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Abstract 

The paper examined the applicability of thermal neutrality equations to the thermal responses 

of residents in a field study within a tropical warm-humid urban environment in Ibadan, 

Nigeria. A total of 528 houses were selected for the survey using systematic random sampling 

within twelve neighborhoods selected by stratified random sampling in the metropolis. For 

each selected building, an adult resident filled a questionnaire indicating the adaptive thermal 

response at different periods of the day using the ASHRAE thermal comfort scale. 

Measurement of indoor and outdoor air temperature and other thermal comfort parameters 

was done in representative buildings in the neighborhoods. It was found that the residents‟ 

thermal neutrality was higher than values predicted by applied thermal neutrality equations 

inferring opportunities for sustainable comfort. It was concluded that there is essentially a 

climatic and contextual basis for the application of thermal neutrality equations. 

Keywords: Adaptive response, Air temperature, Indoor comfort, Sustainability, Thermal 

neutrality, Urban microclimate, Warm-humid environment 

1. Introduction 

The high levels of air temperature in tropical climates affect the indoor comfort of urban 

residents. City microclimate and indoor comfort are of concern due to the high rate of 

urbanization and the attendant growth in urban population and urban housing demand. 

Thermal Comfort is generally defined as that condition of mind which expresses satisfaction 

with the thermal environment (ISO1984). It is a state of well-being with respect to 

temperature depending on achieving a balance between the heat being produced by the body 

and the loss of heat to the surroundings. There is a particular neutrality temperature that is 

relevant to a specific comfort situation. The neutrality temperature also called thermal 
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neutrality is the optimum temperature when people feel neither warm nor cool but neutral 

(Humphreys 1976). To optimize thermal comfort inside a naturally ventilated room, the 

interior temperature should be maintained at or close to the neutrality temperature.  

A number of thermal neutrality equations have been formulated based on previous research in 

other regions. It will be of relevance to look into the comfort level of the residents of a city in 

the warm-humid tropical climatic environment and determine the neutrality temperature 

because of the peculiar challenges of such a region. Such a study will enhance our 

understanding of the requirements of indoor comfort in the local context with respect to 

temperature and aid the development of acceptable local building standards. This study 

therefore looks into the thermal neutrality of residents of a warm-humid city in Nigeria and 

examines the applicability of thermal neutrality equations to the result of the survey. The 

relevance of this study is that it compares theory of thermal comfort to empirical results in the 

context of the warm-humid climate. Specifically it looks into the determination of thermal 

neutrality in a warm-humid city comparing the obtained field study result to predictions from 

theoretical models. It should be noted that for the warm-humid climate, sustainability in the 

urban built environment can be enhanced with the attainment of higher values of thermal 

neutrality. 

2. Literature Review 

The parameters contributing to thermal comfort have been established to be air temperature, 

mean radiant temperature, air velocity and relative humidity which are environmental 

elements as well as clothing and metabolism level which are personal parameters (Fanger 

1973, Givoni 1976, Markus and Morris 1980). The two initial concepts forming the basis of 

the study of thermal comfort from literature are the physiological and the psychological 

concepts. The physiological theory lays the foundation for relating the physical parameters of 

an environment to the thermal state of the body. The bodily exposure to the thermal 

environment translates into feelings based on the physiological reactions. The human 

subjective psychology gives an insight into the human experience of thermal comfort. The 

relevance of the psychological approach to thermal comfort is shown in literature to be 

evident in the need to decipher the different degrees of comfort and discomfort responses to 

different thermal conditions. The psychological models of thermal comfort have been 

developed based on two approaches: the prompted vote and the behavioral approach as 

developed by Fanger (1973) and McIntyre (1980) with a comfort equation. The physiological 

approach has become more relevant in the assessment of stress conditions.  

The concept of adaptive thermal comfort is established in literature as the basis of the thermal 

experience in an urban spatial environment (Baker and Standeven 1994, deDear 1998, 

Merghani 2004). The adaptive principle states that “if a change occur in the thermal 

environment which tends to produce discomfort, people will respond in ways that tend to 

restore their comfort” (Humphreys and Nicol 2002, Santamouris 2006, Humphreys et al 

2007). The adaptive opportunity create an entirely diversified range of thermal response 

which have been found to be more extended than the normal influence of the fundamental 

thermal comfort parameters. The neutrality temperature may thus be affected by the adaptive 
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comfort principle. There are therefore additional parameters to be analyzed on a contextual 

platform using the field study approach for proper understanding of the dynamics of 

sustainable thermal comfort. 

The concept of bioclimatic design has made the study of thermal comfort more incorporated 

in the practice of architecture. The architectural design of a building is traditionally shaped by 

the challenges and opportunities of the regional climate. The analysis of the local climatic 

conditions is the starting point in formulating building and urban design principles aimed at 

maximizing comfort and minimizing the use of energy for heating and cooling. Architecture 

intentionally modifies the climate of an immediate area. Different comfort standards are 

justified for countries with different climatic conditions and stages of economic development. 

According to Givoni (1998), studies have indicated that persons living in hot countries prefer 

higher temperatures than the recommendations by the American and European standards such 

as ASHRAE comfort nomogram and Fanger‟s Comfort Equation. Fanger (1970) defines 

comfort as the conditions under which the subjective thermal comfort votes are between 

„slightly cool‟ and „slightly warm‟ on a seven-point thermal comfort scale. According to 

Givoni, the problem with Fanger‟s heat balance equation is that the effect of air speed is 

taken into account only with respect to the convective heat exchange, while its effect on 

sweat evaporation is not included in the heat balance formula. At a given warm temperature 

and humidity, when the convective heat exchange is rather small, the PMV will have almost 

the same value at different speeds. This limits the evaluative capacity of Fanger‟s formula on 

sensory effect of air speed which is very significant in hot-humid climates (Givoni 1998). 

Acclimatization to the local climate was reported in Colima, Mexico, a warm-humid town. 

The minimum temperatures from June to October (raining season) would be considered 

uncomfortable by ASHRAE comfort zone suggesting the need for air-conditioning. Residents 

however felt comfortable without using air-conditioning, reflecting acclimatization to the 

local climate (Givoni 1998). According to Mallick (1996), the perception of comfort in the 

warm-humid climate is influenced by long-term conditioning of high temperature and 

humidity. The exterior conditions influence clothing, personal habits and expectations of 

comfort. In the study of occupants of urban housing in Bangladesh, it was found that there 

was unexpected tolerance to high temperatures and very high humidity for comfort (Mallick 

1996). The adaptive tolerances can ultimately bring about sustainable thermal comfort within 

the buildings 

Climatic condition was considered from the findings of Haase and Amato (2009) as the most 

important factor in the determination of thermal comfort. The different hourly weather data 

were analyzed with the help of dynamic computer simulations. The study determined the 

potential for natural ventilation in achieving thermal comfort. In tropical climates the 

improvement in comfort by natural ventilation ranged between 9% and 41%. For subtropical 

climate the improvement varied between 3% and 14%. In the temperate climate, the 

improvements varied between 8% and 56%. The study showed that natural ventilation has a 

good potential in tropical and temperate climates but not in subtropical climates. The 

derivation of an equation for thermal comfort in free-running buildings established a 

relationship between indoor comfort and outdoor climate (Nicol and Humphreys 2010). The 
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paper describes how the indoor comfort conditions were related to the running mean of the 

outdoor temperature, and addressed the effect of air movement and humidity. The dependence 

of indoor environmental conditions on the external climatic condition is emphasized by the 

paper. 

The studies in different locations have been contextualized because of the use of different 

groups of people and different physical environments. It has been shown by Humphreys 

(1978) and Auliciems (1981, 1982) that thermal neutrality is a function of the prevailing 

climate. It follows that findings based on studies in the temperate climate cannot be generally 

applicable to the tropical climate. Many of the developed indices have limitations with 

respect to high temperature and high relative humidity. According to Markus and Morris 

(1980), Sharma and Ali (1986) and Ogunsote and Prucnal-Ogunsote (2002), none of the 

indices appears to be universally satisfactory over the entire range of environmental 

conditions. 

Noted by Humphreys (1976) are also the discrepancies between the predictions of the 

theoretical models and the observations of field study. The discrepancies indicate the areas 

where the understanding of the subject is incomplete. The conclusion from literature is that 

there is requirement for the validation of the theoretical models through field studies. Peeters 

et al (2009) specifically stressed the need for the field study approach to discover real 

situations in residential buildings. There are a number of equations developed from previous 

works for obtaining neutrality temperature Tn. These will be applied in this study to make 

comparisons with the result of neutrality temperature determined for the field study. 

According to Humphreys (1978), Tn = 11.9 + 0.534Toav where Toav is the month‟s mean 

outdoor temperature. Auliciems (1981) gave the equation Tn = 17.6 + 0.31Toav while Griffiths 

(1990) provided the equation: Tn = 12.1 + 0.534Toav. Also, Nicol and Roaf (1996) deduced 

the equation: Tn = 17 + 0.38Toav,  while the deDear et al (1997) equation is Tn = 17.8 + 0.31 

Toav . 

3. Study Area 

Ibadan metropolis is an urban centre located on latitude 7
o
23‟N and longitude 3

o
55‟E in the 

South-Western part of Nigeria. The city ranges in elevation from 150m above sea level in the 

valley area to 275m on the major north-south ridge which crosses the central part of the city 

(http://www.absoluteastronomy.com/topics/Ibadan). Figure 1 shows the distribution of the 

residential building densities in the metropolis. Ibadan falls within the warm-humid tropical 

climate with a seasonally humid classification because of its inland location. The climatic 

pattern is dominated by periods of high rainfall especially in the rainy season. There are 

considerable solar radiation intensity and high temperatures, high humidity, light winds and 

long periods of still air. There are two broad seasonal patterns in Ibadan, namely the dry 

season (November to April) and the rainy season (May to October). The weather conditions 

in Ibadan, as well as in other places in Nigeria and other West African countries during the 

course of a given year actually depends on the location of the place in relation to the 

fluctuating surface position of the Inter-Tropical Discontinuity (ITD) in the region (Ojo, 

1977). 
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Figure 1. Ibadan metropolis showing the building densities.  

Source: Adapted from Asiyanbola (2011). 

 

According to the analysis of the Ibadan climate given by BBC Weather 

(http://en.wikipeadia.org/wiki/Ibadan,Nigeria##), the record highest temperatures of 39
o
C 

occurred in February and 38
o
C in March and April. The mean maximum temperature was 

highest in February and March (34
o
C) closely followed by April, January and November 

(33
o
C). The months with the lowest mean maximum temperatures were August (27

o
C) and 

July (28
o
C). The record lowest temperature was 10

o
C in January. The mean minimum 

temperature was least in January, July, August and December (21
o
C) and was highest in 

March and April (23
o
C). With respect to the sunshine hours, highest value of 198 was in 

February, November and December followed by 170 in January, April and May. From the 

analysis, the month of April in which the survey was done rightly qualified as one of the 

expected hot and uncomfortable months in the study area. 

4. Methodology 

A thermal comfort field-survey was conducted in Ibadan metropolis. Ten percent (12) of the 
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119 neighborhoods identified from the metropolitan map were selected by stratified random 

sampling comprising 2 low, 3 medium and 7 high residential densities. The total number of 

houses in each of the neighborhoods was estimated to be an average value of 885 based on 

data from NBS (2008). A sample size of five percent of this gave 44 houses in each 

neighborhood which were selected using systematic random sampling to give a total of 528 

houses for the survey. For each selected building, an adult member of a household was 

sampled for questionnaire administration. Indoor thermal comfort assessment was done by 

the respondents using the ASHRAE thermal sensation scale. They also provided information 

on their clothing, activity level and relevant physical/personal characteristics as well as any 

adaptive action taken. The respondents that were literate filled the questionnaire 

independently as they monitored their thermal feelings during the day but about 15% of 

respondents with lower literacy level were interviewed to complete the questionnaire from 

memory. The rating of thermal response ranged from -3 through 0 to +3 as indicated in Table 1. 

It was the mean comfort vote that was utilized in the analysis. The mean comfort vote was 

calculated using the following computation: 

Mean Comfort Vote = Σ (Thermal response rating x Number of votes) † Total number of 

respondents. 

The measurements of relevant climatic parameters such as air temperature, air velocity, 

relative humidity were done in representative buildings in the neighborhoods. The 

weather-measuring instruments used comprised the following: La Crosse Technology Instant 

Transmission Plus Weather Stations which offered immediate update of all outdoor and 

indoor climatic data measured from transmitters (with the indoor temperature rangeof -9.9
o
C 

to +59.9
 o
C with 0.1

o
C resolution and +/- 1

o
C accuracy, outdoor temperature range of -39.9

 o
C 

to 59.9
 o
C with 0.1

 o
C resolution and +/- 1

o
C accuracy and humidity range of 1% to 99% with 

1% resolution and ±5% accuracy); Smart Sensor Intell Plus Electronic Anemometers (with 

wind speed range of 0 to 30m/s, 0.1m/s resolution and ±5% accuracy); and Multi-Thermo 

Digital Instruments (with resolution of 0.1
 o

C and accuracy of +/- 1
o
C ). In the respective 

representative sampled houses within the 12 neighborhoods where measurements were taken, 

the weather stations sensors were positioned at a mounting height of 1.25m above ground 

level and fitted to a sheltered wall to avoid direct sunshine and precipitation.  

 

Table 1. The ASHRAE Scale of warmth 

THERMAL RESPONSE NUMBERING 

Hot +3 

Warm +2 

Slightly warm +1 

Neutral 0 

Slightly cool -1 

Cool -2 

Cold -3 
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The survey was done in April which was analyzed to be one of the hottest months in the study 

area. The survey sites could not be visited simultaneously for respondents to fill their 

questionnaires because of logistic limitations. Different sets of three survey sites were taken 

simultaneously in different rounds of the survey across the twelve neighborhoods within the 

month. For each survey site therefore, data was taken on two days in the month and the 

maximum, minimum and average values were obtained from the sets of readings. The 

measurements were taken on sunny days (with bright sunshine, with clear sky and without 

precipitation) in the month and additional measurements were taken for each location on 

other days in the same month to verify the data. Along with the measurements of the 

environmental parameters, the different entities of personal, spatial, location and adaptive 

factors relevant to thermal comfort were recorded to have a comprehensive assessment of the 

adaptive thermal response of the residents. 

5. Results 

A total number of 528 respondents were surveyed in Ibadan metropolis. Out of this number, 

271 were male (51.3%) and 257 were female (48.7%). 42.8% of the respondents‟ were of age 

18-30 years, 45.6% were 31-54 years and 11.6% were 55 years and above. With respect to 

their length of stay in their respective houses, 18% had stayed for 1-2 years, 54.7% had 

stayed for 3-10 years and 27.3% had stayed for over 10 years. Their value judgments were 

reliable. 

5.1 Variation of Mean Comfort Vote with Air Temperature 

The pattern of variation of the Mean Comfort Votes of the adaptive thermal responses with 

indoor and outdoor air temperatures were of interest in this study. According to Humphreys 

(1975), in most of the studies of thermal comfort a far greater part of the variation in response 

can be attributed to change in temperature than to changes in either humidity or air movement. 

A table indicating the various indoor and outdoor temperatures and the calculated mean 

comfort votes of adaptive thermal response was prepared (Table 2). The percentage of 

respondents that were in comfort zone was calculated for each case. The Percentage in 

Comfort 1 consisted of all votes in „slightly cool‟, „neutral‟ and „slightly warm‟ categories. 

The Percentage in Comfort 2, regarded as better suited for the warm-humid climate, however 

consisted of all respondents‟ votes in the „cool‟, „slightly cool‟, „neutral‟ and „slightly warm‟ 

categories. The two computations gave a measure of the percentages of respondents satisfied 

with the respective temperature values. The respective percentages in discomfort, D1 and D2 

were the percentages of respondents that were dissatisfied with the corresponding air 

temperature values. 
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Table 2. Mean Comfort Vote and Percentages in comfort and discomfort. 

Outdoor Temp. Indoor Temp. Mean Vote % in Comfort 1 %D1 % in Comfort 2 %D2 

28.0 29.5 -1.920 20.54 79.46 83.93 16.07 

28.9 30.5 -1.477 46.59 53.41 87.50 12.50 

30.0 31.8 -0.847 63.93 36.07 91.26 8.74 

30.5 31.5 -1.437 41.67 58.33 87.50 12.50 

30.0 30.7 -1.415 40.24 59.76 87.80 12.20 

33.9 32.3 -0.250 55.36 44.64 79.46 20.54 

35.8 34.0 0.941 52.94 47.06 58.09 41.91 

36.0 34.2 1.634 33.87 66.13 36.02 63.98 

35.6 33.1 0.463 67.07 32.93 78.05 21.95 

32.0 32.2 -1.070 50.89 49.11 87.50 12.50 

32.5 31.7 0.159 70.45 29.55 82.95 17.05 

33.4 33.8 1.087 43.71 56.29 50.82 49.18 

32.7 33.3 0.054 47.69 52.31 73.08 26.92 

27.7 30.5 -1.795 15.18 84.82 74.11 25.89 

29.2 30.2 -0.704 52.27 47.73 81.82 18.18 

30.2 31.2 -0.302 59.89 40.11 72.53 27.47 

28.2 31.1 -0.333 50.00 50.00 85.42 14.58 

27.6 30.1 -1.134 50.00 50.00 82.93 17.07 

 

Graphs were plotted to relate indoor temperature and mean comfort vote as well as outdoor 

temperature and mean comfort vote. The graphs indicated significant linear relationships with 

high R Square values. The data from the table was analyzed to produce the graph (Fig. 2) 

with the equation relating mean comfort vote to indoor temperature given as: 

y = 0.627x – 20.38                             (1) 

where y = mean comfort vote and x = indoor temperature. R Square value was 0.762 which 

implied a very strong linear relationship. The second graph for the outdoor temperature (Fig. 

3) also indicated a linear equation as follows:  

y = 0.303x – 9.938                            (2) 

where y = mean comfort vote and x = outdoor temperature. R Square value was 0.700 which 

implied a very strong relationship. 

These equations can be used to provide estimated corresponding values of mean votes of 

respondents and the indoor and outdoor temperatures.  
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Figure 2. Graph relating Mean Comfort Vote of residents and Indoor Temperature in 

Ibadan in April 2010 

 

Figure 3. Graph relating Mean Comfort Vote of residents and Outdoor Temperature in 

Ibadan in April 2010. 

The data collected for all other variables were analyzed. All the sets of predictor variables 

explained remarkable percentages of the variance of the adaptive thermal response in the 

afternoon period as follows: building spatial characteristics- 35.7% (F= 14.797, ρ≤0.05), 

location characteristics- 26.8% (F= 31.710, ρ≤0.05), outdoor climatic factors 21.2% (F= 

34.382, ρ≤0.05), personal characteristics- 20.4% (F= 10.093, ρ≤0.05), adaptive actions- 

14.6% (F= 5.810, ρ≤0.05), indoor climatic factors 11.8% (F= 22.866, ρ≤0.05). The set of a 

combination of all the listed variables – personal, adaptive action, climatic, spatial and location 

characteristics as predictor variables explained 52.1% of the variance of the adaptive thermal 

response (F= 10.474, ρ≤0.05).  

5.2 Determination of Neutrality Temperature and Optimum Temperature 

As stated earlier, the neutrality temperature also called thermal neutrality is the optimum 
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temperature when people feel neither warm nor cool but neutral (Humphreys 1976). To 

optimize thermal comfort inside a naturally ventilated room, the interior temperature should 

be maintained at or close to the neutrality temperature. Using the data in the table, the graphs 

for the percentage of respondents in comfort in relation to indoor temperature gave 

polynomial curves with the equations as follows:  

y = - 4.503x
2
 + 290.6x – 4631                       (3) 

where y = % in comfort 1 and x = indoor temperature, (R Square = 0.405). This % in comfort 

1 is the percentage of respondents voting any of these comfort zone categories: slightly cool, 

neutral and slightly warm. 

The graph for the percentage in comfort 2 was also a polynomial curve with equation as 

follows:  

y = - 4.208x
2
 + 261.8x – 3987                      (4) 

where y = % in comfort 2 and x = indoor temperature, (R Square = 0.786). This % in comfort 

2 is the percentage of respondents voting in the comfort zone 2 defined to comprise of these 

four categories: cool, slightly cool, neutral and slightly warm. 

The curve of the first graph of % in comfort 1 had a peak value of 58% in comfort at indoor 

temperature value of 32.2
o
C (Figure 4). According to Humphreys (1975), the peak value of 

the % in comfort 1 curve would correspond to the value of the neutrality temperature. The 

neutrality temperature is the temperature at which the maximum number of people feels 

neither hot nor cold. It is regarded as the mid-point of the comfort zone. Therefore, by this 

convention the value for the neutrality temperature for the respondents in this study was 

determined to be 32.2
o
C from the first % in comfort 1 graph. It was however not acceptable 

that the percentage in comfort was only 58% and not anywhere near to the required optimum 

temperature value of 95% in comfort so that only 5% would be dissatisfied. The acceptable 

neutrality temperature would therefore be ideally lower than 32.2
o
C to obtain a greater 

percentage in comfort.  

Taking the curve of the second graph of % in comfort 2, the peak value was 87% and 

corresponding temperature was 30.7
o
C (Figure 5). This value of 30.7

o
C could be more 

acceptable as the optimum neutrality temperature for the respondents since it had the highest 

percentage in comfort value of 87%. The comfort zone 2 which included cool category was 

utilized since majority of respondents (79.9%) preferred to feel cooler during the survey. It 

was deduced that their preferred temperature and hence optimum temperature could only be 

adequately determined within a comfort zone that included the cool category. Also, according 

to Hwang et al (2009), the comfort limits corresponding to 80% acceptability for hot-humid 

region was found to be -1.45 (cool) and +0.65 (slightly warm) rather than -0.85 and +0.85 

suggested by ISO 7730. The study found that the inclusion of the cool category in the 

comfort zone for the hot-humid and other tropical climates was necessary for comfort 

standards analysis. The % in comfort 2 was therefore considered to provide a better analysis 

of the indoor comfort situation than the % in comfort 1 in this study. The temperature value 

of 30.7
o
C at which 87% of the respondents were in comfort obtained from the % in comfort 2 
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graph was therefore determined as the optimum neutrality temperature. It was preferred to the 

conventionally obtained value of 32.2
o
C which only accounted for 58% in comfort. The 

actual value of acceptable comfort temperature corresponding to 95% in comfort could not be 

obtained since 95% of respondents were not found in comfort within the contextual range of 

this survey. The value of 30.7
o
C could however be taken as an approximate value with 

respect to the range of indoor thermal conditions experienced by respondents in this study. 

 

Figure 4. Graph of Percentage in comfort 1 in relation to Indoor temperature for Ibadan 

in April 2010 with equation 

 

Figure 5. Graph of Percentage in comfort 2 in relation to Indoor temperature for Ibadan in 

April 2010 with equation 

The equations given in previous works for obtaining neutrality temperature Tn were applied 

to determine which could be applicable to the findings in this study. According to Humphreys 
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(1978), Tn = 11.9 + 0.534Toav where Toav is the month‟s mean outdoor temperature. Using this 

equation and taking Toav = 28
o
C, Tn was found to be 26.85

o
C. Auliciems (1981) gave the 

equation Tn = 17.6 + 0.31Toav. Using this equation and taking Toav = 28
o
C, Tn = 26.28

o
C. 

Using Griffiths (1990) equation, Tn = 12.1 + 0.534Toav, Tn was found to be 27.05
o
C. With 

Nicol and Roaf (1996) equation: Tn = 17 + 0.38Toav, Tn was found to be 27.64
o
C. Using 

deDear et al (1997) equation, Tn = 17.8 + 0.31 Toav , gave Tn = 26.48
 o

C. 

6. Discussion 

It must be noted that there were several other factors in the study that influenced the mean 

vote along with air temperature. The data collected for all other variables were analyzed. . 

From the regression analyses, the five categorized sets of factors (personal, adaptive action, 

climatic, building spatial and location characteristics) were relevant to the determination of 

the indoor thermal comfort of the respondents. All the sets of predictor variables explained 

remarkable percentages of the variance of the adaptive thermal response in the afternoon 

period as follows: building spatial characteristics- 35.7% (F= 14.797, ρ≤0.05), location 

characteristics- 26.8% (F= 31.710, ρ≤0.05), outdoor climatic factors 21.2% (F= 34.382, 

ρ≤0.05), personal characteristics- 20.4% (F= 10.093, ρ≤0.05), adaptive actions- 14.6% (F= 

5.810, ρ≤0.05), indoor climatic factors 11.8% (F= 22.866, ρ≤0.05). The set of a combination 

of all the listed variables – personal, adaptive action, climatic, spatial and location 

characteristics as predictor variables explained 52.1% of the variance of the adaptive thermal 

response (F= 10.474, ρ≤0.05). When interpreting the respective results obtained for indoor 

temperature from equation (1) and outdoor temperatures from equation (2) therefore, the 

substantial contextual input of other variables of adaptive thermal comfort especially adaptive 

actions must be recognized. It was deduced that the respondent‟s adaptive actions enabled 

them to tolerate the high values of indoor and outdoor temperatures recorded in the study. 

The uncomfortable thermal conditions in the periods of discomfort provided the basis for the 

principle of adaptive comfort to be operational. The adaptive principle states that if a change 

occurs such as to produce discomfort, people react in ways which tend to restore their 

comfort (Nicol and Humphreys 2002). 

It can be inferred that there is essentially a climatic and contextual basis for the application of 

thermal neutrality equations. From the results, the nearest predicted value of thermal 

neutrality Tn to the 30.7
o
C obtained in this study was the Tn from Nicol and Roaf (1996) 

equation: 27.64
o
C (Tn = 17 + 0.38Toav) which was less by as much as 3.06 deg C. It should be 

noted that all calculated Tn values were less than the obtained value of 30.7
o
C. The obtained 

Tn in this study was therefore higher than the values predicted by these models. This 

indicated that the respondents tolerated higher temperatures by 3.06 deg C above the 

predictions from the examined Nicol and Roaf Tn equation, 3.65 deg C above Griffith‟s 

equation, 3.85 deg C above Humphreys‟ equation, 4.22 deg C above deDear‟s equation and 

4.42 deg C above Auliciems‟ equation. This confirmed the effect of the respondents‟ adaptive 

actions and the result therefore validates the adaptive principle. The adaptive nature of 

thermal comfort has been expressed as being a means of extending the comfort conditions 

within spaces as occupants utilize the adaptive opportunities available to them (Humphreys 

and Nicol 2000,2002, Nicol and Humphreys 2002, Merghani 2004, Boerstra 2006). Adaptive 
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thermal comfort has been shown through several findings to be the actual experience of 

people within the thermal environment created in spaces within and around built structures. 

The difference of the field result compared to predictions of models has implications with 

regard to the stipulation of building comfort standards. It is inferred that the more realistic 

thermal neutrality can better be determined by the contextual field study approach. 

Additionally, more energy can be saved through architectural design utilizing the adaptive 

comfort approach of providing ample adaptive opportunity. This needs to be emphasized due 

to the significant impact of building spatial characteristics on adaptive thermal comfort of the 

residents in this study. This has also especially been demonstrated through the use of adaptive 

opportunity by building occupants as reported in literature. Spatial diversity has been found 

to be of interest in the determination of adaptive thermal comfort (Baker and Standeven 1996, 

Merghani 2004). Through the various inferences from previous studies, both environmental 

and spatial diversity can be conceptualized as adaptive opportunities and need to be taken as 

building design factors to make buildings occupants benefit more from the adaptive principle 

and culminating in sustainable comfort. 

7. Conclusion 

From the above findings it could be inferred that the differentials of the tropical warm-humid 

climatic conditions of the study area and the contextual urban residential environment as well 

as the adaptive actions of the respondents had necessitated a requirement for adjustment to 

the applicability of the thermal neutrality equations in the study area. The respondents in this 

study have utilized the adaptive opportunity available to them and could therefore extend 

their comfort zone to higher temperatures than the predicted comfort temperatures and 

comfort standards. It was found that the residents‟ thermal neutrality was higher than values 

predicted by the applied equations thereby indicating opportunity for sustainable comfort. 

Hence, the applicability of the thermal neutrality equations in a tropical warm-humid urban 

condition needs further modifications because of its peculiar climatic context. Essentially, 

there should be a climatic and contextual basis for the application of the thermal neutrality 

equations. 
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