given in Figure 
2 showed that the waves were degenerated and the surface waves were degenerated faster 
than the internal ones. 

The influence of the surface waves on the internal ones is illustrated by two images shown in 
Figure 3. The images are received in Experiment 1 with the values of τ =0.3 s at two t  
values. The bottom layer is colored with aquatic solution of commercial ink (3 milliliters of 
commercial ink in 1 liter of water). Solid particles are visible in the images. That is wax 
(paraffin) weighted by aluminum powder. Some particles are lighter then fresh water and 
track the movement of the free surface. Other particles have the density near the density of 
salt water in the lower layer. They tracked the movement in the neighborhood of the 
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interface. It should be noted that the pointed way of preparation of relatively large marked 
particles was the most successful among a number of others ways. In the case of stable 
stratified salt water, such particles tracked the corresponding isopycnic surface for a few 
days. The distance between the vertical solid lines in Figure 3 is equal to 0.2 m. The dash 
vertical line in Figure 3 makes the position of the node of second normal mode seiche. 
 

 

 

Figure 3. Example of influence of surface wave on internal wave at β =1.22o and τ =0.3 s 

Notes: (a) t =10.3 s; (b) t =12.3 s. 

 
The dimensionless modules ( )fS i

0  of the spectra ( )fSi  of the functions ( )tiζ  are 

presented in Figures 4(a) and 4(b) ( f  is a frequency). The maximum of the dimension 
experimental spectrum at i =1 and j =1 is used as the scale for all dimensionless spectra. 
Numerical values of these scales are different in Figure 4(a) and Figure 4(b). The modulus 

( )fS 0
3  is not shown in Figure 4(a) whereas the surface waves in Experiment 1 were too 

weak (see 3ζ  in Figure 2(a)). The spectra have a number of the maxima at the frequencies 
e
jf  ( j =1, 2, 3, …). These frequencies are compared below with the theoretical frequencies 

of the seiche oscillations. There is a specific maximum A  in Figure 4. It is due to the 
unsteady nature of the waves and it is not described by the theory. The functions ( )fS 0

2  

have notable maxima only at the even values of j  since the corresponding wavegauge was 
located in the theoretical nodal point for all odd seiche modes.  
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Figure 4. Modules of the spectra of the oscillations iζ  shown in Figure 2 

Notes: (a) Experiment 1: (b) Experiment 2. 
 

The results of analysis of the correlation between the experimental frequencies e
jf  and the 

theoretical frequencies πω 2ppf =  are presented in Figure 5. The following new symbols 
are used in Figure 5: in

pf  is the frequency of the theoretical internal seiche (Figure 5(a)) and 
sur
pf  is the frequency of the theoretical surface seiche (Figure 5(b)). The condition jp =  is 

satisfied for the discrete points in Figure 5. Formula (8) gives almost the same results as 
formula (6) in the considered example. This is also true with respect to formulae (7) and (5). 

If the correlation is ideal, the discrete points to be grouped around the coordinate angle 
bisector which is shown by the straight line in Figure 4. The data presented in Figure 4 show 
that the correlation is practically ideal at least up to p=10 when the strict formulae (3) and (4) 
are used. The approximate formulae (5) and (6) give acceptable results up to p=5 only. This is 
natural since they are based on the long wave approximation. Approximate formula (9) is 
acceptable in a wider range of the interfacial seiche natural frequencies.  

 

  

Figure 5. Correlation of the experimental (abscissa) and theoretical (ordinate) frequencies 

Notes: (a) Internal wave 1ζ  in Experiment 1; (b) Surface wave 3ζ  in Experiment 2.  
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One result of the wave degradation analysis is presented in Figure 6. The interfacial 
oscillations ( )t1ζ  near the basin right butt end in Example 1 was used in the analysis. The 
upper ( )tuΖ  and lower ( )tlΖ  envelopes and the oscillations ( )t1ζ  are shown in Figure 6. 
The envelopes were described well enough by the following function:  

( )0ttexpE −=Ζ                             (11) 

where E  and 0t  are parameters of the ( )tΖ  function. They depend on the given 
parameters of the problem. The value 01 t=α  is called the attenuation coefficient in the 
oscillation theory. In the example considered, E =11.1 mm, 0t =118 s ( =α 0.00847 s–1) for 
the upper envelope and E = –13.2 mm, 0t =130 s ( =α 0.00769 s–1) for the lower envelope. 
 

 

Figure 6. Envelopes of the internal wave 1ζ  in Experiment 1 

 

The surface seiches attenuated faster than the internal ones. For example, the parameters of 
the upper envelope of the oscillations ( )t3ζ  in Example 2 (see Figure 2(b)) were the 
following: E =13.9 mm, 0t =26 s, i.e., the surface seiche attenuated approximately 4.5 times 
faster than the internal one. 

4. Discussion 

Natural water bodies have very complex geometry so any simplification of mathematical 
models of seiches is desirable. The long-wave approximation is used in all examples of 
natural seiche numerical computations (Dotsenko & Miklashevskaya, 2010; Terletska et al., 
2011). The results of the present study confirm the validity of this approximation. As the data 
given in Figure 4 show, this approximation is good for internal waves up to the frequency 

≤= fπω 2 0.3 (rad/s) at last. In the accordance with dispersion relation (1), the corresponding 
range of wave numbers is ≤k 6.4 (m–1) and the corresponding range of wavelengths is 
( ) ≥= kπλ 2 1 (m). The same value is also approximately true for the surface waves. Natural 
seiches are much longer than 1 m. 

The good coincidence of the experimental and strict theoretical frequencies in Figure 4 
justifies the most significant simplification of the theory, namely: using the potential motion 
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model. From this result, it follows that the fluid viscosity did not affect the length and 
frequency of the seiche even in the laboratory experiment. The theoretical and experimental 
study of the water viscosity influence on the dispersion relation for a two-layer fluid was 
performed in the work of Borodina et al. (1982). It has been shown that this influence is 
noticeably manifested only at the wavelengths less than 1.5 cm. 

5. Conclusions 

The validity of the linear theory of potential motion at computations of the wavelengths and 
oscillation frequencies of the surface and internal seiches is confirmed by the example of a 
two-layer fluid. Relevancy of the long-wave approximation in the mentioned theory for 
natural seiches is also confirmed. Calculations of the seiche amplitudes, in particular, their 
attenuation, should be performed on the base of a mathematical model that takes into account 
specific disturbances and dissipation of energy. 

Acknowledgement 

This work was supported by Presidium of Russian Academy of Science (scientific program 
no. 2.13.3) and Presidium of Siberian Branch of this Academy (scientific program no. 132). 

References 

Boegman, L. (2004). The degeneration of internal waves in lakes with sloping topography. 
(Doctoral dissertation). The University of Western Australia, p. 146. Retrieved from 
http://www.civil.queensu.ca/Research/Hydrotechnical/Leon-Boegman/documents/boegmanp
hd.pdf  

Boegman, L., Ivey, G. N., & Imberger, J. (2005). The energetics of large-scale internal wave 
degeneration in lakes. Journal of Fluid Mechanics, 531, 159-180. 
http://dx.doi.org/10.1017/S0022112005003915 

Borodina, N. N., Bukreev, V. I., Gusev, A. V., & Sturova, I. V. (1982). Viscosity attenuation 
of internal waves emerging in two-layer fluid at a movement of a cylinder and wing. 
Dinamika sploshnoy sredy (Dynamics of continuum), Issue 54. Institute of hydrodynamics: 
Novosibirsk, 49-60. (in Russian) http://dx.doi.org/10.1007/s11110-010-9075-1 

Bukreev, V. I. (2011). Decay of an initial discontinuity of water depth in a finite-length 
channel. Experiment. Journal of Applied Mechanics and Technical Physics, 52(5), 689-697. 
http://dx.doi.org/10.1134/S0021894411050026 

Dotsenko, S. F., & Miklashevskaya, N. A. (2010). Baroclinic seiches in rotating basins of 
variable depth in the case of two-layer density stratification. Physical Oceanography, 20(3), 
157-169.  

Horn, D. A., Imberger, J., & Ivey, G. N. (2001). The degeneration of large-scale interfacial 
gravity waves in lakes. J. Fluid Mech., 434, 181-207. 
http://dx.doi.org/10.1017/S0022112001003536 

Kochin, N. E., Kibel’, I. A., & Roze, N. V. (1963). Theoretical Hydromechanics (Chapter 1) 



Aquatic Science and Technology 
ISSN 2168-9148 

2013, Vol. 1, No. 2 

www.macrothink.org/ast 12

Moscow: Fizmatgiz. (in Russian) 

Ovsyannikov, L. V., Makarenko, N. I., Nalimov, V. I., et al. (1985). Nonlinear problems of 
the surface and internal wave theory (p. 318). Novosibirsk: Nauka, Siberian division. (in 
Russian)  

Phillips, O. M. (1967). The dynamics of the upper ocean (p.270). Cambridge: Cambridge 
Univ. Press. 

Rabinovich, A. B. (2009). Seiches and Harbor Oscillations. In Y.C. Kim (Ed.) Handbook of 
Coastal and Ocean Engineering (Chapter 9, pp. 194-236). Singapoure: World Scientific 
Publ. 

Terletska, K. V., Maderich, V. S., & Brovchenko, I. O. (2011.) Strongly nonlinear internal 
seiches in the elongated stratified lakes and phenomenon of "Loch Ness monster". Prikladna 
hidromehanika, 13(1), 51-55. 

Thorpe, S. A. (1971). Experiments on the instability of stratified shear flows: miscible fluids. 
J. Fluid Mech., 46, 299-319. http://dx.doi.org/10.1017/S0022112071000557 

Symbols 

A  Designation of one of maxima in Figure 3 

B  Channel width (m) 

pb  Dimensionless parameter 

pc  Dimensionless parameter 

E  Parameter (mm)  

f  Frequency (Hz) 

pf  Theoretical normal frequency (Hz) 

in
pf  Theoretical normal frequency of internal mode (Hz) 

sur
pf  Theoretical normal frequency of surface mode (Hz) 

e
jf  Frequency of experimental maximum (Hz) 

g  Acceleration due to gravity (m/s2) 

H  Initial overall depth of fluid (m) 

1h , 2h  Initial depths of the upper and lower fluids respectively (m) 

i =1, 2, 3 Index 

j =1, 2, 3, … Index 
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k  Wave number (2 ⋅π m–1) 

pk  Normal wave number (2 ⋅π m–1) 

L  Basin length (m) 

l  Longitudinal coordinate of support (m) 

p =1, 2, 3, … Index 

iS  Spectrum ( smm ⋅ ) 

0
1S , 0

2S , 0
3S  Modules of individual dimensionless spectra 

t  Time (s) 

0t  Characteristic attenuation time (s) 

x  Longitudinal coordinate (m) 

z  Vertical coordinate (m) 

α  Attenuation coefficient (s–1) 

β  Angle (degree) 

δ  Characteristic thickness of intermediate layer (mm) 

ε  Dimensionless parameter 

γ  Dimensionless parameter  

λ  Wavelength (m) 

1ρ , 2ρ  Densities (kg/m3) 

τ  Characteristic time of rotation (s) 

ω  Circular frequency (rad/s) 

pω  Normal circular frequency (rad/s) 

p1ω  Normal circular frequency of surface mode (rad/s z) 

p2ω  Normal circular frequency of internal mode (rad/s) 

ζ  Vertical oscillation (mm) 

iζ  Vertical oscillations registered by wavegauges (mm) 

1ζ , 2ζ , 3ζ  Individual oscillations (mm) 

1Θ , 2Θ  Dimensionless parameters 

Ζ  Envelope (mm) 
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uΖ , lΖ  Upper and lower envelopes (mm) 
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