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Abstract 

Financial investment with collection and laboratory analysis of soil samples is an important 

factor to be considered when mapping agricultural areas with soybean planting. One of the 

alternatives is to use the spatial autocorrelation between the sample points to reduce the 

number of elements sampled, thus restricting the collection of redundant information. This 

work aimed to reduce the sample size of this agricultural area, composed of 102 sample 

points, and use it to analyze the spatial dependence of soil macro- and micro- nutrients, as 

well as the soil penetration resistance. The agricultural area used in this study has 167.35 ha, 
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cultivated with soybean, which the soil is Red Dystroferric Latosol, and the sampling design 

has used in this agricultural area is the lattice plus close pairs. The reduction of the sample 

size was made by the multivariate effective sample size (ESSmulti) methodology. The studies 

with the simulation data and the soil attributes showed an inverse relationship between the 

practical range and the estimated value of the univariate effective sample size. With the 

calculation of ESSmulti, the sample configuration was reduced to 53 points. The Overall 

Accuracy and Tau concordance index showed differences between the thematic maps 

elaborated with the original and reduced sampling designs. However, the analysis of the 

variance inflation factor and the standard error of the spatial dependence parameters showed 

efficient results with the resized sample size. 

Keywords: geostatistics, simulation, spatial dependence, redundant information, variance 

inflation factor 

1. Introduction 

Throughout economic cycles, the Brazilian agribusiness has shown to be fundamental to the 

country's development, in addition to ensuring a prominent position capable of influencing 

the international market. Currently, soy (Glycine max (L.) Merrill) is the main agricultural 

product in Brazil and, in recent years, it has shown continuous growth in production and in 

planted area (Balbinot Junior et al., 2017). Agricultural expansion around the planted area is 

encouraged by the favorable climate and topography and by competitive hectare prices in 

some states in the North and Northeast of the country (Bolfe et al., 2016). 

In the last decade, the area planted with soybeans in Brazil went from 23.4 million hectares to 

36.8 million hectares, an increase of 57.2% (CONAB, 2020), whereas production increased 

from 68.9 million tons to 124.2 million tons of this oilseed, representing an increase 

of 80.2% (CONAB, 2020). Paraná ranks among the states with the highest soybean 

productivity in the country and contributed approximately 17% of the national planted area of 

this crop, as well as 18% of the national production of this grain between the 

2009/10 and 2019/20 crop years (CONAB, 2020). These prove the importance of the 

commodity in the national and state context. 

The chemical and physical properties of the soil can affect root growth and the production of 

sensitive crops, such as soybeans (Debiasi et al., 2013). Thus, knowledge about the spatial 

variability of soil attributes is essential for the future development of soybeans and should be 

considered in crop management (Sanches et al., 2019). 

The theory of regionalized variables is considered as the basis of geostatistics, in which, from 

a set of georeferenced sampling elements, the spatial dependence structure is analyzed and 

interpolated thematic maps are constructed that represent the spatial variability of 

physical-chemical attributes of the soil (Cressie, 2015). However, the efficiency of 

geostatistical techniques in the spatial characterization of soil properties is directly 

conditioned by the quality of the soil sampling performed (Cherubin et al., 2014). 

Sampling planning mainly involves establishing the number of sampling points collected and 

the sampling configuration, and it must be efficient in describing the spatial variability of soil 
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properties in the study area (Benedetti et al., 2015). In the study of spatial data there are 

several sample configurations in the literature, such as simple random, stratified, 

regular (square, triangular, hexagonal), lattice plus close pairs, and lattice plus in fill (Diggle 

and Lophaven, 2006). The sample configuration must consider mainly the shape of the area, 

the relief characteristics, and the available resources, which are mainly influenced by the 

costs of laboratory analyses (Gao et al., 2016). 

The costs of collecting and analyzing samples of soil attributes have led to the development 

of many studies within the scope of sample resizing, aiming to reduce sampling costs, 

considering a minimal loss of information in spatial prediction. Among these, we can mention 

from the optimization algorithms (Guedes et al., 2016; Wadoux et al., 2017; Maltauro et al., 

2019) to the use of the Effective Sample Size (ESS) (Acosta et al., 2018; Acosta and Vallejos, 

2018). The calculation of the effective sample size considers the effect of spatial 

autocorrelation between the sampled points collected. To calculate the value of the effective 

sample size, a previous sample survey of the physical-chemical attributes of the soil in the 

desired agricultural area is necessary (Griffith, 2005; Vallejos and Osorio, 2014). 

Studies and applications of effective sample size have been developed, especially with a 

univariate approach and space-time models (Griffith, 2008; Acosta et al., 2016). However, in 

the agricultural context, several soil attributes are generally considered in the study of spatial 

variability, making it impossible to obtain a different sample resizing for each variable. 

Therefore, the objective of this work was to redefine the number of sample points using the 

effective multivariate sample size (ESSmulti). This proposal makes it possible to obtain a single 

sample size, considering the information on the spatial dependence structure of soil 

physical-chemical attributes collected in an agricultural area. 

2. Material and Methods 

Two studies were carried out: the first considering simulated data, and the second using data 

of physical-chemical attributes of the soil obtained in an agricultural area. The simulation 

study aimed to reproduce a list of possibilities present in the real data, in addition to adding 

practical and theoretical knowledge about sample resizing in the soil attributes with spatial 

dependence structure. 

2.1 Description of the simulations 

We considered 14 georreferenced variables with different spatial dependence structures 

(Figure 1 – B). Given the Gaussian linear spatial model, stationary and isotropic 

(Uribe-Opazo et al., 2012), with fixed mean ( 5), we performed 100 simulations for each 

of the 14 variables using a Monte Carlo experiment (Cressie, 2015). In these simulations, we 

fixed the same configuration (lattice plus close pairs), as well the same sample size 

(102 sampling points), from the commercial agricultural area used in the experimental 

data (Figure 1 – C). We also fixed the exponential semivariance model (Diggle and Ribeiro 

Jr., 2007), with the partial sill ( 1), as well the other values of the parameters that define 
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the spatial dependence structure of the simulated variables are described in Figure 1–B. The 

scheme presented in Figure 1 – A presents other features of the simulations.  

After estimating the parameter vector by the maximum likelihood 

method for each simulated variable, the value of the univariate effective sample size (ESSuni) 

was estimated according to Equation 1 (Vallejos and Osorio, 2014). 

                             (1) 

                   (2) 

where  is the number of simulated sampling points in the original grid ( );  is an 

 unit vector;  is an  estimated spatial correlation matrix of 

the sample points, where the estimated spatial correlation between the -th and the -th 

sampling points are given by Equation 2; ,  are the estimated values of the nugget 

effect and partial sill parameters, respectively; and  are the elements of the  matrix, 

whose calculation depends on the geostatistical model and on the Euclidean distance between 

observations (Uribe-Opazo et al., 2012). 

Also, we created four scenarios (S1, S2, S3, S4) (Figure 1 – B), where each one has a different 

number of variables and corresponds to a subset of the set composed of the 14 variables 

(Figure 1 – B). The first scenario (S1) aggregates variables with moderate to strong intensity 

of spatial dependence (defined by the relative nugget effect (%), = ) 

and intermediate spatial dependence radius ( ). The second and third scenarios (S2 and S3, 

respectively) have a strong spatial dependence. However, S2 only has high range values, 

whereas in S3, the range varies between intermediate and high. Finally, the fourth scenario (S4) 

brings together all the variables. 

For these scenarios, we estimated the value of the multivariate effective sample size (ESSmulti) 

considering the methodological scheme presented in Figure 1 – A and the proposal developed 

by Vallejos & Osorio (2014) (Equation 3): 

, 
 (3) 
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where  is the number of sampling points in the original grid ( );  denotes the 

Kronecker product;  is a  linear correlation matrix between the  simulated 

variables;  is a  diagonal matrix with the coefficient of the standardized 

eigenvectors of matrix ;  and  are  and  unit vectors, respectively; 

 is a  diagonal matrix with the standard deviation of the -th variable ( ), 

;  is the  identity matrix; and  is an  block diagonal 

matrix, where each element of the diagonal is an  matrix, given by , that 

representing the spatial correlation matrix of the -th variable, . 

 

Figure 1. (A) Methodological scheme of the simulation study, (B) Values of the parameters 

that define the spatial dependence structure of the simulated variables. The gray scale shows 

the grouping of variables in the formation of each scenario, (C) Experimental area with the 
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location of the points sampled. : mean, : nugget effect, : partial sill, : function of 

the range, : practical range (in kilometers), RNE: Relative Nugget Effect (in %), 

ESSuni: Univariate effective sample size, ESSmulti: Multivariate effective sample size. 

2.2 Description of the Experimental Data 

Data was collected in the 2015/2016 crop year in a commercial area with 167.35 hectares 

cultivated with soybean, where direct planting has been carried out since 1994 (Figure 1 – C). 

The area is located in the municipality of Cascavel, in Western Paraná, Brazil, with 

approximate geographical latitude and longitude coordinates of 24.95º South and 53.37º West, 

and 650 meters of average altitude. The soil is Red Dystroferric Latosol with a clay texture 

and has an average slope of approximately 4%, categorized as smooth undulating. The 

climate of the region is temperate mesothermic and superhumid, type Cfa climate (Koeppen), 

with a mean annual temperature of 21ºC. 

We used a lattice plus close pairs sampling design, with 102 sampling points. This design 

contained a regular grid (with minimum distance between points equal to 141 meters), to which 

we added 19 sample points. These added locations presented smaller distances with some 

points of the regular grid (50 and 75 m). The sample was georeferenced and located with the 

aid of a signal receiving apparatus with a Geoexplore 3 (Trimble®) Global Positioning 

System (GPS) set up for the Universal Transverse Mercator (UTM) coordinate system. 

The data set we used contained the following: as physical attribute, the soil penetration 

resistance (in Mpa) at depths of 0-10 cm (SPR1), 11-20 cm (SPR2), 21-30 cm (SPR3), and 

31-40 cm (SPR4); as chemical attributes, the following soil macro- and micro- nutrients: 

calcium (Ca, cmol dm-3), carbon (C, g dm-3), copper (Cu, mg dm-3), manganese (Mn, cmol 

dm-3), and zinc (Zn, mg dm-3). The experimental data of this physical and chemical attributes 

belongs to the database of the Laboratory of Spatial Statistics of the Western Paraná State 

University - UNIOESTE, Cascavel. The analysis of these soil attributes is important because 

the imbalance of their quantities in the soil can alter the growth and development phases of 

the plant, thus affecting the grain and, consequently, the soybean productivity (Taiz et al., 

2017). Moreover, to better understand the nutritional characteristics of the soil, it is important 

to combine samples of macro- and micro- nutrients and physical attributes, such as soil 

penetration resistance (SPR), which is related to the soil compaction. Compacted soils tend to 

hinder the availability of nutrients and water to the plant, which also interferes in the 

development of the plant (Colombi and Keller, 2019). 

Considering for each point the collection of five replications, the soil samples were obtained 

from 0 to 20 cm deep in the vicinity of the points, which were mixed and placed in plastic 

bags, with approximately 500 g, for the sample composition homogeneous and representative 

of the parcel. The values of micronutrients were extracted by the Mehlich-1 method, the 

carbon by Walkley-Black, and the calcium by KCI 1 mol L-1. The determination of the soil 
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penetration resistance was measured by the penetrograph, as follows: for each sampling point, 

we performed three readings per centimeter, from 0 to 40 cm, covering the four depths 

considered (0-10 cm, 11-20 cm, 21-30 cm, and 31-40 cm). The data obtained was 

transformed in MPa, and the value of the soil resistance penetration at each depth consisted of 

the arithmetic mean of the three measurements. 

Considering the original sample design, we performed the exploratory and geostatistical 

analyses of each physical-chemical attribute of the soil, as detailed in Figure 2. Details on the 

geostatistical methodologies used in this research are in Cressie (2015). 

We estimated the values of the univariate effective sample size (ESSuni, Equation 1) and 

multivariate effective sample size (ESSmulti, Equation 3) (Figure 2) by the same methodology 

applied in the simulated data (Figure 1 – A). The effective sample size methodology uses the 

Fisher's information matrix, which only considers the information on the spatial dependence 

structure, that is, it does not consider any information on spatial prediction in its sample 

resizing process (Vallejos and Osorio, 2014). 
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Figure 2. Methodological scheme used in experimental data. : mean, : nugget effect, 

: partial sill, : function of the range, ESSuni: Univariate effective sample size, 

ESSmulti: Multivariate effective sample size. (A) Redo the exploratory and geostatistical 

analyses with the resized sample configuration, (B) Compare the original and reduced 

sampling configurations 

To verify the suitability of the reduced sample size provided by ESSmulti, a new sample 

configuration was selected from among the 102 points of the original sample grid, 

maintaining the same sampling design. For this reduced sample size, the exploratory and 

geostatistical analyses were also performed (Figure 2 – A). 

Finally, we compared the results obtained between the two sample configurations (original 

and reduced), using the methodologies presented in Figure 2 – B. 

The simulations and the statistical and geostatistical analysis were prepared in the 

R software (R Development Core Team, 2020), using the geoR package (Ribeiro Jr and 

Diggle, 2001). We developed a computational routine in the R software (R Development 

Core Team, 2020) using the geoR (Ribeiro Jr and Diggle, 2001) and matrixcalc (Novomestky, 

2012) packages to estimate the univariate (ESSuni) and multivariate (ESSmulti) effective sample 

size. 

3. Results 

3.1 Simulation Studies 

The estimated values of the univariate effective sample size (ESSuni) evidenced that the 

simulated variables divided into three groups (Figure 3 – A): variables V5, V7, V8, V13, and 

V14 made up the first group, the second group consisted of variables V1, V2, V3, V4, and V6, 

and variables V9, V10, V11, and V12 constituted the third group. 
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Figure 3. (A) Mean and Standard Deviation of the estimated values of the univariate effective 

sample size (ESSuni) for each variable (V1 V14). The nugget effect and practical range 

parameters are shown in parentheses, (B) Boxplot of the estimated values of the multivariate 

effective sample size (ESSmulti) in each scenario ( ). The symbol “O” represents the 

estimated mean value of ESSmulti 

Regarding the estimated values of the effective multivariate sample size (ESSmulti), there was 

a similarity between scenarios S1 and S4 (Figure 3 – B). These scenarios exhibited 

intermediate estimated mean values for ESSmulti (33 sample points), and were composed of 

different numbers of variables (4 and 14 variables, respectively), which indicated that the 

number of variables used did not influence the estimated of ESSmulti. Most of the variables 

had intermediate to high values of the spatial dependence radius (from 300 to 1,200 m), 

which possibly contributed to the similarity of scenarios S1 and S4 in relation to the estimated 

value of ESSmulti. 

Scenario S2 only aggregated variables with high values for the spatial dependence 

radius (between 1,000 and 1,200 m) and was different from the other scenarios because it 

presented the lowest estimated mean value of ESSmulti (20 sample points) (Figure 3 – B). 

Scenario S3 diverged from the other ones because it showed the highest estimated mean value 

of ESSmulti (68 sample points) (Figure 3 – B). In this scenario, the variables had the lowest 

values of practical ranges, between 50 and 110 m, these being low when compared to the 

maximum distance in the area (approximately 1,800 m). 

3.2 Application of the Methodology in Physical-Chemical Attributes of the Soil 

When estimating the effective sample size of each physical-chemical attribute of the soil, 

four groups were identified (Figure 4 – A). These groups were obtained by simultaneous 

analyzing the estimated values of the spatial dependence radius (a), the intensity of spatial 

dependence (RNE), and the ESSuni of each attribute. 

In the identified first group, the attributes exhibited high intensity of spatial 

dependence (  between 4% and 30%, respectively; Cambardella et al., 1984) and low 

values for the spatial dependence radius (between 100 and 116 m), making this group have 

the highest estimated values of ESSuni (approximately 90 sample points) (Figure 4 – A). This 

group was composed of the SPRs at depths of 11-20 and 21-30 cm. 

The identified second and the third groups exhibited estimated ESSuni values between 

22 and 50 sample points (Figure 4 – A). These two groups contained the following attributes: 

carbon (C), manganese (Mn), and zinc (Zn) (group 2); and calcium (Ca) and SPRs at depths 

of 0-10 cm and 31-40 cm (group 3). The estimated values of the spatial dependence radius 

were close (between 220 and 390 m) for all attributes of these groups, except for carbon. 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 1 

http://jas.macrothink.org 366 

Thus, the intensity of spatial dependence, i.e., the estimated value of the RNE, influenced the 

difference in the estimated value of ESSuni between these groups. That is because, in the 

second group, the attributes showed less intensity of spatial dependence (higher ) 

compared to the third group (Figure 4 – A). Isolated from the other attributes, the copper (Cu) 

content in the soil presented the lowest estimated values of ESSuni (11 sample points) and 

exhibited the highest estimated value of practical range (538.7 m) (Figure 4 – A). 

 

Figure 4. (A) Estimated values of the univariate effective sample size (ESSuni) as a function of 

the practical range and of the Relative Nugget Effect (RNE), where C: Carbon, Ca: Calcium, 

Cu: Copper, Mn: Manganese, Zn: Zinc, and SPR1, SPR2, SPR3, SPR4: Soil Penetration 

Resistance at depths of 0-10, 11-20, 21-30, and 31-40 cm, respectively. (B) Original sampling 

design with 102 sample points. (C) Reduced sampling design with 53 sample points  

For sample resizing, we estimated the value of the multivariate effective sample 

size (ESSmulti), obtaining 53 sample points. Thus, a new sample configuration with 

53 points (Figure 4 – C), chosen randomly from the 102 sample points of the original 

grid (Figure 4 – B), was selected for the study of the spatial dependence of the 

physical-chemical attributes of the soil. 

We observed that the reduction in the sample size did not influence dispersion, given by the 

coefficient of variation, or the mean value of the physical-chemical attributes of the 

soil (Table 1). The chemical analysis of the soil showed high mean levels for most of the 

macro- and micro-nutrients of the soil. Also, the most superficial depth layers of 

soil (0 to 20 cm) presented some limitations to root growth (Canarache, 1991). 

Table 1. Descriptive statistics of the physical-chemical attributes of the soil in the agricultural 

area with soybean production under study, considering the original ( ) and 

reduced ( ) sample configurations. 
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 Minimum Mean Maximum SD CV 

 
          

Ca 2.51 2.51 5.51 5.49 11.43 8.60 1.33 1.29 24.12 23.56 

C 23.80 25.20 32.01 32.47 39.34 39.06 3.39 3.08 10.58 9.48 

Cu 1.51 1.51 3.82 3.66 5.97 5.97 0.91 0.91 23.79 24.82 

Mn 44.48 44.48 86.41 87.58 150.00 150.00 22.18 23.83 25.66 27.21 

Zn 1.85 1.85 4.97 4.72 13.84 8.52 2.03 1.49 40.92 31.63 

SPR1 0.75 1.48 3.12 3.03 6.67 6.07 0.97 0.91 31.22 30.03 

SPR2 1.78 1.78 3.01 3.08 5.53 5.53 0.62 0.66 20.70 21.48 

SPR3 1.50 1.57 2.03 2.04 3.86 2.85 0.33 0.28 16.27 13.81 

SPR4 1.48 1.56 2.08 2.08 3.95 3.27 0.37 0.34 18.01 16.23 

SD: Standard Deviation, CV=100(SD/Mean): Coefficient of Variation (%), Ca: Calcium 

(cmol dm-3), C: Carbon (g dm-3), Cu: Copper (mg dm-3), Mn: Manganese (mg dm-3), 

Zn: Zinc (mg dm-3), SPR1, SPR2, SPR3, SPR4: Soil Penetration Resistance at depths of 0-10, 

11-20, 21-30, and 31-40 cm, respectively (MPa). 

In the geostatistical analysis, we verified that the spatial dependence structure depends only 

on the distance separating the locations observed, and does not differ with the direction. 

Therefore, the spatial dependence structure can be considered isotropic for all the 

physical-chemical attributes of the soil (Guedes et al., 2013). 

Comparing the original and reduced sampling designs, we found that the chemical attributes 

of the soil showed greater variation in the estimated values of the parameters of the spatial 

dependence structure than the physical ones (Table 2). 

For most soil attributes, the standard error value of the parameters was that of the spatial 

dependence structure increased after sample resizing (Table 2). Also, the estimated standard 

error values display the same magnitude as the estimated parameter (Table 2). 

All the soil attributes (except zinc) showed a reduction in the estimated value of the spatial 

dependence radius, having, on average, a practical range 27% smaller with the reduced 

sample configuration (Table 2). However, even with a smaller radius of spatial dependence, 

most of the soil attributes showed a higher intensity of spatial dependence (RNE) (Table 2). 
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Finally, there was a lower value of the variance inflation factor (VIF) (Griffith, 2008) in 

80% of the physical-chemical attributes of the soil when the reduced sample configuration 

was used (Table 2). 

Table 2. Estimated values of the parameters and their respective standard errors (in parentheses) 

that define the spatial dependence structure of the physical-chemical attributes of the soil with 

the original ( ) and reduced ( ) sample configurations 

         VIF 

Ca Gaus 

 5.53 1.29 0.48 0.16 0.284 72.88 1.77 

 (0.18) (0.36) (0.36) (0.08)    

 
5.47 0.55 1.15 0.12 0.204 32.35 1.70 

 (0.21) (0.43) (0.55) (0.04)    

C Gaus 

 31.86 8.02 3.39 0.31 0.539 70.28 11.41 

 (0.70) (1.36) (1.80) (0.11)    

 
32.39 8.25 1.09 0.30 0.526 88.33 9.34 

 (0.55) (2.17) (1.74) (0.36)    

Cu Exp 

 4.03 0.34 0.52 0.28 0.855 39.53 0.86 

 (0.27) (0.14) (0.22) (0.19)    

 
3.69 0.11 0.71 0.11 0.322 13.41 0.82 

 (0.18) (0.37) (0.42) (0.07)    

Mn Gaus 

 86.78 268.79 226.14 0.21 0.367 54.31 494.93 

 (4.16) (59.89) (89.74) (0.06)    

 
87.77 319.45 236.98 0.18 0.308 57.41 556.43 

 (4.45) (140.85) (161.97) (0.08)    

Zn Gaus 

 5.10 1.59 3.05 0.22 0.368 34.27 4.64 

 (0.45) (0.38) (0.95) (0.04)    

 
4.72 1.58 0.62 0.23 0.404 71.82 2.20 

 (0.28) (0.52) (0.54) (0.14)    

SPR1 Gaus  3.11 0.64 0.29 0.15 0.255 68.82 0.93 
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 (0.13) (0.21) (0.22) (0.07)    

 
3.01 0.49 0.30 0.14 0.235 62.02 0.79 

 (0.14) (0.25) (0.27) (0.08)    

SPR2 Exp 

 3.00 0.01 0.36 0.03 0.101 2.70 0.37 

 (0.07) (1.16) (1.17) (0.06)    

 
3.07 0.00 0.43 0.03 0.087 0.00 0.43 

 (0.09) (3.86) (3.86) (0.15)    

SPR3 Gaus 

 2.02 0.03 0.07 0.07 0.116 30.00 0.10 

 (0.04) (0.08) (0.08) (0.07)    

 
2.03 0.00 0.08 0.05 0.080 0.00 0.08 

 (0.04) (0.39) (0.39) (0.11)    

SPR4 Exp 

 2.07 0.06 0.07 0.07 0.221 46.15 0.13 

 (0.05) (0.10) (0.10) (0.07)    

 
2.07 0.00 0.11 0.02 0.071 0.00 0.11 

 (0.04) (5.27) (5.27) (0.37)    

Ca: calcium (cmol dm-3), C: carbon (g dm-3), Cu: copper (mg dm-3), Mn: manganese (mg 

dm-3), Zn: zinc (mg dm-3), SPR1, SPR2, SPR3, SPR4: soil penetration resistance at depths of 

0-10, 11-20, 21-30, and 31-40 cm, respectively (MPa), : mean, : nugget effect, : 

partial sill, : function of the range, : practical range (kilometers); : Relative Nugget 

Effect (%); VIF: Variance Inflation Factor. Geostatistical models: Gaus: gaussian, Exp: 

exponential. 

With the original sampling configuration, there was a sample every 1.7 hectares. Considering 

the sample resizing obtained and the size of the experimental agricultural area, approximately 

one sample would be collected every 3 hectares. As a result, both the visual analysis of the 

thematic maps of the soil attributes, as well as the quantitative results, signaled some 

differences between the original and reduced sampling grids. 

For Soil Penetration Resistance (SPR), medium to high accuracy was found between maps 

with the original and reduced sample configurations, at depths of 11-20 cm, 21-30 cm, and 

31-40 cm (T ≥ 67%; Ma and Redmond, 1995; De Bastiani et al., 2012) 

(Figure 5 – G, H, and I). For the chemical attributes of the soil, lower accuracy indexes were 

found (T < 67%; Ma and Redmond, 1995) (Figure 5 – A, B, C, D, and E). 

However, we observed that, even with a 40% reduction in the sample size, the thematic maps 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 1 

http://jas.macrothink.org 370 

obtained with the resized sample configuration maintained the pattern of spatial variability 

described by the maps with the original sample size. This can be observed through the points 

that represent the spatial distribution of the contents of the macro- and micro- nutrients in the 

soil, as well as at a depth of 0-10 cm of the SPR, according to each class of the thematic 

map (Figure 5 – A, B, C, D, E, and F). The pattern was also maintained at depth layers 

between 11 and 40 cm of the SPR (Figure 5 – G, H, and I), where the maps presented circular 

regions around the sample points. 

 

Figure 5. Thematic maps of: (A) calcium (cmol dm-3), (B) carbon (g dm-3), (C) copper (mg 

dm-3), (D) manganese (mg dm-3), (E) zinc (mg dm-3) and soil penetration resistance at depths of 

(F) 0-10 cm, (G) 11-20 cm, (H) 21-30 cm, (I) 31-40 cm (MPa), considering the original and 

reduced sampling designs. Estimated values of OA (Overall Accuracy) and T (Tau 

concordance index) 

4. Discussion 

4.1 Analysis of Simulations Studies 

Comparing these three groups formed by the simulated variables, we observed an inverse 
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relationship between the radius of spatial dependence and the estimated values of ESSuni. In 

other words, the greater the radius of spatial dependence, the lower the estimated value of 

ESSuni, thus the greater the reduction in the number of sample points. Even considering 

another sample configuration, results similar to those obtained were found by Vallejos 

& Osorio (2014). Moreover, when fixing the value of the spatial dependence radius and 

varying the value of the nugget effect, and consequently changing the intensity of spatial 

dependence, no relevant changes were verified in the interval given by the (mean  Standard 

Deviation) of the estimated value of ESSuni (Figure 3 – A). 

The spatial dependence radius also proved to be a parameter that inversely influences the 

estimated values of the univariate effective sample size (ESSuni) and of the multivariate 

effective sample size (ESSmulti). 

4.2 Analysis of the Physical-Chemical Attributes of the Soil 

The results showed that the greater the radius of spatial dependence, the lower the estimated 

value of the effective univariate sample size (ESSuni). This result corroborates those obtained 

in the simulation studies of the present study. As well as in Griffith (2005) and in 

Vallejos & Osorio (2014), who used different geostatistical models to explore the spatial 

variability of the biomass, arsenic, and lead index in the soil and to resize the sample size, 

and found the same inverse relationship between the radius of spatial dependence and ESSuni. 

Furthermore, when the practical reach values were close, the intensity of the spatial 

dependence had a direct influence, that is, the higher the RNE, the greater the estimated value 

of ESSuni. 

The reduction of the sample size to 53 points represents a reduction of approximately 47% of 

the original sample size. This result corroborates with studies carried out by Griffith (2005, 

2008) in which, considering soil macro- and micro- nutrients and calculating the univariate 

effective sample size, sample reductions were obtained which varied between 30% and 48%. 

Also, this new sample size is similar to those used by Pelissari et al. (2014) and by 

Siqueira et al. (2014), who considered between 46 and 60 sample points for the analysis of 

the spatial variability of physical-chemical attributes in experimental areas, respectively; with 

a smaller dimension (less than 100 ha) and a similar size (150 ha) compared to this research. 

Comparing the original and reduced sampling designs (Table 2), the greater variation in the 

values of the spatial dependence parameters of the chemical attributes in relation to the 

physical ones can be explained by the agricultural practices of soil and crop management, as 

well as by the natural variability of the soil. Both factors contribute to the chemical attributes 

having greater spatial variability than the physical ones, therefore being more sensitive to the 

reduction in the number of sample elements (Jacob and Klutle, 1956). 

The increase in the standard error of the parameters after sample resizing indicates that the 

reduction in the number of sample points influenced the spatial dependence structure of the 

physical-chemical attributes of the soil (Table 2). Moreover, regarding the standard error 

values following the magnitude of the estimated parameter, this characteristic is also 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 1 

http://jas.macrothink.org 372 

perceived in the results of Schemmer et al. (2017) and Fagundes et al. (2018), who used in 

their studies both the Gaussian linear spatial model (as well as this study), and the Slash and 

t-Student linear spatial models, applied to variables related to soil and plants. 

Although the results indicated that sample resizing provided changes in the spatial 

dependence structure of the physical-chemical attributes of the soil; the lower values of the 

VIF (Table 2) showed that the soil attributes were less affected by the spatial autocorrelation, 

after the reduction in the number of sample points. This suggests that the original sample 

configuration presented sample elements with redundant spatial information. 

The lower accuracy in the maps of the chemical attributes of the soil in relation to the 

physical ones (Figure 5) agrees with several studies about spatial variability carried out with 

chemical attributes of the soil using different sample sizes (from 9 to 164 samples) and 

sample densities (from 25x25 to 173x173), in different Brazilian states, therefore susceptible 

to different climates and soil types, and with other crops besides soy (corn and oats) 

(Cherubin et al. 2014, 2015; Kestring et al., 2015; Guarçoni et al., 2017). This is because the 

chemical attributes of the soil are more sensitive than the physical ones (therefore, than the 

SPR), concerning the description of spatial variability with a reduced number of 

samples (Jacob and Klutle, 1956). Furthermore, the chemical attributes of the soil are often 

corrected by the application of inputs, during and between harvests. 

Regarding the circular regions around the sample points (Figure 5 – G, H, and I), this is a 

phenomenon known as ‘bull eyes effect’ (Menezes et al., 2016) and is justified by the small 

dependence radius value in these depth layers of SPR in the sample grids, both the original 

and the reduced ones (Table 2). 

The thematic maps with the reduced configuration maintained the standard in spatial 

variability (Figure 5); this implies that it is possible to continue carrying out soil management 

and correction in the necessary places, however using a smaller number of samples collected 

and without having equipment with a high cost of acquisition and maintenance, such as 

machinery with a harvest monitor. 

Therefore, this work showed that, with a single reduction in the number of sample points 

obtained by proposing the effective multivariate sample size (ESSmulti), it was possible to 

characterize the spatial dependence of the agricultural area. Also, the methodology 

implemented showed that there was collection of spatially redundant information in the area, 

which in future collections would imply unnecessary costs to the production process. We 

used physical-chemical attributes of the soil with different spatial dependence structures and 

obtained a considerable resizing of the sample, from 102 to 53 sample elements. In the 

practice, reducing the number of samples by approximately 50% implies a reduction in costs 

by the same proportion, as it will reduce the demand for time, labor, and laboratory analysis. 
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