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Abstract 

This paper presents the application of a data-driven model, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) in forecasting flood flow in a river system. ANFIS uses neural network 

algorithms and fuzzy reasoning to map an input space to an output space. In the present study, 

ANFIS models are used to forecast common downstream flow rates and flow depths in a river 

system having multiple inflows. Three different ANFIS model forms: (i) depth-depth (H-H) 

model, (ii) depth-discharge (H-Q) model and (iii) discharge-discharge (Q-Q) models are 

considered in this study. The models are used for forecasting one-hour ahead common 

downstream flow rates and flow depths in a river system based on past upstream flows. The 

flow and flow depths data are divided arbitrarily into different categories (2, 3, 4, 6) and 

different number of membership functions (Triangular, Gaussian, Trapezoidal and Bell) 

selecting two categories with Gaussian input and constant output membership functions based 

on trial and error. Performances of the ANFIS model with selected categories and membership 

functions are tested and verified by applying a time-series model, Autoregressive Integrated 

Moving Average (ARIMA) to the same river system. ARIMA has been successfully used in 

time-series forecasting leading to satisfactory performances. A further validation of the ANFIS 

model has been done by applying it to another river basin, Tar River Basin in USA. The results 

evaluated on the basis of standard statistical criteria showed improved performances by the 

ANFIS depth-depth forecasting models. The results also indicate that performances of the 

ANFIS models with multiple inflows are more satisfactory and closely follow performances of 

the ARIMA models. The study demonstrates applications of the multiple inflows ANFIS 

models in forecasting downstream flood flow and flow depth in a river system. 

Keywords: ANFIS, ARIMA, flow depth, discharge 
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1. Introduction  

Flood movement modeling serves as a cost effective means for minimizing the damages 

caused by flooding. Study of the flood movements and developing flood forecasting and 

warning systems are essential to provide assistance against the possible flood losses. Various 

hydrological models are available in the literature to study flood movement in river reaches 

which can be categorized as Conceptual, Physical, Stochastic and Data-driven models. 

Conceptual models are generally based on Saint-Venant equations comprising of partial 

differential equations of continuity and momentum. In the past few decades, many conceptual 

based models have been proposed for forecasting hydrological phenomena (Chau and Lee, 

1991 a, b, Wagener et al., 2001, Kitanidis and Bras, 2010). While these models can well 

explain the internal mechanisms of the hydrological processes but require large amount of 

calibration data, sophisticated mathematical tools and expertise with the model. Physical 

models are based on understanding of the physical processes; often require pertaining physical 

data sets and may not be ideal for real-time forecasting due to tremendous data requirements 

and associated long computation time for model calibration. Applications of physically based 

models can be found in the works of Feyen et al. (2000), Rosenberg et al. (2011). 

Data-driven models on the other hand, extract information from the input – output data sets 

without considering the complex physical process by which they are related and establish a 

statistical correspondence between input(s) and output(s). Data driven models such as 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and 

Fuzzy Logic (FL) have been found to be potentially useful in modeling time-series hydrologic 

problems. The main advantage of these models is that they do not require specifying 

functional relationships apriori; self organize their structure and adapt it in an interactive 

manner learning the underlying relationship(s). Data driven models are preferable for flood 

forecasting problems where usually the main concern is to make accurate and timely forecast 

essential for flood damage mitigation. In the hydrological forecasting context, application of 

data-driven models can be found in the works of Dawson and Wilby (1998); Tokar and 

Johnson (1999); Liong et al. (2000); Bazartseren et al. (2003) and Chen et al. (2006) among 

others. Karl and Lohani (2010) developed a flood forecasting system using statistical and 

ANN techniques in the downstream catchment of Mahanadi basin, India and found that ANN 

methods perform better than the statistical methods. Jacquin and Shamseldin (2006) explored 

the application of Takagi-Sugeno fuzzy inference systems to rainfall-runoff modeling. They 

showed that fuzzy inference systems are a suitable alternative to the traditional methods for 

modeling the non-linear relationship between rainfall and runoff. Nayak et al (2005) carried 

out a study on river flow forecasting on the basis of rainfall and runoff data using ANN, FL, 

ANFIS and reported better performances by the ANFIS model. The ANFIS model works on a 

set of linguistic rules, can handle imprecision and uncertainty present in the model and the 

data structure. Chidthong et al (2009) developed a hybrid multi-model to forecast the flood 

level at Chiang Mai and the Koriyama flood in Japan; found satisfactory application of the 

applied model. Hydrologic events being essentially time-dependent, a number of time-series 

models have also been used to model hydrologic problems. Traditionally, time-series models 

have been used for modeling and forecasting water resource hydrological systems because 

such models are accepted as a standard representation of a stochastic time-series (Maier and 
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Dandy, 1997). Applications of time series models such as, Autoregressive Moving Average 

(ARMA), Autoregressive Integrated Moving Average (ARIMA) in hydrology can be found in 

the works of Box and Jenkins, 1976; Masmoudi and Habaieb, 1993; Martins et al., 2011.  An 

ARIMA model is a generalization of an ARMA model; it makes time-series stationary in both 

calibration and forecasting phases. One of the recent investigations that evaluate performances 

of ARIMA and ARMA models in forecasting Dez dam reservoir located in Teleh Zang Station 

can be found in Valipour et al (2012). The author reported improved performances by the 

ARIMA model as compared to ARMA model. There is considerable volume of literatures on 

the applications of ARIMA and ARMA models in forecasting hydrologic time series. 

Extensive application of these models in hydrology is mainly due to the fact that these models 

have the capability of generating new sequences of time-series having same statistical 

parameters with the observed series. However, such models do not attempt to represent the 

non-linear dynamics inherent in the transformation of rainfall to runoff and therefore may not 

always perform well (Hsu et al., 1995).  

Study of the literature pertaining to the applications of data-driven models in forecasting river 

flows show that most of the models use a single upstream flow depth/flow rate to simulate 

and forecast downstream flow depth/flow rates in a river reach. In real world, a number of 

tributaries join the main channel to form a river system. To forecast downstream flows in a 

river system accurately, inclusion of all past upstream flows in the model is essential. In the 

present study ANFIS models that use past flow information for several upstream stations are 

used to forecast common downstream outflow in a river system.  To forecast common 

downstream outflow, three ANFIS models are considered: (i) depth-depth (H-H) model, (ii) 

depth-discharge (H-Q) model and (iii) discharge-discharge (Q-Q) model. The models are 

applied to a river system in Barak basin, India obtaining forecasts for the common 

downstream flow rates and flow depths for the river system. Performances of the ANFIS 

models are tested and verified by applying ARIMA model to the same river system. Flow rate 

and flow depth forecasts obtained by applying ARIMA models are compared with the results 

of the ANFIS models. Results obtained indicate better performances by the H-H ANFIS 

model and it is also found that ANFIS model results closely follow the ARIMA model. 

Applicability of the multiple inflows ANFIS model in forecasting common downstream 

discharge is further tested by using it in Tar River Basin, USA.  

2. Models 

2.1 ANFIS Model 

ANFIS is an artificial intelligence technique that has been successfully used for mapping 

input-output relationship based on available data sets (Jang et al., 1997; El-Shafie et al., 

2007). It is based on the first order Sugeno-fuzzy inference system proposed by Jang, 1993 

and it uses neural network learning algorithms and fuzzy reasoning to map an input space to 

an output space. With the ability to combine the numeric power of a neural system with the 

verbal power of a fuzzy system, ANFIS has been found to be powerful in modeling numerous 

processes. The model works on a set of linguistic rules developed using expert knowledge. 

The fuzzy rule base of the ANFIS model is set up by combining all categories of variables. 

For example, if there are n inputs and if each input is divided into c categories then there will 
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be nc  rules. For 3 upstream flows in a river system represented by the inputs x, y and z 

having 2 categories namely low flow and high flow each, there would be 8 rules in the rule 

base; the output for each rule is written as a linear combination of input variables and a 

constant term. Part of the rule sets can be illustrated as follows: 

  Rule 1: If x is low, y  is low and z  is low, then the output 11111,1,1 dzcybxao  ; 

Rule 2: If x is low, y  is low and z  is high, then the output 
;22222,1,1 dzcybxao   

Rule 3: If x is low, y  is high and z  is high, then the output 
;33332,2,1 dzcybxao   

…………………………………………………………………………………………… 

Rule 8: If x is high, y  is high and z  is high, then the output 
;88882,2,2 dzcybxao   

The coefficients (..)(..);(..);(...); dcba are parameters of the output functions and these 

parameters are determined through training. 

For each of the rules triggered, memberships of the inputs variables x, y, z are estimated 

through learning. The result of T-norm gives the weight to be assigned to the corresponding 

output. Finally, outputs from all triggered rules are combined to give a single weighted 

average output given by, 





kji

kjikji

w

ow
O

,,

,,,,
                                (1) 

Here, kji ,,  are the input categories. 
kjiO ,,   = output due to rule kji ,,  and 

kjiw ,,
= is the 

associated weight for rule kji ,,  

In order to develop a fuzzy inference model for forecasting, parameters that define the shape 

of the membership functions are identified by the back-propagation learning algorithm, 

whereas the parameters in the output function ( (..)(..);(..);(...); dcba ) are determined by least 

square type method. The model possesses features of both neural networks and fuzzy control 

system such as learning abilities, optimization abilities and human-like “if-then” rule thinking. 

The framework of ANFIS is shown in Fig.1.  

 

Figure 1. Framework of ANFIS 
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2.2 ARIMA Model 

ARIMA model is a general time-series model for forecasting popularized by Box and Jenkins 

(1976). ARIMA model is fitted to time-series data to better understand the data and to predict 

future points in the series. It uses three components for modeling the serial correlation in the 

time-series data. The first component (l) is the autoregressive term (AR), the second 

component (d) is the integration (I) order term. Each integration order corresponds to 

differencing the time series. I (d) represents differencing the data„d‟ times and the third 

component (q) is the moving average (MA) term. The general form of the ARIMA model (l, d 

and q) is given by: 

jtjitit byaay   ...0       (2) 

Where,  and j   .  is a stationary stochastic process and has a 

non zero average.  is a constant coefficient,   represents autoregressive coefficient and 

 represents moving average coefficients and   is the white noise disturbance term. 

Selected ARIMA model with optimal parameters are used for forecasting the depth and 

discharge time series. The most adequate model is selected on the basis of statistical criteria 

such as Bayesian Information Criterion (BIC) and Coefficient of determination (R
2
). These 

statistical criteria determine if an ARIMA model with a specific set of l, d and q parameters is 

a good statistical fit. The R
2
 is defined as: 
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where n and p are the number of observations and the number of regression parameters. 

SSE and SST are the sum of squared errors and the total sum of squares, respectively. BIC is 

defined as: 

 np
n

SSE
nBIC lnln 








        (4) 

For a given data set, a number of candidate models having different l, d and q parameters may 

be fitted and the model giving lowest values for BIC and maximum R
2
 can be selected as the 

best model. 

3. Study Area and Data Set 

Flood forecasting using ANFIS and ARIMA models is made to a river network in Barak basin 

in India. The Barak River is the second largest river in the North-eastern regions of India and 

rises in the state of Nagaland at an elevation of approximately 2,300 meters. The drainage 

area of the River is 14,500km
2
 approximately. Barak valley is having a population of about 
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2.98 million. The basin is situated on the route of south-west monsoon; it receives an annual 

rainfall of 2500-4000mm having 80-85% from Mid-April to Mid-October. The problem of 

flood is very complex and acute in the valley. During monsoon it receives 2-3 flood waves 

almost every year, inundating vast part of the valley and causing widespread damages. 

Agriculture being the main occupation of about 70-75% of the population in the valley, the 

problem of recurrent flood jeopardizes economic growth and development in the region.  

In this study, a river network bounded by three upstream inflow gauging stations and a 

downstream outflow gauging station in the main river Barak is selected for application of the 

ANFIS and ARIMA models. Details of the study area along with the river system are shown 

in Fig.2(a). The upstream gauging stations are located at Phulertal in the main river Barak, 

Tulargram in the tributary Sonai and at Matijuri in the tributary Katakhal. Applying the 

models, flow depth/discharge at the common downstream station, Badarpurghat is predicted 

using known flow depths/discharges at the upstream stations Phulertal, Tulargram and at 

Matijuri in the river system. Hourly discharge and flow depth data for all gauging stations in 

the study area during monsoon season were collected from Central Water Commission 

(CWC), Shillong. A total of 9864 datasets of the monsoon period in the year 2003-2005 have 

been used in the study. 75% of the dataset are used for training and cross validation while the 

rest 25% are used for testing the model performances. To validate the ANFIS model, the 

model is also applied to a river system in Tar River Basin, USA. 

 

Figure 2 (a). Barak River and its tributaries 

The Tar-Pamlico River basin has a drainage area of 13921 Km
2
 and is one of the four river 

basins that entirely lie within the state of North Carolina (NC) in the US. Major tributaries of 

the Tar River main stem include Cokey Swamp, and Fishing, Swift and Sandy creeks. In the 

Upper Tar River Basin, tributary flow from Sweeft creek, Fishing and Little fish creek 
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contribute to the flow at Tarboro, NC and at Greenville, NC a further downstream point in the 

river system.  Figure 2(b) shows the map of the Tar River Basin. This study uses flow 

information for the gauge sites, Rocky Mount, Hilliardson, Enfield and Tarboro to forecast 

flow at the downstream station, Tarboro applying the ANFIS model. Data sets having 2-hour 

interval was prepared from the flood period data series and used for analyzing the river 

network flood events.  

 

4. Applications 

In the present study, ANFIS and ARIMA models are used to forecast downstream flow 

depth/discharge in a river system in Barak basin, India. Concurrent flow depths/discharges at 

time (t-1) at four upstream stations and flow depth/discharge data at time (t) measured for the 

downstream station are used to develop the ANFIS models for the river system. Water 

discharge and flow depth data measured at one hour interval are used in this study. Three 

ANFIS models (i) depth-depth (H-H), (ii) depth-discharge (H-Q) and (iii) 

discharge-discharge (Q-Q) are used to obtain one hour ahead flood flow forecast for the 

downstream station in the river system. ANFIS models topology are selected by conducting 

trials using different number and types of input and output membership functions and the 

training algorithm. ANFIS model structure with Gaussian input and constant output 

membership functions with the inputs having two categories has been selected on the basis of 

minimum RMSE described in Table 1. Different ANFIS models and the data structures 

Figure 2 (b). Map of the Study Area in Tar River Basin 



Environmental Management and Sustainable Development 

ISSN 2164-7682 

2013, Vol. 2, No. 2 

www.macrothink.org/emsd 61 

considered for forecasting common downstream flood flow are as follows: 

  )(;1),1(),1(),1( tHtHtHtHtH BBMTF       (5) 

  )(;1),1(),1(),1( tQtQtHtHtH BBMTF       (6) 

  )(;1),1(),1(),1( tQtQtQtQtQ BBMTF       (7) 

where, tQH ,,  represent the flow depth, discharge and time respectively. Subscripts 

BMTF ,,,  represent respectively upstream stations Phulertal, Tulargram, Matijuri and the 

downstream station, Badarpurghat.  

The above models have four inputs representing concurrent upstream flow depths/flows rates 

at time (t-1) and downstream flow depth /flow rate at time (t). The forecasting efficiency of 

the model decreases with the increase in the lead time. The ANFIS model forms are therefore, 

used to forecast one-hour ahead downstream flows and flow depth. The whole dataset of the 

flood period is segmented into two categories namely, high flows and low flows; the 

categories are selected such that peak flow rate has zero membership value in low flow 

category and minimum flow rate has no or zero membership in the high flow category. 

Division of four upstream flows into two categories result into a total of sixteen rules in the 

rule base. The network is trained using a combination of back propagation algorithm to 

determine the parameters defining the shape of the Gaussian membership function and 

least-squares estimation technique to estimate the parameters in the output function. To test 

and verify the results obtained by applying the ANFIS models, common downstream flow 

depth and discharge values for the river system are also predicted by using the ARIMA 

models. To apply ARIMA models, flow depth/discharge series is first tested for stationarity 

by using the time series plot and computing the values for Autocorrelation function (ACF) 

and Partial Autocorrelation function (PACF). ACF and PACF for the flow depth/discharge 

series are computed for 16 lags; figure 3 gives the ACF plot for the downstream flow 

depth/discharge series. The ACF plot shows that lag 1 ACF for the series is close to 1 and the 

ACF has a linearly decreasing trend. The ACF values computed for both depth and discharge 

series show similar trend and are presented in Table 3. Since ACF values for depth and 

discharge series stay close to 1 over many lags, the series are non-stationary and differencing 

is needed to make the series stationary. In the present study to develop ARIMA models for 

forecasting flow depth and discharge at the downstream station, only first order differencing 

is considered. Models with different numbers of autoregressive terms and moving average 

terms are fitted to the data series by applying SPSS package. BIC and  value for the 

ARIMA models with varying l, d, and q components are computed and compared; in the 

present study six different ARIMA models were considered for forecasting downstream depth 

and discharge in the river system. The trial results show that the ARIMA model giving 

minimum BIC value also yields maximum R
2 

value.
 
In the present study, ARIMA (2, 1, 2) 
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model selected on the basis of minimum BIC and maximum R
2
 value is found to be the best 

performing model for forecasting downstream flow depth and discharge in the river system. 

The ARIMA (2, 1 and 2) model equations used for estimating common downstream depth 

and discharge in the river system are: 

 )2()1()2()1()( 157.0867.0130.0068.1004.0   tt

d

t

d

t

d

t HHH      (8) 

)2()1()2()1()( 211.0918.0180.0115.1814.2   tt

d

t

d

t

d

t QQQ     (9) 

BIC and  values for equation 8 is -7.35 and 0.92 respectively while for equation 9, the 

values are 5.014 and 0.84 respectively. 

The ARIMA H-model and Q-model represented by Eqn (8) and (9) respectively are used to 

forecast downstream flow depth and discharge series for the river system. Depth and 

discharge series predicted by the ANFIS and ARIMA models are given in figure 4 and figure 

5. Performances of the ANFIS and ARIMA models are evaluated using statistical criteria: 

Coefficient of Correlation (CORR), Nash-Sutcliffe model efficiency coefficient (CE), Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). Coefficient of correlation 

describes how the two data set moves, when CORR=1, it indicates perfect positive linear 

correlation between the predicted and observed series and the two data sets move in the same 

direction. Coefficient of Efficiency (CE) is an important statistic describing model fitness. A 

value of CE=1 indicates perfect model fit while CE=0 represents that the model is as good as 

the mean model. Whereas RMSE indicates the absolute fit of the model to the data-how close 

the observed data points are to the model‟s predicted values. A further validation of the 

ANFIS model has been done by applying the same model in another river basin (Tar River 

Basin, USA) to forecast downstream discharge based on upstream discharges. Performances 

of the ANFIS model applied to Tar River Basin, USA have been presented in Table 2. 

 

Figure 3. ACF plot for the downstream flow depth/discharge series 
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Figure 4. Common downstream flow depths obtained by using ARIMA and ANFIS models 

 

Figure 5. Common downstream discharge in the river system obtained by applying ARIMA 

and ANFIS models 

Table 1. Different standard statistical criteria  

Performance Criteria Definition 
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where tQ =observed value at time t, tQ̂ = modeled value at time t, tQ = mean of the 

observed data, and tQ
~

mean of the modeled data, n=total number of observations 

 

Table 2. ANFIS and ARIMA models performances for testing period. 

RIVER 

BASINS 

Performance 

Measures 

ANFIS MODEL ARIMA MODEL 

   

H-H 

model(m) 

 

H-Q 

model 

 

Q-Q 

model(m
3
/s) 

H-model Q-model 

BARAK 

BASIN 

RMSE 0.538 0.743 0.930 0.923  0.983 

CE 0.975 0.885 0.82 0.90 0.81 

MAE 0.518 0.721 0.904  0.918  0.961 

CORR 0.99 0.924 0.860 0.925 0.83 

TAR 

BASIN 

RMSE  0.768   

CE 0.924   

MAE 0.843   

CORR 0.967   
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Table 3. Autocorrelation values for flow depth/discharge series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performances of different ANFIS and ARIMA models evaluated in terms of statistical criteria 

described in Table 1 are listed in Table 2.  From the results presented in Table 2, it can be 

found that performance statistics CE and CORR values for ARIMA and ANFIS models in 

estimating downstream flow depths are better than the corresponding discharge estimation 

model. Also, it can be found that performances of the ANFIS depth-depth model are better 

than all other models considered in the study. Better performances by the depth estimation 

models can be attributed to the fact that the flow depths being measured data are more 

accurate compared to the discharge series that are obtained using measured depth data by 

applying rating curve for a station. The CE and CORR values for different ANFIS models are 

found to be more than 0.82 and 0.86 respectively while CE and CORR values obtained for 

the ARIMA models are more than 0.81 and 0.83 respectively. Considering that CE values for 

the multiple inputs ANFIS models are more than 0.82, performances of the ANFIS models 

Lag 

Autocorrelati

on Std. Error 

Box-Ljung Statistic 

Value df Sig. 

1 1.000 .010 9.857E3 1 .000 

2 .999 .010 1.970E4 2 .000 

3 .998 .010 2.954E4 3 .000 

4 .998 .010 3.936E4 4 .000 

5 .997 .010 4.916E4 5 .000 

6 .996 .010 5.895E4 6 .000 

7 .995 .010 6.871E4 7 .000 

8 .993 .010 7.845E4 8 .000 

9 .992 .010 8.817E4 9 .000 

10 .991 .010 9.786E4 10 .000 

11 .989 .010 1.075E5 11 .000 

12 .988 .010 1.172E5 12 .000 

13 .986 .010 1.268E5 13 .000 

14 .985 .010 1.363E5 14 .000 

15 .983 .010 1.459E5 15 .000 

16 .981 .010 1.554E5 16 .000 
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may be considered satisfactory. Comparison of ANFIS and ARIMA models results show 

better performances by the ANFIS model in forecasting common downstream flow depths 

and discharges in the studied river system. To further validate application of ANFIS model 

for a river system the model is applied to Tar River Basin, USA for forecasting two-hour 

ahead downstream discharge on the basis of four upstream discharges. The upstream 

discharges are divided into three categories and Gaussian membership is selected for all the 

inputs. The model results are also listed in Table 2. Results given in Table 2 show that ANFIS 

model perform satisfactorily in predicting flow rate at the downstream station “Tarboro” on 

the basis of three upstream flows in the Tar River Basin. The study demonstrates that the 

ANFIS model can be effectively used to forecast downstream flow rates in a river system 

using multiple upstream flows 

5. Conclusions 

This paper presents the application of a data-driven model, ANFIS in forecasting flood flows 

in a river system. ANFIS is a powerful modeling technique and it works on a set of linguistic 

if-then rules. It can handle imprecision and uncertainty present in the model and the data 

structure and thus can be used for real-time applications. In the present study, first order 

Takagi-Sugeno fuzzy inference system is used to forecast one-hour ahead downstream flow 

depths and discharges based on multiple upstream flows/flow depths. For this purpose, 

different depth-discharge forecasting models given by Eqs (5), (6) & (7) have been applied to 

the study area. Multiple inputs-single output ANFIS models are used to forecast common 

downstream flow rates and flow depths in a river system in Barak basin, India. A set of 16 

rules arising out of four upstream inflows being considered for the river system, each with two 

categories are used to estimate common downstream flood flow. ARIMA is a standard time 

series prediction model and is used to test and verify applications of the multiple inflows 

ANFIS model. ARIMA models with appropriate l, d, and q parameters are selected on the 

basis of minimum BIC and maximum R
2 

values. One hour ahead forecasts of downstream 

flow depths/discharge obtained by applying ARIMA models are compared with the results 

obtained from the ANFIS models. Results show that models based on flow depth data forecast 

flood more accurately than the models using discharge data. Comparison of the ANFIS model 

performances with ARIMA models indicates that results of the multiple inflows ANFIS model 

closely follow the results of the ARIMA model developed. Application of the ANFIS model is 

further tested by using it in Tar River basin, USA to forecast downstream discharge using 

multiple inflows in the basin. Results of the ANFIS model applied to the Tar River Basin are 

also satisfactory in terms of all the statistical criteria used. The ANFIS model thus, can 

efficiently map multiple inputs to a single output and is useful for simulating/forecasting 

common downstream outflow on the basis of several upstream flows. 
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