Systemic Importance of Insurance Companies—An Empirical Analysis

Anushri Bansal
Senior Economist, Research and Innovation Center, Willis Towers Watson, Mumbai, India
E-mail: Anushri.Bansal@willistowerswatson.com

Received: March 7, 2016 Accepted: March 28, 2016 Published: April 19, 2016
doi:10.5296/ifb.v3i1.9340 URL: http://dx.doi.org/10.5296/ifb.v3i1.9340

Abstract

Insurance companies are increasingly being regulated under the assumption that, like banks, they pose systemic risk to the overall economy and especially the financial system. This analysis investigates this premise by comparing the systemic importance of insurance companies and the insurance industry with that of banks, brokers, real estate firms, and their respective industries. Empirical results suggest that intra-industry linkages exist among insurance firms, although they are comparatively weaker than those in banking and real estate. Moreover, systemic risks arising from the effects of distress in other economic sectors are lower for insurance companies—although not negligible. Given its size, systemic problems arising over time from the insurance industry would have a very disruptive macroeconomic impact.

Keywords: Insurance companies, Systemic risk, Banks
1. Introduction

“The risk that the inability of one institution to meet its obligations when due will cause other institutions to be unable to meet their obligations when due. Such a failure may cause significant liquidity or credit problems and, as a result, could threaten the stability of or confidence in markets.” (European Central Bank 2004)

The financial crisis of 2007-2009 has brought the insurance industry under the radar of regulatory authorities. Many consider insurance companies as a source of systemic risk (in the conventional banking sense) and believe they should fall under the same regulatory umbrella as banking and other systemically important institutions.

The 2010 Dodd-Frank Wall Street Reform and Consumer Protection Act, a U.S. federal statute, aims to make financial institutions more accountable by imposing stringent regulatory requirements on “systemically important institutions.” And according to Dodd-Frank, this includes insurance companies.

This analysis investigates whether U.S. insurance companies pose systemic risk to other sectors in the financial economy at the timescales and magnitude of risks posed by the banking industry. The systemic risks of banks, brokers, insurance companies, and real estate companies in the U.S. financial sector are compared using ∆CoVaR (conditional value at risk) methodology by Adrian & Brunnermeier (2010).

CoVaR is defined as the VaR(value at risk) (Note 1) of one institution i conditional on the other institution j being in distress. ∆CoVaR then captures the difference between the CoVaR of institution i when j is in distress and the CoVaR of institution i when j is operating at its median state. The logic behind this measure is that, rather than treating risk in isolation, it is important to capture interdependencies as well as direction of risk.

The analysis categorizes the top U.S. financial firms from October 2002 to April 2011 into four broad sectors: banking, brokerage, insurance, and real estate. These four sectors are defined as the financial system. The analysis calculates the systemic risk of 1) individual companies on their respective industry, and 2) one industry on the others (industry interlinkages). It then measures size effects by dividing the sample into small, medium, and large companies by market capitalization, and capturing the systemic risk of individual companies on their respective industry by size.

While the study covers multiple aspects of systemic risk, its use of traditional analytical techniques has a few shortcomings. It fails to consider the wide range of scenarios that could impact the insurance industry over a longer term. Moreover, it looks at insurance companies as a whole but not at specific business activities. Still, in applying conventional methodology on systemic risk to the insurance industry, there are benefits in being able to directly compare its impact with that of banking and other sectors.

The results show that:

- **Systemic risk contribution.** If an insurance firm were to collapse, its systemic risk contribution in the worst-case scenario (1 percentile) to the insurance sector would be 6.2%,
compared with risk contributions of 9.1% from banks and 22.1% from real estate companies to their respective sectors. Thus, while intra-industry interlinkages are weaker in the insurance sector compared with banks and real estate, the risks are not negligible in absolute terms.

- **Size effect.** Systemic risk contribution averages 0.85% for large banks versus 0.69% for small banks, and 0.63% for large insurers versus 0.46% for small insurers. This indicates a positive correlation of firm size to systemic risk.

- **Inter-industry interlinkages.** If a banking, brokerage, or real estate firm were to undergo distress or crisis, the impact on the insurance industry would be weaker compared with the impact on the other sectors. Nonetheless, in absolute terms, the numbers are not marginal. The findings suggest that, given the existing regulatory framework and current core insurance activities and liability characteristics, the insurance sector is relatively insulated. But we cannot ignore the interdependencies posed by increased financial intermediation and the blurring distinction between insurers and other players in the financial economy.

- **Impact on other sectors.** If the insurance industry were to undergo similar levels of duress, the impact on other sectors, including banking, would be significant. This could arise longer term through liability changes, such as increased longevity or declining interest rates. It could also happen in the shorter term through a series of catastrophic climate or other claims, such as terrorism and cyber-attack.

The insurance sector faces significant risks in areas such as health, technology, terrorism, and climate change (Faure & Hartlief, 2003). Moreover, sources of vulnerability are generally exogenous, residing in the macroeconomic environment or arising from non-core insurance activities. These risks differ intrinsically from those faced by banking, and while there is little debate about whether insurance should be properly regulated, its liability profile suggests that regulation intended for banking could have unintended consequences and might be unable to handle a true systemic crisis in insurance.

In the remainder of the paper, Section 2 discusses the literature around calculating systemic risk, and Section 3 looks at the data and methodology. Section 4 provides an empirical analysis, and Section 5 presents the results. Section 6 highlights the nature of insurance-sector risks and how they differ from banking risks, and Section 7 provides the conclusion.

2. Measuring Systemic Risk

The literature shows different ways of capturing the systemic risk of financial institutions, ranging from Granger-causality tests and marginal expected shortfall, to $\Delta CovVaR$ and state-dependent sensitivity VaR (SDSVaR) models. These analyses use share returns and asset correlations to capture interlinkages and forecast risks, and employ stress tests to model volatility and correlations.

Acharya et al. (2010) aim to capture each banking institution’s contribution to systemic risk by calculating systemic expected shortfall (SES). They try to “bridge the gap between
structural and reduced form approaches” and build a model that helps derive an “optimal policy for managing systemic risk.” In an empirical study of the 2007-2009 financial crisis, they forecast risks using stress tests, equity returns, and credit default swap spreads employing high-frequency marginal expected shortfall (MES) measures.

Following Acharya et al. (2010), Brownlees & Engle (2011) propose a measure of systemic risk that “captures the expected capital shortage of a firm given its degree of leverage and MES.” Using threshold autoregressive conditional heteroskedasticity (TARCH) and dynamic conditional correlation (DCC) to model volatility and correlations, they rank U.S. financial firms on systemic risk at different stages of the financial crisis.

Billio et al. (2010) propose several econometric measures to capture interlinkages among different financial institutions using principal components analysis and Granger-causality tests. They use equity share returns to examine interdependencies among four sectors: hedge funds, brokers, banks, and insurance companies. They find that, over time, while these sectors have become more interrelated, the impact of one sector on another varies, with the banking and insurance sector affecting brokers and hedge funds more than the other way round.

In another measure of systemic risk, Huang, Zhou, & Zhu (2009) capture the “price of insurance against financial distress” with the aim of examining the relationships among the financial sector, the real economy, and government policy. Their analysis measures systemic risk in the banking sector by calculating the “probability of default and asset correlations from CDS spreads and co-movements of equity returns” and then stress-testing using an integrated micro-macro model.

A few analyses have used the ∆CoVaR methodology of Adrian & Brunnermeier (2010). Fong et al. (2009) capture systemic interlinkages among local, international, and mainland China banks in Hong Kong using quantile regressions to calculate CoVaR. Adams, Fuss, & Gropp (2011) extend the CoVaR methodology to include risk spillovers among financial institutions. They calculate the SDSVaR, measuring “size and duration of spillovers” for different market conditions: calm, normal, or volatile. To assess which bank activities contribute to systemic risk, Brunnermeier, Dong, & Palia (2012) first measure systemic risk using the CoVaR measure of Adrian & Brunnermeier (2010) and the SES measure of Acharya et al. (2010). They then discover that banks with higher ratios of non-interest income to interest income are larger contributors of systemic risk.

Having given an overview of academic literature on measures of calculating systemic risk, we now look at our own empirical analysis.

3. Data and Methodology

The sample includes the top U.S. financial firms (top 75% by market capitalization as of December 31, 2007) classified under Standard Industrial Classification (SIC) codes 60-67. It covers depository institutions, non-depository institutions, security and commodity brokers, insurance agents and carriers, and real estate and real estate holding/other investment offices. These are classified under four broad industries: banking, brokerage, insurance, and real
The analysis period spans October 1, 2002 to April 30, 2011, which gives a balanced panel of 252 firms. For these firms, daily share price data (calendar days) is taken from Bloomberg, and weekly share returns are calculated using log returns. Similarly, weekly S&P 500 returns are calculated using the S&P 500 total returns index from Bloomberg for the same time period. The control variables in the sample are:

- One-month and three-month daily Treasury rates, U.S. Federal Reserve database
- One-month and three-month repo rates, Bloomberg
- Daily volatility index, U.S. VIX index from Chicago Board Options Exchange website
- 10-year Treasury bond rates and 10-year BAA corporate bonds, Bloomberg

3.1 Data Cleaning and Organization

- Daily share price data are converted into weekly return data using log returns. This is done for all firms in the sample as well as for S&P 500 share price data.

\[R_{it} = \log \left(\frac{\text{price}_t}{\text{price}_{t-5}} \right) \]

- Based on SIC classifications, the firms are classified into four sectors using the following mapping:
 - Banks: SIC 60 and SIC 61
 - Brokers: SIC 62, SIC 6719, SIC 6722, SIC 6794, and SIC 6799
 - Insurance: SIC 63 and SIC 64
 - Real estate: SIC 65 and SIC 6798

After data cleaning and accounting for missing values, the sample comprises 84 banks, 28 brokers, 66 insurance companies, and 74 real estate companies.

- Financial system returns (returns of all firms in our sample) and industry returns are calculated using the following:

\[R_{t}^{\text{System}} = \sum_{i=1}^{N} \left((\text{Mkt} \ Cap_{i,t-1} \ast R_{it}) / \left(\sum_{i=1}^{N} \text{Mkt} \ Cap_{i,t-1} \right) \right) \]

\[R_{t}^{\text{ind}} = \sum_{i=1,\text{ind}}^{N} \left((\text{Mkt} \ Cap_{i,t-1} \ast R_{it}) / \left(\sum_{i=1,\text{ind}}^{N} \text{Mkt} \ Cap_{i,t-1} \right) \right) \]

Where, \(R_{t}^{\text{System}} \) and \(R_{t}^{\text{ind}} \) are the weekly returns of the financial system and each industry, respectively. \(\text{Mkt} \ Cap_{i,t-1} \) is the one-week lag current market capitalization of each firm \((i = 1, 2 \ldots N)\), within the financial system or within a particular sector.
In order to capture time-varying VaR and CoVaR, the following quantile regression equations include one-week lagged control (state) variables. Following Brunnermeier, Dong, & Palia (2012), the control variables are liquidity risk, interest rate risk, term structure, and default risk.

- Liquidity risk is measured as the spread between the three-month Treasury rate and three-month repo rate.
- Volatility is captured through the VIX close price.
- Interest rate risk is measured as the difference between the three-month Treasury rate and its lag value.
- Term structure is the “yield spread between the 10-year Treasury bond rate and three-month Treasury bill rate.” Brunnermeier, Dong, & Palia (2012).
- Default risk is defined as the “credit spread between the 10-year BAA corporate bond rate and the 10-year Treasury bond rate.” Brunnermeier, Dong, & Palia (2012).

3.2 Systemic Risk Using Delta CoVaR

Systemic risk is calculated using the ∆CoVaR measure proposed by Adrian & Brunnermeier (2010). The measure builds on the traditional VaR measure of the risk imposed by a particular firm in distress on other firms, thus capturing the interdependencies and risk spillovers.

3.2.1 Definitions

A. VaR_i^q is the worst expected loss incurred by firm i over a specific time period with a $q\%$ confidence level. We use quantile regressions to calculate VaR_i^q—defined as the potential asset return/loss (R_i) of firm i over a specific period of time at a given quantile level. We consider one five-day calendar week at a 1% confidence level.

$$\text{Probability}(R_i \leq \text{VaR}_i^q) = q$$

B. CoVaR_{ij}^q is the VaR of firm i given firm j is in distress at confidence level q. According to Brunnermeier, Dong, & Palia (2012), firm j being in distress means that its loss is at its VaR_j^q level. We first calculate CoVaR_{ij}^q at $q = 1\%$ and then calculate CoVaR_{ij}^q at $q = 50\%$; i.e., when firm j is operating at its median (normal) state. Firm j’s contribution to systemic risk is defined as the difference between the VaR of firm i when firm j is operating at its VaR loss levels and the VaR of firm i when firm j is operating at its median state.
Systemic risk = \(\Delta CoVaR_{j,t}^q = CoVaR_{i|j}^{q=1\%} - CoVaR_{i|j}^{q=\text{median}=50\%} \)

In order to reach this measure—the contribution of systemic risk of firm \(j \) to firm \(i \)—the following analysis is done:

- **Calculation of VaR.** Perform quantile regression of the weekly return variable of firm \(j \) on control variables at 1% quantile and at 50% quantile. Use the fitted values from these regressions to obtain VaR at 1% and at 50%.

\[
R_{j,t}^q = \alpha_{j,t}^q + \beta_j^q C_{t-1} + \varepsilon_j^q \quad \text{where } q = 1\% \text{ and } 50\%
\]

Where \(R_{j,t}^q \) is the weekly return of firm \(j \) at time \(t \) at \(q \% \) quantile; and \(C_{t-1} \) is the vector of control variables, taken at a lag of one week.

Taking the fitted values from the above regression, VaR is estimated through:

\[
VaR_{j,t}^q = \bar{\alpha}_j^q + \bar{\beta}_j^q C_{t-1} \quad \text{where } q = 1\% \text{ and } 50\%
\]

- **Calculation of CoVaR.** Run 1% quantile regression of weekly return of firm \(i \) on lagged values of control variables and lag of weekly returns of firm \(j \):

\[
R_{i,t}^q = \alpha_{i|j,t}^q + \beta_{ij}^q C_{t-1} + \delta_{ij}^q R_{j,t-1} + \varepsilon_{i|j}^q \quad \text{where } q = 1\%
\]

Then plug the fitted values from this regression into the following regression to obtain the conditional VaR for both \(q=1\% \) and \(q=50\% \):

\[
CoVaR_{i|j,t}^q = \bar{\alpha}_{i|j}^q + \bar{\beta}_{ij}^q C_{t-1} + \bar{\delta}_{ij}^q VaR_{j,t}^q + \varepsilon_{i|j}^q \quad \text{where } q = 1\% \text{ and } 50\%
\]

- **Calculation of systemic risk.** Contribution of systemic risk of firm \(j \) to firm \(i \) is then calculated using:

\[
Systemic\ risk = \Delta CoVaR_{j,t}^q = CoVaR_{i|j,t}^{q=1\%} - CoVaR_{i|j,t}^{q=\text{median}=50\%}
\]

- **Size effects.** Divide the sample into three quantiles—small, medium, and large—by market capitalization as of December 2007 for all companies in the sample and companies within each sector. Then measure the contribution of systemic risk from individual firms to their respective industries, filtered by size.

4. Empirical Analysis

The above methodology is used to calculate the contribution of systemic risk for the following:
• *Intra-industry interlinkages*—Individual companies on their respective industries, such as a bank’s imposition of systemic risk on the banking industry

• *Size effects*—Contribution of systemic risk of individual firms to their respective industries, filtered by size

• *Inter-industry interlinkages*—Contribution of risk from one industry to another industry, such as the banking industry’s contribution of systemic risk to the insurance industry

5. Results

5.1 Understanding the Sample

The sample consists of 252 firms in the financial sector: 84 banks, 66 insurance companies, 28 brokers, and 74 real estate firms. Among these firms, average (median) weekly returns for the analysis period (October 1, 2002 to April 30, 2011) were 0.19% for insurance and 0.12% for banks, falling to -0.17% and -0.48% during the crisis period. The Herfindahl index shows that this is a well-diversified sample, with brokers being the most concentrated at 10.4%, followed by insurance companies at 8.2%, banks at 6.3%, and real estate firms at 2.6%, indicating no disproportionate market power or an industry run by only a few.

<table>
<thead>
<tr>
<th>Firm-wise weekly share returns (%)</th>
<th>Time period</th>
<th>1 percentile</th>
<th>25 percentile</th>
<th>Median</th>
<th>75 percentile</th>
<th>99 percentile</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>2002—2011</td>
<td>-19.73</td>
<td>-2.08</td>
<td>0.12</td>
<td>2.23</td>
<td>17.82</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>2007—2009</td>
<td>-30.10</td>
<td>-4.66</td>
<td>-0.48</td>
<td>3.62</td>
<td>27.01</td>
<td>10.57</td>
</tr>
<tr>
<td>Insurance</td>
<td>2002—2011</td>
<td>-19.34</td>
<td>-1.84</td>
<td>0.19</td>
<td>2.17</td>
<td>16.18</td>
<td>6.26</td>
</tr>
<tr>
<td></td>
<td>2007—2009</td>
<td>-33.07</td>
<td>-3.23</td>
<td>-0.17</td>
<td>2.85</td>
<td>27.30</td>
<td>9.71</td>
</tr>
<tr>
<td>Brokers</td>
<td>2002—2011</td>
<td>-18.56</td>
<td>-2.43</td>
<td>0.34</td>
<td>3.02</td>
<td>16.77</td>
<td>7.13</td>
</tr>
<tr>
<td></td>
<td>2007—2009</td>
<td>-27.82</td>
<td>-4.39</td>
<td>-0.15</td>
<td>4.02</td>
<td>23.68</td>
<td>11.09</td>
</tr>
<tr>
<td>Real estate</td>
<td>2002—2011</td>
<td>-17.73</td>
<td>-1.93</td>
<td>0.38</td>
<td>2.46</td>
<td>15.35</td>
<td>5.90</td>
</tr>
<tr>
<td></td>
<td>2007—2009</td>
<td>-29.62</td>
<td>-4.29</td>
<td>-0.20</td>
<td>3.79</td>
<td>26.02</td>
<td>9.51</td>
</tr>
<tr>
<td>All firms</td>
<td>2002—2011</td>
<td>-18.93</td>
<td>-2.01</td>
<td>0.23</td>
<td>2.36</td>
<td>16.61</td>
<td>6.43</td>
</tr>
<tr>
<td></td>
<td>2007—2009</td>
<td>-30.39</td>
<td>-4.12</td>
<td>-0.27</td>
<td>3.49</td>
<td>26.34</td>
<td>10.11</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data.
Table 2. Firm-wise weekly value at risk (%)

<table>
<thead>
<tr>
<th>Firm-wise weekly value at risk (%)</th>
<th>Time period</th>
<th>1 percentile</th>
<th>25 percentile</th>
<th>Median</th>
<th>75 percentile</th>
<th>99 percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance</td>
<td>2002–2011</td>
<td>-55.53</td>
<td>-17.47</td>
<td>-11.49</td>
<td>-8.11</td>
<td>-3.05</td>
</tr>
<tr>
<td></td>
<td>2007–2009</td>
<td>-75.81</td>
<td>-31.00</td>
<td>-22.86</td>
<td>-16.25</td>
<td>-6.54</td>
</tr>
<tr>
<td>Brokers</td>
<td>2002–2011</td>
<td>-38.08</td>
<td>-14.47</td>
<td>-10.77</td>
<td>-7.54</td>
<td>-3.62</td>
</tr>
<tr>
<td></td>
<td>2007–2009</td>
<td>-50.95</td>
<td>-22.52</td>
<td>-17.01</td>
<td>-13.01</td>
<td>-7.02</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data
Figure 2. Firm-wise weekly value at risk (%)

Source: Author’s calculations using Bloomberg data

Firm-wise weekly VaR results show that, on average (median levels), returns for banks and insurance firms would fall by around 11% in a week, and up to roughly 22% during the crisis period with a confidence level of 99%. As mentioned earlier, VaR measures probable loss levels and does not reflect interlinkages or major correlations, so we consider these results as indicative and move to a more robust measurement of systemic risk through conditional VaR analysis in the next section.

Table 3. Sector-wise weekly share returns (%)

<table>
<thead>
<tr>
<th>Sector-wise weekly share returns (%)</th>
<th>Time period</th>
<th>1 percentile</th>
<th>25 percentile</th>
<th>Median</th>
<th>75 percentile</th>
<th>99 percentile</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>2002–2011</td>
<td>-32.98</td>
<td>-4.80</td>
<td>0.35</td>
<td>5.26</td>
<td>27.84</td>
<td>10.66</td>
</tr>
<tr>
<td></td>
<td>2007–2009</td>
<td>-47.18</td>
<td>-11.49</td>
<td>-1.40</td>
<td>7.77</td>
<td>36.81</td>
<td>16.33</td>
</tr>
<tr>
<td>Insurance</td>
<td>2002–2011</td>
<td>-19.87</td>
<td>-2.90</td>
<td>0.48</td>
<td>3.71</td>
<td>13.70</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td>2007–2009</td>
<td>-29.30</td>
<td>-6.46</td>
<td>-0.66</td>
<td>4.75</td>
<td>19.70</td>
<td>10.14</td>
</tr>
<tr>
<td>Brokers</td>
<td>2002–2011</td>
<td>-13.79</td>
<td>-1.78</td>
<td>0.45</td>
<td>2.35</td>
<td>8.83</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>2007–2009</td>
<td>-21.59</td>
<td>-4.43</td>
<td>-0.22</td>
<td>3.68</td>
<td>10.77</td>
<td>6.32</td>
</tr>
<tr>
<td>Real estate</td>
<td>2002–2011</td>
<td>-34.42</td>
<td>-4.02</td>
<td>0.98</td>
<td>5.60</td>
<td>23.30</td>
<td>10.86</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data
Sector-wise weekly share returns for all sectors fell the furthest during the financial crisis (July 2007 to December 2009). Real estate and banking were the hardest hit, with returns falling as low as -91.8% and -96.5%, respectively, and 1 percentile returns for banking falling to 47.2%. Insurance returns also took a hit, albeit a less severe one, with the lowest being -73.8%, and 1 percentile returns falling to -29.3% during the financial crisis (Table 3).

Figure 3. Sector-wise weekly share return (%)
Source: Author’s calculations using Bloomberg data

Figure 4. Sector-wise value at risk (%)
Source: Authors calculations using Bloomberg data
Looking at these results, one might conclude that the insurance industry was affected as severely as the banking industry during the recent financial crisis, which was triggered by the collapse of the real estate and banking sectors. However, most of the absolute returns were also affected by other macroeconomic risks, like liquidity risk, interest rate risk, term structure, and default risk. With most indicators going negative during the crisis, insurance industry returns were bound to take a hit. To assess the interlinkages between sectors and thus measure systemic risk contribution, we must isolate the impact of one on the other while controlling for other macroeconomic risks.

5.2 Systemic Risk from Individual Companies to Their Respective Industries

We now look at the systemic risk imposed by individual companies on their respective industries, which is the risk that a distressed or collapsing firm could harm its entire sector.

Table 4. Systemic risk from individual firm on own industry

<table>
<thead>
<tr>
<th>Delta CoVaR, Individual firm on own industry</th>
<th>1 percentile</th>
<th>25 percentile</th>
<th>Median</th>
<th>75 percentile</th>
<th>99 percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>-0.0914</td>
<td>-0.0331</td>
<td>-0.0225</td>
<td>-0.0160</td>
<td>-0.0090</td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.0618</td>
<td>-0.0207</td>
<td>-0.0138</td>
<td>-0.0103</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Brokers</td>
<td>-0.0149</td>
<td>-0.0063</td>
<td>-0.0049</td>
<td>-0.0042</td>
<td>-0.0032</td>
</tr>
<tr>
<td>Real estate</td>
<td>-0.2210</td>
<td>-0.0759</td>
<td>-0.0512</td>
<td>-0.0380</td>
<td>-0.0216</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data

![Figure 5. Systemic risk from individual firm on own industry](image)

As reflected in Table 4 and Figure 5, real estate companies are the most systemically risky. In a worst-case scenario, a collapsing real estate firm could impose as much as a -22.1% (1 percentile) loss. Banking firms, on the other hand, could impact the banking sector by up to
-9.1%, while insurance firms would impact the insurance sector by -6.2%. Brokerage firms would impact their sector by only -1.5%.

A collapsed insurance company would have less effect on its overall sector than would real estate and banking companies, but a greater effect than a collapsing brokerage firm, according to these results. Looking at absolute numbers, however, a -6.2% impact indicates turbulence, albeit at a lesser degree than in real estate or banking. This suggests that correlations and industry intralinkages within the insurance sector make it vulnerable to failure. The source of these vulnerabilities and their impact may be less pronounced than in real estate and banking, but they do exist.

5.2.1 Size Effect

This section aims to capture differences in systemic risk based on firm size. We divide the sample into three quantiles by market capitalization as of December 2007 for firms in each industry, and then measure the contribution of systemic risk from individual firms to their respective industries, filtered by size.

Table 5. Median market capitalization by size across industries

<table>
<thead>
<tr>
<th>Median market cap. (USD bn)</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>1.22</td>
<td>2.69</td>
<td>22.10</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.92</td>
<td>4.77</td>
<td>27.00</td>
</tr>
<tr>
<td>Brokers</td>
<td>2.09</td>
<td>6.54</td>
<td>29.70</td>
</tr>
<tr>
<td>Real estate</td>
<td>1.16</td>
<td>2.57</td>
<td>7.29</td>
</tr>
<tr>
<td>All firms</td>
<td>1.30</td>
<td>3.28</td>
<td>16.20</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data

Table 6. Systemic risk on own industry by firm size

<table>
<thead>
<tr>
<th>Median Delta CoVaR by size of firm (individual firm on own industry)</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>-0.0069</td>
<td>-0.0083</td>
<td>-0.0085</td>
<td>-0.0225</td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.0046</td>
<td>-0.0061</td>
<td>-0.0063</td>
<td>-0.0138</td>
</tr>
<tr>
<td>Brokers</td>
<td>-0.0065</td>
<td>-0.0044</td>
<td>-0.0020</td>
<td>-0.0049</td>
</tr>
<tr>
<td>Real estate</td>
<td>-0.0159</td>
<td>-0.0182</td>
<td>-0.0171</td>
<td>-0.0512</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data
As shown in Table 6, and Figures 6 and 7, systemic risk *increases by size* for both banks and insurance companies, implying that the larger a company’s market capitalization, the higher the systemic risk to its own industry. The systemic risk contribution averages 0.85% for a large bank compared with 0.69% for a small bank, and 0.63% for a large insurance firm versus 0.46% for a small insurer. These results confirm the assumption that the larger the firm, the greater its risk contribution in the event of distress.
5.3 Systemic Risk-Industry Interlinkages

Having looked at the risk posed by individual firms on their respective sectors, we now look at how the collapse of an entire industry would impact other industries in the financial system.

5.3.1 Banks as a Source of Distress

The recent crisis exposed the systemic importance of the banking sector. The interlinkages to the financial system were apparent, with the collapse of Lehman Brothers triggering the collapse of the banking industry, and the ramifications rippling through the U.S. economy and spiraling into a global crisis.

Our analysis shows that, if banking were to collapse, it would have the most severe impact on the banking sector, followed by real estate, insurance, and brokerage. On average (median), the banking sector’s systemic risk contribution is -12.5% on banking, -9.8% on real estate, -2.4% on insurance, and -1.0% on the brokerage sector.

Of the four sectors in the sample, the insurance sector would suffer less than banking or real estate and only slightly more than brokerage, suggesting some degree of resiliency to a banking sector collapse. Nevertheless, -2.4% is not a marginal impact, suggesting interconnectedness between the banking and insurance industries, which could be due to the greater role played by insurance companies in global financial markets, as investors and through financial intermediation. Insurance companies are using capital markets to offload their own risks through financial instruments such as derivatives, credit default swaps, and other risky and complex financial innovations. To some extent, this has blurred the distinction between banks and insurance companies and increased interdependencies (Krennand Oschischnig, 2003).

![Graph showing systemic risk contribution from banking sector]

Figure 8. Systemic risk contribution from banking sector

Source: Author’s calculations using Bloomberg data
5.3.2 Real Estate and Brokers as a Source of Distress

We next look at the systemic risk contribution of the real estate and brokerage sectors, and estimate the impact on all four sectors—banking, real estate, insurance, and brokerage—if the sector were in distress.

Figure 9. Systemic risk contribution from brokerage sector
Source: Author’s calculations using Bloomberg data

Figure 10. Systemic risk contribution from real estate sector
Source: Author’s calculations using Bloomberg data

As shown in Figures 9 and 10, the insurance sector is the least affected by both the brokerage and real estate sectors, with the average systemic risk contributions being -2.2% and -2.3%, respectively. The real estate and banking sectors are again affected most strongly, with the systemic risk contribution from the brokerage sector averaging -8.3% for real estate and -6.3%
for banking. The systemic risk contribution from real estate averages -16.4% to real estate and -6.9% to banking.

Collapses of other sectors would have a smaller impact on the insurance sector than they would have on other industries. In terms of absolute numbers, however, this impact is not insignificant. On the one hand, this result highlights the relative robustness of the insurance regulatory environment, the nature of the insurance business and its risks, and current best practices that help keep the industry resilient. On the other hand, the results also show interlinkages of the insurance sector and risk exposures it shares with other sectors, due to the use of special purpose vehicles (SPVs) and other complex instruments to transfer risk.

The analysis now looks at the outcome of an insurance sector collapse or a crisis arising from the insurance sector.

5.3.3 Insurance as a Source of Distress

Table 7. Delta CoVaR-Insurance sector on all sectors

<table>
<thead>
<tr>
<th>Delta CoVaR—Insurance on different industries</th>
<th>1 percentile</th>
<th>25 percentile</th>
<th>Median</th>
<th>75 percentile</th>
<th>99 percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks</td>
<td>-0.4412</td>
<td>-0.1494</td>
<td>-0.1044</td>
<td>-0.0815</td>
<td>-0.0466</td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.3694</td>
<td>-0.1250</td>
<td>-0.0874</td>
<td>-0.0682</td>
<td>-0.0390</td>
</tr>
<tr>
<td>Brokers</td>
<td>-0.1383</td>
<td>-0.0468</td>
<td>-0.0327</td>
<td>-0.0255</td>
<td>-0.0146</td>
</tr>
<tr>
<td>Real estate</td>
<td>-0.2459</td>
<td>-0.0832</td>
<td>-0.0582</td>
<td>-0.0454</td>
<td>-0.0259</td>
</tr>
</tbody>
</table>

Source: Author’s calculations using Bloomberg data

Figure 11. Systemic risk contribution from insurance sector

Source: Author’s calculations using Bloomberg data
Looking at the systemic importance of the insurance industry, Table 7 paints an entirely different picture. If the insurance industry were to collapse, its average systemic risk contribution would be -10.4%, -8.7%, -5.8%, and -3.3% on banking, insurance, real estate, and brokerage, respectively. This indicates that the collapse of the insurance industry would pose an inherent risk to the financial economy. Some share of these risks could be attributed to the massive and complex interconnections that continue to evolve within the financial system (Schwarcz & Schwarcz, 2014).

The vulnerability and source of systemic risk for the insurance sector could be through higher liabilities due to increasing longevity and interest rate decline in the longer term, or natural disasters, technology-related disasters, or terrorism in the shorter term.

6. Characteristics and Key Risks Faced by the Insurance Sector

The insurance sector faces several risks from the exogenous environment, such as macroeconomic downturns, inflation, low interest rates, unfavorable legislation, terrorist attacks, and natural disasters. It is also vulnerable to long-term risks like global aging, rising health care costs, and climate change. These risks are intrinsically different from those faced by the banking sector, which tend to be shorter term. Insurers have long-term liabilities, which they match with long-term assets (securities). Banks, on the other hand, have short-term liabilities, which they typically match to mostly long-term illiquid assets (loans), thus resulting in liability mismatches and incentives to take credit risks to generate returns.

Insurance companies face both non-financial liabilities—relating to losses in the real economy—and financial liabilities—relating to savings and credit protection products provided by life insurers. The latter are mostly linked to the financial markets and constitute the primary source of vulnerability. However, insurance companies invest mostly in high-quality assets that are marked-to-market (reflecting immediately in the income sheet), while banks hold mostly trading assets. Moreover, reinsurers play an enormous role in insurers’ balance sheets. Reinsurance is generally recognized as a reduction in liabilities and is recoverable as an asset. Though reinsurance has been dominated by the non-life market, there has been an increase by the life segment as well (Impavido & Tower, 2009).

6.1 Risks Faced by Insurance Companies

Underwriting risks. These risks arise from the very nature of the insurance industry and are confined to this industry. The underwriting risks faced by the non-life business are more uncertain than those in the life business, since death rates remain relatively stable and predictable. However, natural and man-made disasters could significantly affect death rates, introducing greater uncertainty. Moreover, financial guarantee insurers may exacerbate a financial crisis if the guarantees are backed by risky and complex financial instruments, such as mortgage-backed securities, due to higher counterparty risk. In addition to these risks, operational processes, including calculating premiums, designing products, and selling insurance, could be subject to risks. Several of these risks are transferred through the issuance of bonds, such as catastrophe (CAT) bonds and the creation of SPVs.
Market risk/investment risk. This risk is associated with the asset side of the balance sheet. Insurance companies invest in bonds, shares, property, loans, and similar vehicles. These investments are affected by changes in interest and exchange rates, political upheaval, and other factors, and thus are subject to market risk. Insurance companies try to mitigate these risks through various regulations, as well as by applying asset liability, VaR, and other models.

Credit risk. This is the risk of a counterparty’s defaulting or being unable to meet its obligations. Even where a counterparty can meet its obligations, risks can arise from a downgrade in credit quality due to the economic environment. This impacts the creditworthiness of insurance company investments. Insurance companies should diversify their risks as much as possible.

Reinsurance companies probably face maximum credit risk since most of the risks they insure relate to disasters and other large-scale upheavals. Reinsurers tend to diversify their risks by providing their services to different insurance segments and in different geographical regions.

Liquidity risk. This is the risk of a firm’s being unable to meet its liabilities. This might be due to unfavorable market conditions or downgraded credit quality, or be specific to the company. Companies can mitigate liquidity risk through hedging strategies along with asset liability management (ALM).

Given these risks, the primary source of vulnerability is the larger role insurance companies play in global financial markets as investors and through financial intermediation. Moreover, varying insurance regulations across countries along with the insurance sector’s limited experience with these new investment tools suggests that the market has little information about the potential impact of these tools on insurance companies, and whether existing market and credit risk management tools are adequate (Krenn & Oschischkig, 2003).

Off-balance sheet transactions and the use of SPVs and other complex instruments to transfer risk are generally procyclical and subject to economic and macro environment factors. Thus, insurance companies are exposed to external factors as well as to accounting and financial frauds. Moreover, increased reliance on credit rating agencies seemed to backfire in the recent crisis. Another threat to financial sustainability while using alternative instruments to transfer risks could arise from the credit risk associated with most of these financial instruments (Krenn & Oschischkig, 2003).

In addition to these factors, overlapping roles between banks and insurance companies through financial conglomerates and bancassurance (bank insurance model) channels of distributing insurance increase risks (Krennand Oschischkig, 2003).

6.2 Management of These Risks
The key question is how insurance companies manage these risks. While non-life insurance companies bear all the risk (with shareholders bearing both underwriting and investment losses), life insurance companies might be able to share risks. For the latter, the emergence of
the savings and investment business has created products that are similar to those provided by mutual and other funds, but with a tax advantage. Most of the investment risk associated with these products (e.g., unit linked, market linked) falls on policyholders (Impavido & Tower 2009).

The Geneva Association recommends focusing on activities rather than entire institutions to understand systemic risk. None of the activities of insurance companies—investment management, liability origination, or capital management—pose direct systemic risk. However, non-core activities—“derivatives trading on non-insurance balance sheets and mismanagement of short term funding from commercial paper or securities lending”—pose systemic risk (The Geneva Association, 2010).

7. Conclusion

Using the $\Delta CoVaR$ measure of systemic risk by Adrian & Brunnermeier (2010), this analysis measures the systemic risk of individual firms on their respective sectors and captures industry interlinkages by estimating the impact of one industry’s collapse on the other sectors. Our analysis shows that, while these linkages are considerably more limited in insurance than in banking, they are not negligible. This indicates that, despite protection provided by its regulatory environment, the nature of the risks, and current best practices, insurance firms are vulnerable to increasing interconnectedness through complex financial tools and processes. An insurance sector collapse would harm other sectors in the financial economy, and regulations should be designed to recognize and try to minimize such risks. The probability of an event that could trigger a crisis in the insurance sector is relatively low but, given the nature of the risks and the core practices of an insurer, must be considered a possibility.

This paper looks at insurance companies as a whole rather than at specific business activities. We recognize that, in the shorter term, traditional insurance activities are not systemically risky and vulnerabilities are due to exogenous risks, like natural catastrophes, cyber-attack, and terrorism (Eling & Pankoke, 2014). Moreover, the risks faced by insurance firms are longer term in nature, such as climate change and global aging, and are mostly triggered by the external environment or activities that are considered non-core to the insurance sector.

Given the different risk profiles confronting banking and insurers, subjecting insurance to the same regulations designed for banking could leave the insurance industry unprotected from other risks of significant macroeconomic impact.

Acknowledgements

This research is financed by Willis Towers Watson. Am very grateful to Mike Orszag, Head of Research at Willis Towers Watson, for his support and mentorship.

About Willis Towers Watson

Willis Towers Watson (NASDAQ: WLTW) is a leading global advisory, broking and solutions company that helps clients around the world turn risk into a path for growth. With roots dating to 1828, Willis Towers Watson has 39,000 employees in more than 120 countries. We design and deliver solutions that manage risk, optimize benefits, cultivate talent, and
expand the power of capital to protect and strengthen institutions and individuals. Our unique perspective allows us to see the critical intersections between talent, assets, and ideas—the dynamic formula that drives business performance. Together, we unlock potential. Learn more at willistowerswatson.com.

References

Appendix

Appendix 1. Company list, industry mapping, and market capitalization (data from Bloomberg)

<table>
<thead>
<tr>
<th>Company</th>
<th>BB ticker</th>
<th>Market cap (as of Dec. 2007) USD billion</th>
<th>SIC code</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNB CORP</td>
<td>FNB US Equity</td>
<td>0.89</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>PARK NATL CORP</td>
<td>PRK US Equity</td>
<td>0.90</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>UMPQUA HOLDINGS</td>
<td>UMPQ US Equity</td>
<td>0.92</td>
<td>6035</td>
<td>Banks</td>
</tr>
<tr>
<td>PAC CAP BANCORP</td>
<td>PCBC US Equity</td>
<td>0.93</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>PRIVATEBANCORP</td>
<td>PVTB US Equity</td>
<td>0.93</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>OLD NATL BANCORP</td>
<td>ONB US Equity</td>
<td>0.99</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>GLACIER BANCORP</td>
<td>GBCI US Equity</td>
<td>1.00</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>BOSTON PRIV FINL</td>
<td>BPFH US Equity</td>
<td>1.00</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>MB FINANCIAL</td>
<td>MBFI US Equity</td>
<td>1.10</td>
<td>6035</td>
<td>Banks</td>
</tr>
<tr>
<td>LAURENTIAN BANK</td>
<td>LB CN Equity</td>
<td>1.10</td>
<td>6029</td>
<td>Banks</td>
</tr>
<tr>
<td>CITIZENS REPUBLI</td>
<td>CRBC US Equity</td>
<td>1.10</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>PACWEST BANCORP</td>
<td>PACW US Equity</td>
<td>1.20</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>HANCOCK HLDG CO</td>
<td>HBHC US Equity</td>
<td>1.20</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>UNITED BANKSHS</td>
<td>UBSI US Equity</td>
<td>1.20</td>
<td>6022</td>
<td>Banks</td>
</tr>
<tr>
<td>FIRST NIAGARA FI</td>
<td>FNFG US Equity</td>
<td>1.20</td>
<td>6036</td>
<td>Banks</td>
</tr>
<tr>
<td>NORTHWEST BANCSH</td>
<td>NWBI US Equity</td>
<td>1.30</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>WESTAMERICA BANC</td>
<td>WABC US Equity</td>
<td>1.30</td>
<td>6021</td>
<td>Banks</td>
</tr>
<tr>
<td>Company</td>
<td>Ticker</td>
<td>Sector</td>
<td>Rating</td>
<td>Industry</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>PROSPERITY BNCB</td>
<td>PRSP</td>
<td>US Equity</td>
<td>1.30</td>
<td>Banks</td>
</tr>
<tr>
<td>CATHAY GENERAL B</td>
<td>CATY</td>
<td>US Equity</td>
<td>1.30</td>
<td>Banks</td>
</tr>
<tr>
<td>INTL BANCSHARES</td>
<td>IBOC</td>
<td>US Equity</td>
<td>1.40</td>
<td>Banks</td>
</tr>
<tr>
<td>TRUSTMARK CORP</td>
<td>TRMK</td>
<td>US Equity</td>
<td>1.50</td>
<td>Banks</td>
</tr>
<tr>
<td>UCBH HOLDINGS</td>
<td>UCBHQ</td>
<td>US Equity</td>
<td>1.50</td>
<td>Banks</td>
</tr>
<tr>
<td>FIRST MIDWEST/IL</td>
<td>FMBI</td>
<td>US Equity</td>
<td>1.50</td>
<td>Banks</td>
</tr>
<tr>
<td>FIRST CITIZENS-A</td>
<td>FCNCA</td>
<td>US Equity</td>
<td>1.50</td>
<td>Banks</td>
</tr>
<tr>
<td>EAST WEST BNCB</td>
<td>EWBC</td>
<td>US Equity</td>
<td>1.50</td>
<td>Banks</td>
</tr>
<tr>
<td>SUSQUEHAN BNCB</td>
<td>SUSQ</td>
<td>US Equity</td>
<td>1.60</td>
<td>Banks</td>
</tr>
<tr>
<td>UMB FINANCIAL</td>
<td>UMBF</td>
<td>US Equity</td>
<td>1.60</td>
<td>Banks</td>
</tr>
<tr>
<td>FIRSTMERIT CORP</td>
<td>FMER</td>
<td>US Equity</td>
<td>1.60</td>
<td>Banks</td>
</tr>
<tr>
<td>SVB FINANCIAL GR</td>
<td>SIVB</td>
<td>US Equity</td>
<td>1.60</td>
<td>Banks</td>
</tr>
<tr>
<td>WEBSTER FINL</td>
<td>WBS</td>
<td>US Equity</td>
<td>1.70</td>
<td>Banks</td>
</tr>
<tr>
<td>WHITNEY HLDG</td>
<td>WTNY</td>
<td>US Equity</td>
<td>1.70</td>
<td>Banks</td>
</tr>
<tr>
<td>DORAL FINL CORP</td>
<td>DRL</td>
<td>US Equity</td>
<td>1.80</td>
<td>Banks</td>
</tr>
<tr>
<td>BANCORPSOUTH INC</td>
<td>BXS</td>
<td>US Equity</td>
<td>1.90</td>
<td>Banks</td>
</tr>
<tr>
<td>FULTON FINANCIAL</td>
<td>FULT</td>
<td>US Equity</td>
<td>1.90</td>
<td>Banks</td>
</tr>
<tr>
<td>CAN WESTERN BANK</td>
<td>CWB</td>
<td>CN Equity</td>
<td>2.00</td>
<td>Banks</td>
</tr>
<tr>
<td>ASTORIA FINL</td>
<td>AF</td>
<td>US Equity</td>
<td>2.20</td>
<td>Banks</td>
</tr>
<tr>
<td>TCF FINL CORP</td>
<td>TCB</td>
<td>US Equity</td>
<td>2.30</td>
<td>Banks</td>
</tr>
<tr>
<td>VALLEY NATL BANC</td>
<td>VLY</td>
<td>US Equity</td>
<td>2.30</td>
<td>Banks</td>
</tr>
<tr>
<td>FIRST HORIZON NA</td>
<td>FHN</td>
<td>US Equity</td>
<td>2.30</td>
<td>Banks</td>
</tr>
<tr>
<td>WASH FED</td>
<td>WFSL</td>
<td>US Equity</td>
<td>2.30</td>
<td>Banks</td>
</tr>
<tr>
<td>WILMINGTON TRUST</td>
<td>WL</td>
<td>US Equity</td>
<td>2.40</td>
<td>Banks</td>
</tr>
<tr>
<td>CAPITOL FEDERAL</td>
<td>CFFN</td>
<td>US Equity</td>
<td>2.50</td>
<td>Banks</td>
</tr>
<tr>
<td>CITY NATL CORP</td>
<td>CYN</td>
<td>US Equity</td>
<td>2.90</td>
<td>Banks</td>
</tr>
<tr>
<td>BANK OF HAWAII</td>
<td>BOH</td>
<td>US Equity</td>
<td>2.90</td>
<td>Banks</td>
</tr>
<tr>
<td>POPULAR INC</td>
<td>BPOP</td>
<td>US Equity</td>
<td>3.00</td>
<td>Banks</td>
</tr>
<tr>
<td>CULLEN/FROST</td>
<td>CFR</td>
<td>US Equity</td>
<td>3.00</td>
<td>Banks</td>
</tr>
<tr>
<td>COMMERCE BCSH</td>
<td>CBSH</td>
<td>US Equity</td>
<td>3.20</td>
<td>Banks</td>
</tr>
<tr>
<td>ASSOC BANC-CORP</td>
<td>ASBC</td>
<td>US Equity</td>
<td>3.40</td>
<td>Banks</td>
</tr>
<tr>
<td>BOK FINL CORP</td>
<td>BOKF</td>
<td>US Equity</td>
<td>3.60</td>
<td>Banks</td>
</tr>
<tr>
<td>ZIONS BANCORP</td>
<td>ZION</td>
<td>US Equity</td>
<td>5.00</td>
<td>Banks</td>
</tr>
<tr>
<td>PEOPLE'S UNITED</td>
<td>PBCT</td>
<td>US Equity</td>
<td>5.40</td>
<td>Banks</td>
</tr>
<tr>
<td>HUNTINGTON BANC</td>
<td>HBAN</td>
<td>US Equity</td>
<td>5.40</td>
<td>Banks</td>
</tr>
<tr>
<td>NY COMM BANCORP</td>
<td>NYB</td>
<td>US Equity</td>
<td>5.70</td>
<td>Banks</td>
</tr>
<tr>
<td>CREDICORP LTD</td>
<td>BAP</td>
<td>US Equity</td>
<td>6.10</td>
<td>Banks</td>
</tr>
<tr>
<td>AMERICAN CAPITAL</td>
<td>ACAS</td>
<td>US Equity</td>
<td>6.50</td>
<td>Banks</td>
</tr>
<tr>
<td>COMERICA INC</td>
<td>CMA</td>
<td>US Equity</td>
<td>6.50</td>
<td>Banks</td>
</tr>
<tr>
<td>MARSHALL &ILSLEY</td>
<td>MI</td>
<td>US Equity</td>
<td>7.00</td>
<td>Banks</td>
</tr>
<tr>
<td>HUDSON CITY BNCB</td>
<td>HCBK</td>
<td>US Equity</td>
<td>7.30</td>
<td>Banks</td>
</tr>
<tr>
<td>SYNOVUS FINL</td>
<td>SNV</td>
<td>US Equity</td>
<td>7.90</td>
<td>Banks</td>
</tr>
<tr>
<td>Company Name</td>
<td>Ticker</td>
<td>Asset Class</td>
<td>Price</td>
<td>Sector</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>M&T BANK CORP</td>
<td>MTB</td>
<td>US Equity</td>
<td>9.00</td>
<td>Banks</td>
</tr>
<tr>
<td>NATL BK CANADA</td>
<td>NA</td>
<td>CN Equity</td>
<td>9.10</td>
<td>Banks</td>
</tr>
<tr>
<td>KEYCORP</td>
<td>KEY</td>
<td>US Equity</td>
<td>9.10</td>
<td>Banks</td>
</tr>
<tr>
<td>SLM CORP</td>
<td>SLM</td>
<td>US Equity</td>
<td>9.40</td>
<td>Banks</td>
</tr>
<tr>
<td>WAMU INC</td>
<td>WAMUQ</td>
<td>US Equity</td>
<td>12.00</td>
<td>Banks</td>
</tr>
<tr>
<td>FIFTH THIRD BANC</td>
<td>FITB</td>
<td>US Equity</td>
<td>13.00</td>
<td>Banks</td>
</tr>
<tr>
<td>REGIONS FINANCI A</td>
<td>RF</td>
<td>US Equity</td>
<td>16.00</td>
<td>Banks</td>
</tr>
<tr>
<td>BB&T CORP</td>
<td>BBT</td>
<td>US Equity</td>
<td>17.00</td>
<td>Banks</td>
</tr>
<tr>
<td>NORTHERN TRUST</td>
<td>NTRS</td>
<td>US Equity</td>
<td>17.00</td>
<td>Banks</td>
</tr>
<tr>
<td>CAPITAL ONE FINA</td>
<td>COF</td>
<td>US Equity</td>
<td>18.00</td>
<td>Banks</td>
</tr>
<tr>
<td>SUNTRUST BANKS</td>
<td>STI</td>
<td>US Equity</td>
<td>22.00</td>
<td>Banks</td>
</tr>
<tr>
<td>PNC FINANCIAL SE</td>
<td>PNC</td>
<td>US Equity</td>
<td>22.00</td>
<td>Banks</td>
</tr>
<tr>
<td>STATE ST CORP</td>
<td>STT</td>
<td>US Equity</td>
<td>31.00</td>
<td>Banks</td>
</tr>
<tr>
<td>BANK OF MONTREAL</td>
<td>BMO</td>
<td>CN Equity</td>
<td>33.00</td>
<td>Banks</td>
</tr>
<tr>
<td>CAN IMPL BK COMM</td>
<td>CM</td>
<td>CN Equity</td>
<td>36.00</td>
<td>Banks</td>
</tr>
<tr>
<td>TORONTO-DOM BANK</td>
<td>TD</td>
<td>CN Equity</td>
<td>54.00</td>
<td>Banks</td>
</tr>
<tr>
<td>US BANCORP</td>
<td>USB</td>
<td>US Equity</td>
<td>55.00</td>
<td>Banks</td>
</tr>
<tr>
<td>BANK OF NOVA SCO</td>
<td>BNS</td>
<td>CN Equity</td>
<td>55.00</td>
<td>Banks</td>
</tr>
<tr>
<td>BANK NY MELLON</td>
<td>BK</td>
<td>US Equity</td>
<td>56.00</td>
<td>Banks</td>
</tr>
<tr>
<td>AMERICAN EXPRESS</td>
<td>AXP</td>
<td>US Equity</td>
<td>60.00</td>
<td>Banks</td>
</tr>
<tr>
<td>ROYAL BANK OF CA</td>
<td>RY</td>
<td>CN Equity</td>
<td>75.00</td>
<td>Banks</td>
</tr>
<tr>
<td>WELLS FARGO & CO</td>
<td>WFC</td>
<td>US Equity</td>
<td>100.00</td>
<td>Banks</td>
</tr>
<tr>
<td>JPMORGAN CHASE</td>
<td>JPM</td>
<td>US Equity</td>
<td>150.00</td>
<td>Banks</td>
</tr>
<tr>
<td>CITIGROUP INC</td>
<td>C</td>
<td>US Equity</td>
<td>150.00</td>
<td>Banks</td>
</tr>
<tr>
<td>BANK OF AMERICA</td>
<td>BAC</td>
<td>US Equity</td>
<td>180.00</td>
<td>Banks</td>
</tr>
<tr>
<td>INTERDIGITAL INC</td>
<td>IDCC</td>
<td>US Equity</td>
<td>1.10</td>
<td>Brokers</td>
</tr>
<tr>
<td>KNIGHT CAPITAL-A</td>
<td>KCG</td>
<td>US Equity</td>
<td>1.30</td>
<td>Brokers</td>
</tr>
<tr>
<td>DUNDEE CORP-A</td>
<td>DC/A</td>
<td>CN Equity</td>
<td>1.40</td>
<td>Brokers</td>
</tr>
<tr>
<td>GAMCO INVESTORS</td>
<td>GBL</td>
<td>US Equity</td>
<td>2.00</td>
<td>Brokers</td>
</tr>
<tr>
<td>INVESTMENT TECH</td>
<td>ITG</td>
<td>US Equity</td>
<td>2.10</td>
<td>Brokers</td>
</tr>
<tr>
<td>BAM INVESTMENTS</td>
<td>BNB</td>
<td>CN Equity</td>
<td>2.10</td>
<td>Brokers</td>
</tr>
<tr>
<td>JEFFERIES GROUP</td>
<td>JEF</td>
<td>US Equity</td>
<td>2.90</td>
<td>Brokers</td>
</tr>
<tr>
<td>WADDELL & REED-A</td>
<td>WDR</td>
<td>US Equity</td>
<td>3.10</td>
<td>Brokers</td>
</tr>
<tr>
<td>RAYMOND JAMES</td>
<td>RJF</td>
<td>US Equity</td>
<td>3.90</td>
<td>Brokers</td>
</tr>
<tr>
<td>FEDERATED INV-B</td>
<td>FII</td>
<td>US Equity</td>
<td>4.20</td>
<td>Brokers</td>
</tr>
<tr>
<td>AFFIL MANAGERS</td>
<td>AMG</td>
<td>US Equity</td>
<td>4.60</td>
<td>Brokers</td>
</tr>
<tr>
<td>JANUS CAPITAL GR</td>
<td>JNS</td>
<td>US Equity</td>
<td>5.50</td>
<td>Brokers</td>
</tr>
<tr>
<td>EATON VANCE CORP</td>
<td>EV</td>
<td>US Equity</td>
<td>5.90</td>
<td>Brokers</td>
</tr>
<tr>
<td>SEI INVESTMENTS</td>
<td>SEIC</td>
<td>US Equity</td>
<td>6.30</td>
<td>Brokers</td>
</tr>
<tr>
<td>ALLIANCEBERNSTEI</td>
<td>AB</td>
<td>US Equity</td>
<td>6.50</td>
<td>Brokers</td>
</tr>
<tr>
<td>CI FINANCIAL COR</td>
<td>CIX</td>
<td>CN Equity</td>
<td>8.00</td>
<td>Brokers</td>
</tr>
<tr>
<td>Company</td>
<td>Stock</td>
<td>Price</td>
<td>Shares</td>
<td>Industry</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICAHN ENTERPRISE</td>
<td>IEP US Equity</td>
<td>9.10</td>
<td>6719</td>
<td>Brokers</td>
</tr>
<tr>
<td>TD AMERITRADE HO</td>
<td>AMTD US Equity</td>
<td>11.00</td>
<td>6211</td>
<td>Brokers</td>
</tr>
<tr>
<td>LEGG MASON INC</td>
<td>LM US Equity</td>
<td>12.00</td>
<td>6282</td>
<td>Brokers</td>
</tr>
<tr>
<td>IGM FINANCIAL IN</td>
<td>IGM CN Equity</td>
<td>13.00</td>
<td>6282</td>
<td>Brokers</td>
</tr>
<tr>
<td>T ROWE PRICE GRP</td>
<td>TROW US Equity</td>
<td>16.00</td>
<td>6282</td>
<td>Brokers</td>
</tr>
<tr>
<td>BROOKFIELD ASS-A</td>
<td>BAM/A CN Equity</td>
<td>20.00</td>
<td>6719</td>
<td>Brokers</td>
</tr>
<tr>
<td>BLACKROCK INC</td>
<td>BLK US Equity</td>
<td>25.00</td>
<td>6282</td>
<td>Brokers</td>
</tr>
<tr>
<td>SCHWAB (CHARLES)</td>
<td>SCHW US Equity</td>
<td>30.00</td>
<td>6211</td>
<td>Brokers</td>
</tr>
<tr>
<td>FRANKLIN RES INC</td>
<td>BEN US Equity</td>
<td>31.00</td>
<td>6282</td>
<td>Brokers</td>
</tr>
<tr>
<td>LEHMAN BROS HLDG</td>
<td>LEHMQ US Equity</td>
<td>33.00</td>
<td>6211</td>
<td>Brokers</td>
</tr>
<tr>
<td>MORGAN STANLEY</td>
<td>MS US Equity</td>
<td>56.00</td>
<td>6211</td>
<td>Brokers</td>
</tr>
<tr>
<td>GOLDMAN SACHS GP</td>
<td>GS US Equity</td>
<td>99.00</td>
<td>6211</td>
<td>Brokers</td>
</tr>
<tr>
<td>RADIAN GROUP INC</td>
<td>RDN US Equity</td>
<td>0.94</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>STATE AUTO FINL</td>
<td>STFC US Equity</td>
<td>1.10</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>HARLEYSVILLE GRP</td>
<td>HGIC US Equity</td>
<td>1.10</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>PMI GROUP INC</td>
<td>PMI US Equity</td>
<td>1.10</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>NAVIGATORS GROUP</td>
<td>NAVG US Equity</td>
<td>1.10</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>SELECT INS GRP</td>
<td>SIGI US Equity</td>
<td>1.20</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>RLI CORP</td>
<td>RLI US Equity</td>
<td>1.30</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>ARGO GROUP INTER</td>
<td>AGII US Equity</td>
<td>1.30</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>PROASSURANCE COR</td>
<td>PRA US Equity</td>
<td>1.80</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>MGIC INVT CORP</td>
<td>MTG US Equity</td>
<td>1.80</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>UNIVERSAL AMERIC</td>
<td>UAM US Equity</td>
<td>1.90</td>
<td>6324</td>
<td>Insurance</td>
</tr>
<tr>
<td>DELPHI FINL GRP</td>
<td>DFG US Equity</td>
<td>1.90</td>
<td>6311</td>
<td>Insurance</td>
</tr>
<tr>
<td>ARTHUR J GALLAGH</td>
<td>AJG US Equity</td>
<td>2.20</td>
<td>6411</td>
<td>Insurance</td>
</tr>
<tr>
<td>MBIA INC</td>
<td>MBI US Equity</td>
<td>2.30</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>HANOVER INSURANC</td>
<td>THG US Equity</td>
<td>2.40</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>STANCORP FINL</td>
<td>SFG US Equity</td>
<td>2.50</td>
<td>6321</td>
<td>Insurance</td>
</tr>
<tr>
<td>AMBAC FINL GROUP</td>
<td>ABKFQ US Equity</td>
<td>2.60</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>MERCURY GEN CORP</td>
<td>MCY US Equity</td>
<td>2.70</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>PROTECTIVE LIFE</td>
<td>PL US Equity</td>
<td>2.90</td>
<td>6311</td>
<td>Insurance</td>
</tr>
<tr>
<td>WESCO FINANCIAL</td>
<td>WSC US Equity</td>
<td>2.90</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>UNITRIN INC</td>
<td>UTR US Equity</td>
<td>3.10</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>ERIE INDEMNITY-A</td>
<td>ERIE US Equity</td>
<td>3.10</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>AMER NATL INSUR</td>
<td>ANAT US Equity</td>
<td>3.30</td>
<td>6311</td>
<td>Insurance</td>
</tr>
<tr>
<td>REINSURANCE GROU</td>
<td>RGA US Equity</td>
<td>3.30</td>
<td>6321</td>
<td>Insurance</td>
</tr>
<tr>
<td>AMER FINL GROUP</td>
<td>AFG US Equity</td>
<td>3.30</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>HCC INSURANCE</td>
<td>HCC US Equity</td>
<td>3.30</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>BROWN & BROWN</td>
<td>BRO US Equity</td>
<td>3.30</td>
<td>6411</td>
<td>Insurance</td>
</tr>
<tr>
<td>ALLEGHANY CORP</td>
<td>Y US Equity</td>
<td>3.30</td>
<td>6331</td>
<td>Insurance</td>
</tr>
<tr>
<td>IND ALLIANCE INS</td>
<td>IAG CN Equity</td>
<td>3.40</td>
<td>6311</td>
<td>Insurance</td>
</tr>
<tr>
<td>OLD REPUB INTL</td>
<td>ORI US Equity</td>
<td>3.60</td>
<td>6351</td>
<td>Insurance</td>
</tr>
<tr>
<td>Company Name</td>
<td>Stock Ticker</td>
<td>Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAISSANCE RE</td>
<td>RNR US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTNERRR LTD</td>
<td>PRE US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH CAPITAL GRP</td>
<td>ACGL US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSATLANTIC HL</td>
<td>TRH US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKEL CORP</td>
<td>MKL US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAIRFAX FINL HLD</td>
<td>FFH CN Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTH NET INC</td>
<td>HNT US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR BERKLEY CORP</td>
<td>WRB US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITE MOUNTAINS</td>
<td>WTM US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TORCHMARK CORP</td>
<td>TMK US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVEREST RE GROUP</td>
<td>RE US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CINCINNATI FIN</td>
<td>CINF US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNUM GROUP</td>
<td>UNM US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL GROUP PLC</td>
<td>XL US Equity</td>
<td>6351 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNA FINL CORP</td>
<td>CNA US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVENTRY HEALTH</td>
<td>CVH US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMANA INC</td>
<td>HUM US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRESSIVE CORP</td>
<td>PGR US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARSH & MCLLENAN</td>
<td>MMC US Equity</td>
<td>6411 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AON CORP</td>
<td>AON US Equity</td>
<td>6411 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGNA CORP</td>
<td>CI US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINCOLN NATL CRP</td>
<td>LNC US Equity</td>
<td>6311 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE LTD</td>
<td>ACE US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUBB CORP</td>
<td>CB US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOEWS CORP</td>
<td>L US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARTFORD FINL SV</td>
<td>HIG US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLSTATE CORP</td>
<td>ALL US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFLAC INC</td>
<td>AFL US Equity</td>
<td>6321 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUN LIFE FINANCI</td>
<td>SLF CN Equity</td>
<td>6321 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREAT-WEST LIFEC</td>
<td>GWO CN Equity</td>
<td>6311 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAVELERS COS IN</td>
<td>TRV US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METLIFE INC</td>
<td>MET US Equity</td>
<td>6311 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANULIFE FIN</td>
<td>MFC CN Equity</td>
<td>6321 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITEDHEALTH GRP</td>
<td>UNH US Equity</td>
<td>6324 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMERICAN INTERNA</td>
<td>AIG US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERKSHIRE HATH-A</td>
<td>BRK/A US Equity</td>
<td>6331 Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEXINGTON REALTY</td>
<td>LXP US Equity</td>
<td>6798 Real Estate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEWART ENTERP-A</td>
<td>STEI US Equity</td>
<td>6553 Real Estate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMINAR REA-TR U</td>
<td>CUF-U CN Equity</td>
<td>6798 Real Estate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EASTGROUP PROP</td>
<td>EGP US Equity</td>
<td>6798 Real Estate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLONIAL PROPS</td>
<td>CLP US Equity</td>
<td>6798 Real Estate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company Name</td>
<td>Ticker</td>
<td>Price</td>
<td>Sector</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>CAN APARTMENT</td>
<td>CAR-U CN</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>FELCOR LODGING</td>
<td>FCH US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>PS BUSINESS PARK</td>
<td>PSB US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>OMEGA HEALTHCARE</td>
<td>OHI US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>MID-AMERICA APAR</td>
<td>MAA US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>COUSINS PROP</td>
<td>CUZ US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>MFA FINANCIAL</td>
<td>MFA US</td>
<td>1.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>PENN REIT</td>
<td>PEI US</td>
<td>1.20</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>TANGER FACTORY</td>
<td>SKT US</td>
<td>1.20</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>LASALLE HOTEL PR</td>
<td>LHO US</td>
<td>1.30</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>HEALTHCARE RLTY</td>
<td>HR US</td>
<td>1.30</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>WP CAREY & CO</td>
<td>WPC US</td>
<td>1.30</td>
<td>6500</td>
<td>Real Estate</td>
</tr>
<tr>
<td>ENTERTAINMENT PR</td>
<td>EPR US</td>
<td>1.40</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>HOME PROPERTIES</td>
<td>HME US</td>
<td>1.50</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>WASHINGTON REIT</td>
<td>WRE US</td>
<td>1.50</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>CORP OFFICE PROP</td>
<td>OFC US</td>
<td>1.50</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>FIRST IND REALTY</td>
<td>FR US</td>
<td>1.50</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>POST PROPERTIES</td>
<td>PPS US</td>
<td>1.50</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>BRANDYWINE RLTY</td>
<td>BDN US</td>
<td>1.60</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>CBL & ASSOC PROP</td>
<td>CBL US</td>
<td>1.60</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>HIGHWOODS PROP</td>
<td>HIW US</td>
<td>1.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>EQUITY ONE INC</td>
<td>EQY US</td>
<td>1.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>NATIONAL RETAIL</td>
<td>NNN US</td>
<td>1.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>COMMONWEALTH REI</td>
<td>CWH US</td>
<td>1.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>CAN REAL ESTATE</td>
<td>REF-U CN</td>
<td>1.80</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>ALEXANDER'S INC</td>
<td>ALX US</td>
<td>1.80</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>KILROY REALTY</td>
<td>KRC US</td>
<td>1.80</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>FIRST CAP REALTY</td>
<td>FCR CN</td>
<td>1.90</td>
<td>6512</td>
<td>Real Estate</td>
</tr>
<tr>
<td>SENIOR HOUSING</td>
<td>SNH US</td>
<td>2.00</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>BRE PROPERTIES</td>
<td>BRE US</td>
<td>2.10</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>MACK-CALI REALTY</td>
<td>CLI US</td>
<td>2.20</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>ESSEX PROPERTY</td>
<td>ESS US</td>
<td>2.40</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>H&R REAL-REIT UT</td>
<td>HR-U CN</td>
<td>2.60</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>LIBERTY PROP</td>
<td>LRY US</td>
<td>2.60</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>ST JOE CO</td>
<td>JOE US</td>
<td>2.60</td>
<td>6552</td>
<td>Real Estate</td>
</tr>
<tr>
<td>WEINGARTEN RLTY</td>
<td>WRI US</td>
<td>2.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>REALTY INCOME</td>
<td>O US</td>
<td>2.70</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>UDR INC</td>
<td>UDR US</td>
<td>2.90</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>NATIONWIDE HLTHI</td>
<td>NHP US</td>
<td>3.00</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>HOSPITALITY PROP</td>
<td>HPT US</td>
<td>3.00</td>
<td>6798</td>
<td>Real Estate</td>
</tr>
<tr>
<td>Company Name</td>
<td>Symbol</td>
<td>Price</td>
<td>Industry</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ALEXANDRIA REAL</td>
<td>ARE</td>
<td>3.20</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>CAMDEN PROP TR</td>
<td>CPT</td>
<td>3.30</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>APARTMENT INVEST</td>
<td>AIV</td>
<td>3.30</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>ISTAR FINANCIAL</td>
<td>SFI</td>
<td>3.50</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>RAYONIER INC</td>
<td>RYN</td>
<td>3.70</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>DUKE REALTY CORP</td>
<td>DRE</td>
<td>3.80</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>HEALTH CARE REIT</td>
<td>HCN</td>
<td>3.80</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>REGENCY CENTERS</td>
<td>REG</td>
<td>4.50</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>DEVELOPERS DIVER</td>
<td>DDR</td>
<td>4.60</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>RIOCAN REIT</td>
<td>REI-U</td>
<td>4.60</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>FED REALTY INVS</td>
<td>FRT</td>
<td>4.80</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>MACERICH CO</td>
<td>MAC</td>
<td>5.10</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>SL GREEN REALTY</td>
<td>SLG</td>
<td>5.50</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>AMB PROPERTY</td>
<td>AMB</td>
<td>5.70</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>FOREST CITY -A</td>
<td>FCE/A</td>
<td>6.20</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>PLUM CREEK TIMBR</td>
<td>PCL</td>
<td>7.30</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>AVALONBAY COMMUN</td>
<td>AVB</td>
<td>7.30</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>ANNA L Y CAPITAL M</td>
<td>NLY</td>
<td>7.30</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>HCP INC</td>
<td>HCP</td>
<td>7.50</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>BROOKFIELD OFFIC</td>
<td>BPO CN</td>
<td>7.60</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>HOST HOTELS & RE</td>
<td>HST</td>
<td>8.90</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>KIMCO REALTY</td>
<td>KIM</td>
<td>9.20</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>EQUITY RESIDENTI</td>
<td>EQR</td>
<td>9.80</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>GENERAL GROWTH P</td>
<td>GGP</td>
<td>10.00</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>BOSTON PROPERTIE</td>
<td>BXP</td>
<td>11.00</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>PUBLIC STORAGE</td>
<td>PSA</td>
<td>12.00</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>VORNADO RLTY TST</td>
<td>VNO</td>
<td>13.00</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>PROLOGIS</td>
<td>PLD</td>
<td>16.00</td>
<td>Real Estate</td>
<td></td>
</tr>
<tr>
<td>SIMON PROPERTY</td>
<td>SPG</td>
<td>19.00</td>
<td>Real Estate</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2. Additional Graphs

All graphs (author’s calculations based on data from Bloomberg)

![Graph 1](image1)

Figure 1. Firm-wise weekly share return and value at risk (1%)
Figure 2. CoVaR of individual firms on respective industries
Figure 3. Industry interlinkages: sector-wise weekly share return and value at risk (1%)

Source of distress—Banking sector
Source of distress—Insurance sector

Source of distress—Brokerage sector
Source of distress—Real estate sector

Figure 4. Industry interlinkages: conditional VaR

Notes

Note 1. Explained below.

Note 2. See Appendix 1 for sector mapping and companies under each sample.

Note 3. See detailed description of all codes and companies within each sector in Appendix 1.

Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).