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Abstract 

Much like how beauty is in the eye of the beholder, there is no single definition of what 
constitutes a “good job.” What makes a given job “good” in relation to other jobs can differ 
in rural vs. urban areas: a job that pays relatively well compared to other available jobs in a 
rural area may not compare as favorably in more urbanized areas, and vice versa. While 
plenty of research has been done regarding wage differences in urban and rural areas, most 
studies have focused on how wages vary across the urban-rural continuum within specific 
jobs, with relatively little attention paid to how wage premiums can vary across occupations 
within particular communities. This study examines variations in wage premiums across five 
major occupational categories in metropolitan, micropolitan, and noncore US counties and 
tests whether population size and levels of education are good predictors of wage premiums 
in each size class. The results indicate that certain categories of occupations do pay relatively 
better or worse according to the degree of rurality, although population size and education 
were not exceptionally good at predicting wage premiums. 

Keywords: Rural-urban Continuum; Metropolitan Areas, Micropolitan Areas; Rural Areas; 
Wage Premiums 

1. Introduction 

What sorts of jobs are “good jobs”? The answer will depend on whom one asks, as well as 
what the asker means by “good” (i.e., prestigious, remunerative, enjoyable, or all of the 
above). To simplify the question, we might choose to define an especially “good job” in a 
local context as one that pays more than or about the same as other typical jobs in a given 
area. Even then, asking the question in metropolitan and nonmetropolitan areas will likely 
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yield different responses. There has been plenty of scholarly work focusing on earnings 
within given jobs and across various points along the urban-rural continuum, arguing that 
workers’ earnings are generally higher in more urbanized areas than in more rural areas, even 
for the same jobs. However, literature that compares earnings across occupations and within 
areas of similar population is relatively more difficult to find, which suggests that this topic 
might become a fruitful area for new research. To that end, I have carried out some 
preliminary work to explore the subject and provide basic insights into this problem. 

2. Conceptual Framework  

2.1 Justification: What Are the Issues Concerning Jobs and Occupations in Rural Areas 
Compared to Urban Areas? 

Some readers may wonder why it is worthwhile to include rural areas when one might just as 
easily restrict analysis to different sizes of urban areas. However, recent political upheavals in 
the US and Europe resulting from waves of nationalism and populism—particularly among 
residents of rural areas—have sparked an interest in the “forgotten” rural working-class 
among policymakers, journalists, and researchers. Tired of feeling ignored in favor of 
cosmopolitan “elites,” rural voters have expressed their anger at the ballot box. 

In the US, much of this frustration arises from a scarcity of what might be considered “good” 
jobs in small towns. Throughout most of the country’s history, opportunity in rural areas was 
found primarily in agricultural work, as well as in natural resource extraction. However, 
increased mechanization and other technological advances caused employment in these 
industries to fall over time (Freudenburg, 1992). In the middle decades of the 20th century, 
manufacturing shifted out of cities and into nonmetropolitan areas as firms searched for 
cheaper labor, and initially it seemed as though manufacturing would form the new basis of 
the rural economy. In fact, in the 1960s and 1970s, manufacturing actually grew faster in 
nonmetro areas than in metro areas, but as the Fordist era came to a close, manufacturing also 
fell into decline, as many firms moved their production to cheaper locations overseas 
(Bloomquist, 1987; Falk & Lobao, 2003). Even though structural shifts have pushed the US 
economy as a whole towards services and away from primary and secondary sector economic 
activity, rural areas still rely on primary and secondary sector employment to a greater extent 
than urban areas. 

From the 1980s on, employment in the service sector has grown in rural areas, making up a 
greater proportion of rural jobs. McGranahan (2003) describes the expansion of services as “a 
mixed blessing,” since “the sector generally provides good jobs for the well-educated, but for 
others, the jobs may be part-time, temporary, low-pay, and without meaningful 
benefits—much worse than those found in the manufacturing sector” (142-143). High- and 
low-paying service jobs can be found in places at every level of the rural-urban hierarchy: 
lawyers and convenience store clerks alike are needed everywhere from the biggest cities to 
the smallest towns. However, high-paying work in producer services and other 
knowledge-intensive service fields tends to be concentrated in metro areas near the top of the 
urban hierarchy (Shearmur & Doloreux, 2008), and is underrepresented in rural areas 
(Glasmeier & Howland, 1993). It should be noted that producer services do exist in rural 
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areas (as described in Beyers & Lindahl, 1996), but Corcoran, Faggian, and McCann (2007) 
explain in their study of human capital migration in Australia that most college graduates in 
rural areas work in healthcare and educational occupations. The lion’s share of service jobs in 
rural areas are generally of the low-skill variety and offer low wages, which in many ways 
makes them a poor substitute for the natural resource and manufacturing jobs they have 
replaced. As such, jobs that might not necessarily be considered “good” in urban areas could 
actually rank among the “better” jobs in rural areas.  

2.2 What Constitutes a “Good” Job in Rural vs. Urban Areas? 

Most existing research on wage variation by occupation in rural vs. urban areas has focused 
on earnings within occupations and across size classes, rather than the other way around. 
What this approach reveals is that generally, workers in urban areas earn more than workers 
in rural areas, even within the same occupation. As McLaughin and Perman (1991) remark, 
“workers’ characteristics and jobs can be identical, but workers are rewarded differently 
because of the structure and operation of the local labor market” (358). This is especially true 
of knowledge-intensive service occupations, which experience greater wage premiums in 
urban areas for a variety of reasons, including better matching (Costa & Kahn, 2000; Brown 
& Scott, 2012) and higher returns to education in urban areas (Goetz and Rupasingha, 2004). 
Furthermore, it has been established that larger cities tend to have more high-skill jobs than 
smaller cities, and smaller cities tend to have more high-skill jobs than small towns (Scott & 
Mantegna, 2009; Abel, Gabe, & Stolarick, 2014); similarly, jobs in rural areas tend to rely 
more on physical abilities and strength than on knowledge and skill (Abel, Gabe, & Stolarick, 
2014). While these findings are vital to understanding how labor markets differ in rural areas 
compared to cities, they do not provide much information on how wages differ within 
specific places. In other words, we may know that doctors in urban areas earn more compared 
to doctors in rural areas and cashiers in urban areas earn more relative to cashiers in rural 
areas, and we might safely assume that in either case doctors earn more than cashiers. But it 
is less clear how much better off an urban doctor is compared to an urban cashier and whether 
a relationship of the same magnitude exists between rural doctors and rural cashiers. 

Some existing studies have incorporated elements of a within-size class approach to wage 
premiums, but none have fully explored it in a US/North American context. Gabe (2011) 
explores wage premiums associated with creativity, but his analysis focuses on urban areas 
and does not differentiate between city sizes. Bacolod (2017) remarks that men benefit more 
from agglomerations than do women, even though women are concentrated in fields that gain 
more from agglomeration, but she too considers only US metropolitan areas. In examining 
urban wage premiums and human capital transfers, Gould (2007) finds evidence to support 
the notion of urban wage premiums for white-collar workers, but not for blue-collar workers, 
and in doing so he comes closest to addressing the question posed in this paper. Glaeser and 
Maré (2001) compare earnings in metro and nonmetro areas to investigate the cause of urban 
wage premiums, but they do not consider earnings within metro and nonmetro areas. 
Similarly, Baum-Snow and Pavan (2012) account for wage differences and job matching 
across city sizes without discussing differences within cities of similar sizes. Arraes, Menezes, 
and Simonassi (2014) investigate earnings differentials within occupational categories for 
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regions of Brazil, but these regions are sorted geographically rather than by size. The 
apparent dearth of literature comprehensively examining within-size class wage premiums 
suggests that more research on this topic is needed. 

The two primary aims of this paper are 1) to calculate and compare local wage premiums for 
different occupational categories across the urban-rural continuum and 2) to determine 
whether higher education and total population are good predictors of these local wage 
premiums. More specifically, I hypothesize that management, business, science, and arts 
occupations will prove to be the most lucrative overall, but to a greater extent in metro 
counties compared to micro and noncore counties. On the other hand, natural resources, 
construction, and maintenance occupations, as well as production, transport, and material 
moving occupations, are expected to be associated with lower wage premiums in metro 
counties relative to micro and metro counties, even if they do not necessarily correspond to 
lower-than-median earnings in all cases. Since sales and service occupations can be found in 
relative abundance in both rural and urban areas, it is expected that their relationship to 
median earnings will be fairly neutral. Finally, since higher education and larger populations 
are both associated with higher wages, I hypothesize that increases in both variables will 
predict higher-than-median earnings, even within the metro, micro, and noncore size classes. 

3. Data and Methods 

The analysis consisted of two main steps. First, local wage premiums were calculated for five 
distinct occupational categories in all 3108 counties and county-equivalents in the 48 
contiguous US states. Results were then separated by size class in order to compare 
premiums across categories according to rurality. For the second step, an OLS linear 
regression model was constructed to determine whether education levels and population were 
good predictors of premiums for different occupational categories and size classes. A detailed 
description of data sources, variable choices, and methods used is presented as follows. 

3.1 Data Sources 

All data used in this analysis were obtained from the 2014 5-year estimates of the US Census 
Bureau’s American Community Survey (ACS). The advantage of using ACS data relative to 
other sources (e.g., the Current Population Survey) is that its 5-year estimates include data for 
even the smallest rural counties, which may be suppressed due to privacy concerns or may 
not be collected at all in other cases. 

The area studied includes all 3108 counties and county-equivalents, including independent 
cities, in the 48 contiguous states. Counties were chosen as the unit of observation because in 
the US, the county level is often the smallest scale at which reliable economic data is 
available for rural areas. Also, the fact that counties have fixed administrative boundaries that 
rarely change make them more stable over time than, say, census tracts or metropolitan and 
micropolitan statistical areas, whose boundaries change as populations change. Alaska and 
Hawaii were excluded from this analysis based on their uniqueness compared to other states: 
“nonmetropolitan” places in the Alaskan wilderness or in the tiny Hawaiian Islands are not 
strictly comparable to nonmetropolitan areas in Kansas or in Georgia. 
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To reflect each county’s degree of rurality, counties were divided into three subgroups based 
on the current (2010) definitions of metropolitan statistical areas and micropolitan statistical 
areas devised by the Office of Management and Budget (OMB). Counties belonging to a 
metropolitan statistical area were classified as “metro,” while those belonging to a 
micropolitan statistical area were classified as “micro” and those which belong to neither a 
metropolitan nor a micropolitan statistical area were classified as “noncore.” The OMB 
definitions state that metropolitan statistical areas include a central county or counties 
containing an urban core with a population of 50 000 or greater, as well as all adjacent 
outlying counties having “a high degree of social and economic integration with the central 
county or counties as measured through commuting” (OMB 2010, p. 37252). Similarly, 
micropolitan statistical areas include a central county or counties with an urban core of 10 
000-49 999 and any adjacent outlying counties with strong ties to the central county or 
counties. A “noncore” county is a county that does not contain an urban core with a 
population of more than 9 999 and is not considered an outlying county of any metro- or 
micropolitan statistical area. While both micropolitan and noncore counties are considered 
nonmetropolitan areas, micropolitan areas are more urbanized than noncore areas, so in this 
context, “nonmetropolitan” is not necessarily equivalent to “rural”; according to Isserman 
(2005), this false equivalence is part of the “county trap” compromising much rural research. 
To reflect this distinction, counties were divided into the three categories described above 
rather than simply splitting them into metropolitan and nonmetropolitan areas. Grouping 
counties into three size classes rather than separating them into metro vs. nonmetro areas or 
into core-based statistical areas (i.e., metropolitan and micropolitan statistical areas) vs. 
non-core-based statistical areas also yields somewhat more detailed information about how 
variables of interest—in this case, occupational wage premiums—vary at different levels of 
rurality. 

Median earnings data by occupation was used to calculate wage premiums. Compared to an 
industry-based approach, an occupational perspective provides more information about the 
skills needed and types of tasks performed by a given worker (Burns and Healy 1978). As an 
example, a scientist who develops new technology, the janitor who cleans her lab, and the 
assembly-line worker who manufactures the finished product might all be classified as 
working in the defense industry, but they all do very different types of work. In the case of 
the ACS occupational categories, the scientist’s job falls under the “management, business, 
science, and arts occupations,” while the janitor’s job is classified under “service 
occupations” and the assembly-line worker’s job is categorized under “production, 
manufacturing, and materials moving occupations.” Some industries may pay better than 
others, but the necessary tasks within a given job are likely fairly consistent across industries, 
which means that the scientist, the janitor, and the assembly-line worker could expect to earn 
roughly the same amount if they took the same jobs in a different industry. 

 In addition to median earnings data, data on levels of higher education and total county 
population were also included because these variables might be connected to a county’s 
median earnings. Higher education levels were measured by the percentage of the population 
age 25 and up with a bachelor’s degree or higher. Since higher levels of human capital are 
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associated with higher wages, it seemed likely that areas with relatively more 
college-educated workers would be associated with higher wage premiums in some 
occupational categories. Basic count data (with no exclusions based on age or labor force 
participation) was used to account for each county’s total population. It was decided not to 
limit the population measure to include only the working population in order to determine 
whether higher total population (both working and non-working) in a county is associated 
with higher earnings. 

3.2 Methodology 

The R statistical software was used to divide median earnings for each of the five 
occupational categories within a county by the county’s overall median earnings. A score 
higher than 1 means that median earnings for that occupational category are greater than the 
overall median earnings, whereas a score that is less than 1 means that the category’s median 
earnings are below the overall median. These results are henceforth referred to as wage 
“premiums,” even though scores below 1 might logically be considered penalties (or other 
opposites of a premium). Within each occupational category, results were sorted by size class 
(i.e., metro, micro, or noncore) and the maximum and minimum values, the mean, and the 
median were calculated for each size class. 

After calculating the premiums by occupational category and sorting the data by size class, an 
OLS regression model was constructed to determine whether the level of higher education in 
a county and the logarithm of a county’s total population were good predictors of these 
premiums. Log population was included rather than population itself so that the coefficients 
in the regression results would be easier to interpret. The model construction is as follows: 

 +  

where the percentage of a county’s population age 25 and up with a bachelor’s degree or 
higher and the log of a county’s total population were included as the independent variables 
and wage premiums for a given occupational category served as the dependent variable. The 
model was run separately for each size class and each occupational category so that the 
estimated premiums for each occupational category would be computed using only data from 
areas in the same size class. 

4. Results 

4.1 Part 1 

Tables containing the summary statistics calculated in the first part of the analysis, as well as 
frequency histograms, can be found in Table 1 and Figure 1.  
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Table 1. Descriptive statistics of wage premiums by size class and occupation 
Table 1a: Management, business, science, and arts occupations 

 Metro (N=1160) Micro (N=637) Noncore (N=1311) 
Max Radford 

city, VA 
2.38 Zapata 

County, TX 
2.33 Hall County, 

TX 
2.38 

Mean - 1.51 - 1.49 - 1.44 
Median - 1.5 Saint Mary 

Parish, LA 
1.49 Switzerland 

County, IN 
1.42 

Min Oliver 
County, 
ND 

1.05 McPherson 
County, NE 

0.87 Daggett 
County, UT 

0.37 

 
Table 1b: Service occupations 

 Metro (N=1160) Micro (N=637) Noncore (N=1311) 
Max Armstrong 

County, TX 
0.99 Lassen 

County, 
CA 

1.18 Terrell 
County, TX 

2.49 

Mean - 0.52 - 0.55 - 0.56 
Median - 0.52 Labette 

County, KS
0.54 Gilmer 

County, 
GA 

0.55 

Min Poquoson 
city, VA 

0.26 Sully 
County, SD

0.19 Wheeler 
County, NE 

0.18 

 
Table 1c: Sales occupations 

 Metro (N=1160) Micro (N=637) Noncore (N=1311) 
Max Owyhee 

County, ID 
1.25 Tyrrell 

County, 
NC 

1.19 Mora 
County, 
NM 

2.09 

Mean - 0.83 - 0.84 - 0.84 
Median - 0.83 Baldwin 

County, 
GA 

0.84 Corson 
County, SD 

0.84 

Min Golden 
Valley 
County, 
MT 

0.52 Los 
Alamos 
County, 
NM 

0.44 Lexington 
city, 
Virginia 

0.18 
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Table 1d: Natural resources, construction, and maintenance occupations 
 Metro (N=1160) Micro (N=637) Noncore (N=1310) 
Max St. Helena 

Parish, LA 
1.88 Norton 

city, VA 
2.42 Schleicher 

County, TX 
2.44 

Mean - 1.1 - 1.18 - 1.17 
Median - 1.11 Geary 

County, KS
1.17 - 1.14 

Min Falls 
Church 
city, VA 

0.38 Kenedy 
County, 
TX 

0.64 Mora 
County, 
NM 

0.24 

 
Table 1e: Production, transportation, and material moving occupations 

 Metro (N=1160) Micro (N=636) Noncore (N=1309) 
Max West 

Feliciana 
Parish, LA 

1.61 Logan 
County, 
NE 

2.33 Culberson 
County, TX 

3.05 

Mean - 0.97 - 1.05 - 1.07 
Median - 0.97 - 1.05 O’Brien 

County, IA 
1.06 

Min Radford 
city, VA 

0.35 Los 
Alamos 
County, 
NM 

0.36 Hinsdale 
County, CO 

0.15 

Figure 
1

 
Figure 1a. Management, business, science, and arts occupations 
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Figure 1b. Service occupations 

 
Figure 1c. Sales occupations 

 
Figure 1d. Natural resources, construction, and maintenance occupations 



International Journal of Regional Development 
ISSN 2373-9851 

2017, Vol. 4, No. 2 

72 

 
Figure 1e. Production, transportation, and material moving occupations 

In the case of management, business, science, and arts occupations, the maximum premiums 
for metro, micro, and noncore areas ranged from 2.33 to 2.38, which suggests that even in 
areas where management occupations pay the most compared to local median earnings, the 
highest management premiums do not vary much according to the degree of rurality. 
However, the minimum management premium among metro counties (1.05) was much higher 
than the minimums in micro (0.87) and noncore (0.37) counties. Across all size classes, the 
mean and median ranged from 1.42 to 1.51. These results reveal that management 
occupations are generally associated with higher-than-median earnings across the board, with 
the maximum premiums hitting a cap just below 2.4x local median earnings. The smallest 
premiums varied dramatically by size class, though, with minimums decreasing along with 
size. This suggests that management premiums range from high to decent in metro counties, 
bottoming out at slightly above local median earnings, while premiums are less reliably good 
in micro and noncore counties. 

Service occupations exhibited the opposite pattern relative to metro areas, where even the 
highest premiums (0.99) were still less than the median. The mean and median for metro, 
micro, and noncore counties ranged from 0.52 to 0.56, which suggests that broadly speaking, 
service jobs are not especially lucrative anywhere. The minimums for micro counties (0.19) 
and noncore counties (0.18) were quite low, as was the minimum for metro counties (0.26), 
but the maximum premiums for micro (1.18) and noncore (2.49) counties were distinctly 
higher than the metro maximum, though, which indicates greater variability as places 
decrease in size, even if they are not a good bet in any case. 

Similarly, sales occupations were generally less lucrative across metro, micro, and noncore 
counties, with the mean and median premiums hovering around 0.84 in all cases. The range 
of premiums was narrowest for metro areas, with a maximum of 1.25 and a minimum of 0.52, 
increasing slightly for micro areas, and expanding dramatically in noncore areas. 

For all size classes, the typical premiums for natural resource, construction, and maintenance 
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occupations were slightly higher than local median earnings, with means ranging from 1.1 to 
1.18 and medians ranging from 1.11 to 1.17. The highest minimum occurred among micro 
counties (0.64), and the lowest minimum occurred among noncore counties (0.24). The 
maximum premiums increased with the degree of rurality, with the metro maximum at 1.88, 
the micro maximum at 2.42, and the noncore maximum at 2.44. 

Lastly, production, transportation, and material moving occupations generally tended to pay 
better relative to local median earnings as rurality increased, with both the mean and median 
increasing from metro to micro to noncore counties. The highest maximum (3.05) occurred 
among noncore counties, although they also exhibited the lowest minimum (0.15). The micro 
maximum (2.33) and minimum (0.36) were both higher than in metro areas. 

4.2 Part 2 

Tables containing my full regression results can be found in Table 2.  

Table 2. Regression results  

Table 2a: Management, business, science, and arts occupations 

Dependent variable: wage premiums 

Metro Micro Noncore 

(1) (2) (3) 

Metro % postsecondary education -0.002*** 

(0.0004) 

Log metro population 0.047*** 

(0.003) 

Micro % postsecondary education 0.001 

(0.001) 

Log micro population 0.056*** 

(0.006) 

Noncore % postsecondary 
education   

0.0002 

(0.001) 

Log noncore population 0.051*** 

(0.005) 

Constant 1.018*** 0.900*** 0.964*** 

(0.031) (0.067) (0.052) 

Observations 1,160 637 1,311 

R2 0.179 0.112 0.071 

Adjusted R2 0.177 0.109 0.069 

Residual Std. Error 0.123 (df = 1157) 0.131 (df = 634) 0.168 (df = 1308) 

F Statistic 125.943*** (df = 2; 39.901*** (df = 2; 49.733*** (df = 2; 
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1157) 634) 1308) 
Note: *p<0.1; **p<0.05; ***p<0.01 
 
Table 2b: Service occupations 

Dependent variable: wage premiums 

Metro Micro Noncore 

(1) (2) (3) 

Metro % postsecondary education -0.004*** 

(0.0003) 

Log metro population 0.011*** 

(0.002) 

Micro % postsecondary education -0.002*** 

(0.0005) 

Log micro population 0.010** 

(0.004) 

Noncore % postsecondary 
education   

0.0002 

(0.001) 

Log noncore population 0.051*** 

(0.005) 

Constant 0.506*** 0.490*** 0.964*** 

(0.019) (0.047) (0.052) 

Observations 1,160 637 1,311 

R2 0.200 0.040 0.071 

Adjusted R2 0.199 0.037 0.069 

Residual Std. Error 0.077 (df = 1157) 0.092 (df = 634) 0.168 (df = 1308) 

F Statistic 
144.755*** (df = 2; 

1157) 
13.332*** (df = 2; 

634) 
49.733*** (df = 2; 

1308) 
Note: *p<0.1; **p<0.05; ***p<0.01. 
 
Table 2c: Sales occupations 

Dependent variable: wage premiums 

Metro Micro Noncore 

(1) (2) (3) 

Metro % postsecondary education -0.003*** 

(0.0002) 

Log metro population 0.010*** 
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(0.002) 

Micro % postsecondary education -0.0004 

(0.0004) 

Log micro population -0.005 

(0.004) 

Noncore % postsecondary education -0.001 

(0.001) 

Log noncore population -0.0003 

(0.004) 

Constant 0.794*** 0.892*** 0.852*** 

(0.018) (0.042) (0.036) 

Observations 1,160 637 1,311 

R2 0.115 0.004 0.001 

Adjusted R2 0.114 0.001 -0.0004 

Residual Std. Error 0.071 (df = 1157) 0.082 (df = 634) 0.115 (df = 1308)

F Statistic 75.215*** (df = 2; 1157) 1.305 (df = 2; 634) 0.751 (df = 2; 1308)
Note: *p<0.1; **p<0.05; ***p<0.01 
 
 
Table 2d: Natural resource, construction, and maintenance occupations 

Dependent variable: wage premiums 

Metro Micro Noncore 

(1) (2) (3) 

Metro % postsecondary education -0.008*** 

(0.001) 

Log metro population -0.002 

(0.004) 

Micro % postsecondary education -0.003*** 

(0.001) 

Log micro population 0.004 

(0.009) 

Noncore % postsecondary 
education   

-0.006*** 

(0.001) 

Log noncore population 0.020*** 

(0.007) 

Constant 1.316*** 1.190*** 1.073*** 
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(0.039) (0.093) (0.068) 

Observations 1,160 637 1,310 

R2 0.225 0.016 0.033 

Adjusted R2 0.224 0.013 0.032 

Residual Std. Error 0.154 (df = 1157) 0.183 (df = 634) 0.215 (df = 1307) 

F Statistic 
168.184*** (df = 2; 

1157) 
5.109*** (df = 2; 

634) 
22.646*** (df = 2; 

1307) 
Note: *p<0.1; **p<0.05; ***p<0.01. 
 
Table 2e: Production, transportation, and material moving occupations 

Dependent variable: wage premiums 

Metro Micro Noncore 

(1) (2) (3) 

Metro % postsecondary education -0.008*** 

(0.0004) 

Log metro population -0.026*** 

(0.003) 

Micro % postsecondary education -0.003*** 

(0.001) 

Log micro population -0.022*** 

(0.007) 

Noncore % postsecondary 
education   

-0.006*** 

(0.001) 

Log noncore population -0.018*** 

(0.006) 

Constant 1.468*** 1.333*** 1.342*** 

(0.029) (0.076) (0.064) 

Observations 1,160 636 1,309 

R2 0.475 0.034 0.030 

Adjusted R2 0.474 0.031 0.029 

Residual Std. Error 0.114 (df = 1157) 0.146 (df = 633) 0.206 (df = 1306) 

F Statistic 
524.183*** (df = 2; 

1157) 
11.280*** (df = 2; 

633) 
20.274*** (df = 2; 

1306) 

Note: *p<0.1; **p<0.05; ***p<0.01. 
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Coefficients for both education and log population were quite close to 0 in most cases but 
were often highly statistically significant (p<0.05 or better) across metro, micro, and noncore 
areas, which suggests that these variables have a very small but meaningful association with 
wage premiums. On the other hand, the adjusted R-squared values were generally quite low, 
rarely exceeding 0.2, which indicates that these models are not a good fit for the data and are 
not likely to be useful in predicting wage premiums. 

Among the management, business, science, and arts occupations regressions, the 
postsecondary education variable was only significant in the case of metro counties, where it 
unexpectedly had a very significant, slight negative relationship to wage premiums (-0.002, 
p<0.01). However, log population also had a highly significant, slight positive relationship to 
wage premiums among metro, micro, and rural counties. The best-fitting model was the one 
including metro counties, with an adjusted R-squared value of 0.18, while the lowest 
R-squared belonged to the model for noncore counties (0.07). 

The service occupations regressions also showed a slight but significant (p<0.01) negative 
impact of higher education levels on median wages in the case of metro and micro counties, 
although postsecondary education was still not significant for noncore counties. As before, 
log population had a small (0.01-0.5) but highly significant (p<0.05 or better) association 
with wage premiums. The highest (0.2) R-squared value again belonged to the model for 
metro counties, and the lowest (0.04) belonged to the micro county model. 

The regressions for sales occupation produced the most abysmal fit, with R-squared values 
ranging from 0.11 for the metro model at the highest to -0.04, which is equivalent to 0, at the 
lowest. The coefficients for both postsecondary education and log population were only 
significant (p<0.01) for the metro regression, though their effects were still weak (-0.003 and 
0.01, respectively). 

In the case of natural resources, construction, and maintenance occupations, postsecondary 
education had a weakly negative (-0.008 to -0.003) but highly significant (p<0.01) 
relationship to wage premiums for metro, micro and noncore counties. Log population was 
only significant (p<0.01) in nonmetro counties, though its effects were slightly positive (0.02). 
The fit remained poor, with R-squared values ranging from 0.22 at best (metro) to 0.02 at 
worst (micro). 

Unexpectedly, the metro model for production, transport, and material moving occupations 
yielded the highest R-squared value of all at 0.47, although the R-squared values for micro 
and noncore counties were much lower at 0.03. Again, postsecondary education was highly 
significant (p<0.01) and weakly negative (-0.008 to -0.003) across all size classes, but here 
this was also true of log population. 

5. Discussion 

5.1 Interpretation 

The results of both parts of this analysis provide more convincing support for some of the 
hypotheses described above than they do for others. For example, these findings indicate that 
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management, business, science, and arts occupations are indeed generally associated with 
higher wage premiums for across metro, micro, and noncore counties, with a more 
pronounced effect in metro counties. Similarly, although natural resource, construction, and 
maintenance occupations or production, transport, and material moving occupations were not 
expected to be associated with higher-than-median wage premiums, the results do support the 
hypothesis that they are associated with lower premiums in metro counties compared to 
micro and noncore counties. On the other hand, service and sales occupations generated 
lower premiums across size classes than had originally been anticipated. 

The regression results turned out to be even more mixed than the wage premium results. The 
fact that postsecondary education levels turned out to be inversely related to the estimated 
wage premiums in metro counties for all occupational groupings directly contradicted my 
expectations, as did the fact that its coefficients frequently had negative values in micro and 
noncore counties. Total population did turn out to be positively associated with higher 
estimated premiums, though, which was consistent with my hypotheses. It was not expected 
that this simple model would fit the data well, but it was surprising how poorly postsecondary 
education levels and total population predicted wage premiums. Nevertheless, the fact that 
both variables were highly significant much of the time confirms that they are strongly 
related to wage premiums, even if their effects are small. Even though only some of the 
hypotheses were supported by the data, these results still yield insights that might benefit 
from further study. 

5.2 Limitations 

An obvious criticism is that the broad ACS occupational categories lump together a wide 
range of jobs, which means that much of the variation within categories is ignored. For 
example, farmers and construction workers are both included in the category of “natural 
resources, construction, and maintenance occupations.” One might expect farmers in the 
countryside to earn more than they would in cities and construction workers to earn more 
from building skyscrapers than barns, but this cannot be determined from the data used here. 
In another example, bankers and artists are both categorized under “management, business, 
science, and arts occupations,” but earnings vary dramatically between these jobs: the term 
“starving artist” is more familiar than “starving hedge fund manager” for a reason. Being in 
the same category may cause their different earnings to cancel each other out, thereby 
reflecting the patterns that exist in the real world less accurately. ACS data does include 
several levels of subcategories within these occupational categories, but in less-populated 
rural counties, the large margins of error for certain subcategories may affect data reliability. 
In this case, the goal was merely to start by examining how wage premiums vary in metro, 
micro, and noncore areas across these general categories. 

A related problem lies in the fact that the ACS occupational categories are not explicitly 
grouped according to the amount of education, training, or other measures of human capital 
required, which makes it impossible to determine with confidence how much human capital 
is involved in each category. It is not hard to imagine that someone might need more training 
to work as a healthcare practitioner or an architect (both listed under management, business, 
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science, and arts occupations) than he or she would to work as a truck driver (a 
manufacturing, transport, or material moving occupation) or a secretary (a sales 
occupation)—but what about artists, who fall into the same category? Similarly, within the 
service occupations category, healthcare support workers and law enforcement officials can 
reasonably be expected to have specialized skills, but workers in food preparation and serving 
occupations or building and grounds cleaning might not. To account for this issue, some 
researchers have developed their own human capital-based occupational clustering schemes 
by incorporating O*NET skill data (including Feser, 2003; Scott & Mantegna, 2009; Abel, 
Gabe, & Stolarick, 2014).  

Specialization within occupations is a further complication. Burns and Healy (1978) write 
that “increasing city size should produce specialization in production, even for the same final 
product mix” (382). Typically, big cities offer greater opportunities for specialization 
compared to smaller places, where practitioners in various fields (e.g., law, medicine) may be 
expected to work more as generalists. Specialization is associated with higher earnings, 
which would unavoidably push urban specialists’ wages up compared to their generalist rural 
counterparts. The most specific occupational subcategories found in ACS data, though, do not 
even distinguish between doctors and dentists or between farmers, fishermen, and loggers, 
making it impossible to further subdivide occupations by specialty. This means that within 
the ACS data, the earnings of a general practitioner treating everything from sprained ankles 
to heart disease at a rural clinic and an ultra-specialized pediatric neurosurgeon whose 
big-city practice handles only patients with the rarest diseases would be counted equally, 
since both doctors would be classified as “health diagnosing and treating practitioners.”  

Lastly, the informal economy poses another challenge, since its very existence is predicated 
on a degree of secrecy. Unsurprisingly, informal work is not included in ACS occupational 
data—or at least not explicitly—and underreporting is an issue even in data which does 
include it. Individuals whose “day jobs” offer meager pay have a stronger incentive to turn to 
the informal sector to supplement their earnings, and people whose regular work is 
off-the-books may count themselves as unemployed. In the context of this study, reported 
median earnings in areas where the informal sector plays a larger role in the local economy 
may be lower than actual median earnings, thus skewing the computed wage premiums. 

6. Conclusion 

Although the results of this paper represent only an initial attempt to understand wage 
premiums across occupations and within size classes, they are still useful in that they are 
broadly consistent with the literature to date, and they also provide some basic insights to lay 
the groundwork for future research. For example, the finding that management, business, 
science, and arts occupations tend to have high wage premiums relative to other occupational 
categories, especially in metro areas, is consistent with earlier research showing that 
knowledge-intensive service work tends to be associated with higher wages in urban vs. rural 
areas (Gould, 2007). Similarly, occupations in natural resources, construction, and 
maintenance and in production, transportation, and material moving tend to pay relatively 
more in micropolitan and noncore areas than in metro areas, which suggests that these sorts 



International Journal of Regional Development 
ISSN 2373-9851 

2017, Vol. 4, No. 2 

80 

of jobs are “better” in small places compared to larger places. Less is known, though, about 
how gender interacts with these patterns. To illustrate the necessity of this point, one might 
safely assume that doctors and lawyers in both rural and urban areas earn relatively more than 
do their neighbors in other types of occupations, such as service or sales jobs, regardless of 
their sex. However, because many low-paying service jobs are disproportionately held by 
women (including housekeepers, cooks, customer service representatives), women working 
in higher-paying, knowledge-intensive occupations might be expected to have higher wage 
premiums relative to other women across all occupations in a given geographic area, simply 
because a larger share of women are in lower-paying jobs. Wage premiums for women in 
knowledge-intensive work may also be higher than those of men, even if men earn more in 
absolute terms. Similarly, even as white-collar men can expect higher wage premiums 
compared to blue-collar men in both rural and urban areas, the premiums in rural areas may 
be smaller than in urban areas because blue-collar work tends to pay better in rural areas. 
Some research has found that that agglomerations are beneficial to social and cognitive skills 
for both women and men, but physical skills are not improved by agglomerations for either 
sex (Bacolod 2017); however, this accounts for differences across size classes rather than 
within them. Because gender can strongly impact career choices, it would be wise to include 
occupations and earnings by sex in future research on jobs and earnings in rural and urban 
areas. 

Additionally, including US regional variation among wage premiums, as demonstrated by 
Arraes, Menezes, and Simonassi (2014) in a Brazilian context, could prove to be a fruitful 
avenue for future study, perhaps providing detailed insights about which jobs are “better” 
than others in different parts of the country and why. The fact that so many of the maximum 
and minimum premiums occurred in western and Midwestern counties might, for example, 
indicate that more centralized parts of the country experience greater variability among wage 
premiums even after controlling for occupations and city size. Alternatively, factors such as 
education and population size might predict wage premiums more accurately in some parts of 
the country than in others. 

A third option for future examination could include looking at change over time: since county 
boundaries are relatively stable, it might be possible to learn whether wage premiums in 
metro, micro, and noncore counties have changed in various occupational groupings, and if 
so, what trends have occurred in the extent and direction of change. For instance, since rural 
manufacturing in the US peaked in the 1960s and 1970s and has waned ever since 
(Bloomquist, 1987; Falk & Lobao, 2003), it might be reasonable to expect that rural wage 
premiums for manufacturing jobs also reached their apex around the same time. On the other 
hand, even though the number of jobs in natural resource extraction has fallen over time due 
to increased mechanization, high demand for oil and other commodities may have kept 
salaries relatively high, especially compared to other kinds of work in rural areas, which 
could explain why wage premiums for these occupations are higher in micro and rural 
counties than in metro counties. In any case, it is difficult to argue that changes in metro, 
micro, and noncore labor markets would not lead to changes in wage premiums. 

Consequently, there are many potential opportunities for future inquiry to build on the 
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findings presented here. It is not surprising that so many studies have examined trends in 
occupations and wages across urban and rural areas, since common knowledge and 
experience point to the fact that urban workers earn more than their rural counterparts across 
a variety of occupations. Fewer people, it seems, have wondered how various occupations 
compare within urban and rural communities. Certain occupations, such as those in teaching 
or manufacturing, may not pay well compared to the rest of the jobs available in cities, but it 
should be recognized that they are sometimes among the best jobs on offer in rural areas. 
Therefore, it is important to recognize that “good” jobs, or those that pay relatively well 
compared to other jobs in the area, vary according to a place’s degree of rurality. Because so 
little is known at present about how wage premiums vary within urban and rural areas, any 
future research on the subject will likely yield valuable insights. 
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