

Identification of Seafood Bacteria from Cellular Fatty

Acid Analysis via the Sherlock® Microbial

Identification System

Amit Morey

Kodiak Seafood and Marine Science Center School of Fisheries and Ocean Sciences, University of Alaska Fairbanks 118 Trident Way, Kodiak, Alaska 99615-7401, USA Tel: 1-210-384-8048 E-mail: amit.morey@fsns.com

Alexandra C.M. Oliveira

Kodiak Seafood and Marine Science Center School of Fisheries and Ocean Sciences, University of Alaska Fairbanks 118 Trident Way, Kodiak, Alaska 99615-7401, United States Tel: 1-907-486-1530 E-mail: acoliveira@alaska.edu

Brian H. Himelbloom (Corresponding author) Kodiak Seafood and Marine Science Center School of Fisheries and Ocean Sciences, University of Alaska Fairbanks 118 Trident Way, Kodiak, Alaska 99615-7401, United States Tel: 1-907-486-1529 E-mail: bhhimelbloom@alaska.edu

 Received: February 18, 2013
 Accepted: March 4, 2013

 doi:10.5296/jbls.v4i2.3272
 URL: http://dx.doi.org/10.5296/jbls.v4i2.3272

Abstract

The current taxonomic positions of psychrotrophic bacterial strains isolated from seafood and housed in the Kodiak Seafood Culture Collection (KSCC) were determined based on membrane fatty acid profiles and compared with profiles for representative American Type

Culture Collection (ATCC) strains. Gram-positive organisms had a high percentage (64-96%) of branched-chain fatty acids, except for *Streptococcus faecium*. Gram-negative, oxidase-negative isolates were composed of 38–69% of saturated fatty acids and 19–50% of unsaturated fatty acids. Hydroxyl fatty acids were present in all the gram-negative, oxidase-positive isolates and the branched-chain fatty acids were <1-74%. Of the 33 strains tested, 55% were identified to species with a similarity index (SI) >0.5 and <0.1 SI in range of the first rank. Strains of *Pseudomonas fluorescens* and those belonging to the Enterobacteriaceae were responsible for this lower percentage. The modern taxonomic positions of three KSCC strains were found to be *Shewanella putrefaciens*, *Psychrobacter immobilis* and *Myroides odoratus*. Sherlock MIS proved to be an effective and rapid technique in the identification of bacteria associated with seafood.

Keywords: Fatty acids, Seafood bacteria, Identification

1. Introduction

Lipids compose almost 50% of the cytoplasmic membrane of bacterial cells and are composed of unique fatty acids of straight chains (saturated, unsaturated, cyclopropane and hydroxylated) and branched chains (saturated, unsaturated or hydroxylated iso-, anteiso- and ω -alicyclic) (Suutari and Laakso, 1994). The diversity of fatty acids and their species specific distribution among bacteria can be used as important chemotaxonomic biomarkers in bacterial identification (Thornabene, 1985; Komagata and Suzuki, 1987; Kaneda, 1991).

The only automated system available for the bacterial identification based on fatty acid profile analysis is by Microbial Identification Inc. (MIDI) and introduced in 1985. The computerized Sherlock® Microbial Identification System (MIS) identifies fatty acids (9:0 to 20:0) and compares individual fatty acid percentages with its databases which are fragmented into libraries. The output is a list of possible microbial identifies and corresponding similarity index (SI) which is calculated using multivariate statistical analysis (Welch, 1991; O'Hara, 2005).

Some microbiology researchers conclude the MIS is accurate, efficient, reproducible, and rapid and correctly identifies clinical bacteria (Kunitsky et al., 2005; Himelbloom et al., 2011). Others report that this system cannot be used for sub-grouping of bacteria since the typing capability of MIS is genus- and/or species-dependent (Osterhout et al., 1991; Birnbaum et al., 1994; Steele et al., 1997; Odumeru et al., 1999). Lower specificity of MIS and other commercial systems to correctly identify non-clinical bacterial isolates could be due to the databases being mainly composed of membrane fatty acid profiles derived from clinical isolates (Nedoluha and Westhoff, 1995). Upon investigating the applicability of the MIS to bacteria isolated from fish, they concluded this system is not suitable for such application. Initial studies to determine the ability of the MIS to identify bacteria other than those of clinical importance are recommended (Nedoluha and Westhoff, 1995; Brown and Leff, 1996). The fatty acid signatures of microorganisms can be used successfully as a complementary tool for taxonomic identification of novel bacterial species isolated from food, clinical specimens, and environmental sources (Welch, 1991; Bertone et al., 1996; Neyts et al., 2000; Hinton et al., 2004; Hoffmann et al., 2010). A particular interest to us is the use of these biomarkers to distinguish marine bacteria isolated from sea ice of polar regions (Hoffmann et al., 2010; Zhang et al., 2008). It may be possible to apply the MIS to bacterial isolates from cold-water seafood. Bacteria isolated from Alaska fishery products are mostly psychrotrophic organisms, in which membrane fatty acids profiles have not been determined. The objective of this research was to establish the fatty acid profiles of bacteria previously detected in Alaska seafood products and to assess the ability of the MIS to accurately identify this select group. A

variety of genera, with an emphasis on known seafood spoilage bacteria, were selected for a system challenge test (Miller, 1991) and to determine the effect of repeated analysis on the variation in the fatty acid profiles.

2. Materials and Methods

2.1 Bacterial Isolates

Thirty-three selected isolates from the Kodiak Seafood Culture Collection (KSCC; Table 1) and from the American Type Culture Collection (ATCC, Manassas, VA; Table 2) were used in this study. The KSCC bacteria were identified previously to the genus or species level by classical taxonomic techniques and via the API system of bacterial identification (bioM érieux, Hazelwood, MO). Bacterial sample vials (Wheaton, 4 ml with rubber-lined screw cap; VWR) contained 2 ml of cell concentrate from: ~1 ml of sterile brain heart infusion(BHI; Difco; Becton, Dickinson and Co., Sparks, MD) added to freshly-grown pure cultures in individual Petri plates (VWR International, Inc., Brisbane, CA) for pipetting the colony slurry, 1 ml of sterile 50% glycerol (w/v; Sigma Chemical Co., St. Louis, MO) in sterile reverse osmosis water (roH₂O) and 40 μ l dimethyl sulfoxide (Sigma). These vials had been frozen (-80 °C) long-term for archival purposes. Selected vials were thawed for less than 30 minutes at room temperature. Psychrotrophic bacterial cells (~0.1 ml of cell concentrate) was inoculated in 2 ml of BHI (Difco) and incubated at 25 °C for 24 h, while mesophilic bacterial cells were incubated at 35 °C for 24 h. Culture purity was determined by streaking on plate count agar (Difco) at the psychrotrophic and mesophilic incubation temperatures for 72 h and 48 h, respectively, before confirming basic taxonomic characterizations. Isolated, representative colonies of each test strain were transferred using sterile toothpicks to clean plastic Petri plate lids to observe the cell wall reaction (Powers, 1995) with a drop of 3% KOH (VWR) in roH₂O (w/v), instead of the standard Gram staining protocol. The catalase test (Harrigan, 1998) used was to add a drop of 3% hydrogen peroxide (Fisher Scientific Co., Fair Lawn, NJ) in roH₂O to colonies transferred to a second lid. The cytochrome oxidase test (Kovacs, 1956) for colonies was performed in a third lid containing a filter paper (Whatman 1 circle, 11 cm diam.; VWR) wetted with ~1 ml of the fresh 1% N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (Sigma) in roH₂O. Morphological characteristics regarding cell shape and motility of the selected bacterial cells were observed under a microscope (Montagesatz T-UL, Zeiss, Germany) by using the 40X high-dry and 100X oil-immersion lenses.

Table 1. Confirmation of identities of KSCC bacterial strains isolated primarily from raw and processed Alaska fish to genus and species by MIS

		Genus	Species	
Strain	Source – year isolated	no. ID	no. ID	Mean SI \pm s.d. ^a
Alteromonas sp. 8C2	Pacific flatfish – 1990	5	5	0.689 ± 0.031
Arthrobacter sp. 5B6	Pacific pollock – 1989	5	5	0.659 ± 0.071
Bacillus subtilis 5D1	Kodiak College stock – 1990	5	5	0.907 ± 0.05
Citrobacter freundii 4E5	Pacific sole – 1991	4	4	0.653 ± 0.088
Enterobacter cloacae 12D5	dried dill weed – 1992	5	3	0.777 ± 0.001
Flavobacterium sp. 5C6	Pacific pollock – 1989	5	5	0.620 ± 0.034

				1
Hafnia alvei 2F1	pollock surimi – 1989	3	3	0.716 ± 0.057
H. alvei 12E1	commercial salmon pate - 1992	4	4	0.725 ± 0.171
Micrococcus varians 7F1	smoked salmon – 1996	5	0	0.767 ± 0.058^{b}
Morganella morganii 2E5	pollock surimi – 1989	5	5	0.535 ±0.134
<i>Moraxella</i> sp. 5E6	Pacific pollock – 1989	6	6	0.533 ± 0.082
Providencia alcalifaciens 7F2	Pacific herring – 1996	4	0	$0.751 \pm 0.05^{\circ}$
Pseudomonas fluorescens 2A1	pollock surimi – 1989	5	5	0.740 ± 0.180
P. fluorescens 11A1	fillet processing line – 1992	5	4	0.535 ± 0.057
P. fluorescens 11B3	surimi stuffing equipment-1992	7	3	0.375 ± 0.022
P. fluorescens 12A2	commercial salmon pate - 1992	5	1	0.422^{d}
P. putida 7E4	smoked salmon – 1996	6	6	0.765 ± 0.115
P. putida 12A3	commercial salmon pate - 1992	5	5	0.579 ± 0.184
Serratia fonticola 2D3	pollock surimi – 1989	5	5	0.414 ± 0.221
Staphylococcus xylosus 13A4	experimental fish food - 1992	5	0	0.387 ± 0.017^{e}
Streptococcus faecium 6A4	Stabisil starter culture ^f - 1990	5	5	0.777 ± 0.051

Overall SI for 21 KSCC strains = 0.659

^aSimilarity index and standard deviation

^bSI for strain but identified by MIS as *Micrococcus luteus* GC subgroup B

^cSI for strain but identified by MIS as *Erwinia chrysanthemi* biotype III

^dSI of one species level identification

^eSI for strain but identified by MIS as *Staphylococcus gallinarum*

^fmanufactured commercially in Iowa

Table 2. Confirmation of identities of ATCC bacterial strains to genus and species by MIS

		Genus			
Strain	Source-country of origin	no. ID	Species no. ID	Mean SI±s.d. ^a	
Aeromonas hydrophila 35654 (quality control strain)	unknown	5	5	0.889 ± 0.023	
Escherichia coli 11303 biotype B	unknown	5	5	0.744 ± 0.068	
Pseudoalteromonas nigrifaciens 19375 (type strain)	butter – UK	5	5	0.851 ± 0.046	
Pseudomonas fluorescens 13525 biotype A (type strain)	pre-filter tanks – UK	5	5	0.874 ± 0.112	
P. fluorescens 17574 biotype C or 49	polluted seawater-USA	5	5	0.709 ± 0.123	
P. fluorescens 31419 biotype G	unknown – Japan	5	3	0.624 ± 0.110	
<i>P. putida</i> 12633 biotype A (type strain)	unknown – USA	5	5	0.716 ± 0.047	
Psychrobacter immobilis 43116 (type strain)	poultry – UK	5	5	0.900 ± 0.012	
Serratia marcescens 13880 (type strain)	pond water – unknown	4	3	0.619 ± 0.063	
<i>Shewanella putrefaciens</i> 49138 (quality control strain)	clinical isolate – USA	5	5	0.955 ±0.012	

S. putrefaciens 8071(type strain)			unknown	5	5	0.771 ± 0.043		
<i>Staphylococcus</i> strain)	epidermidis	14990	(type	nose – USA	5	4	0.679 ± 0.079	
Overall SI for 12 ATCC strains = 0.758								

^aSimilarity index and standard deviation

2.2 Identification of Bacteria by Fatty Acid Methyl Ester Composition

Pure cultures were streaked on Trypticase soy broth agar (TSBA; 30 g of Trypticase soy broth [Difco], 15 g granulated agar [Difco] per L of roH₂O) and incubated at 28 \pm 1 °C for 24 \pm 2 h. Fatty acid methyl esters (FAME) were produced in five or more replicates using the standard MIDI procedures (Paisley, 2004). A loopful (20-40 mg) of cells, from the 3rd streaked quadrant after the 24 \pm 2 h culture, was harvested and placed into a clean screw-capped glass tube (16x125 mm, VWR). For slow-growing bacteria, two to three plates were cultured simultaneously to allow sufficient cells to be collected (Paisley, 2004). Cellular fatty acids were saponified by boiling at 100 °C with 1 mL of 3.75N certified ACS-grade NaOH (Fisher) in 1:1 (v/v) HPLC-grade methanol (Burdick & Jackson, Muskegon, MI): roH₂O for 30 minutes. Methylation occurred after 2 mL of 1.18:1 (v/v), 6N HCl (VWR): HPLC-grade methanol was added and the mixture heated at 80 % for 10 minutes. The FAME were extracted into the organic phase by adding 1.25 mL of 1:1 (v/v), HPLC-grade hexane (Burdick & Jackson): HPLC-grade methyl tert-butyl ether (J.T. Baker, Phillipsburg, NJ) followed by a base wash (0.3N NaOH in roH₂O) to remove any free fatty acids and residual reagents. The purified FAME were analyzed immediately using a gas chromatograph (GC model 6850, Agilent Technologies, Wilmington, DE) coupled to a flame ionization detector using the protocol recommended by MIDI (Paisley, 2004). The GC Chemstation enhanced integrator program (rev. A. 10.02, 1757, Agilent Technologies) was used to integrate the chromatogram peaks and to electronically transfer results to the MIS for library comparison with the TSBA method 5.0 (TSBA50) aerobe database. The output contained a list of fatty acids corresponding to percent composition and identifications with similarity indexes (SI) ranging from 0-1 in which the higher number being the closest match to the library of fatty acids for aerobic bacteria (RTSB50). The GC was calibrated twice before the start of each analysis sequence and after every 11th sample injection (Paisley, 2004) using rapid calibration standards (No. 1300-AA, MIDI). During all the calibration analyses, the peak percent named for the standard was >99% with the root mean square error <0.003. Genus-level and species-level identification were designated if the possible list from the MIS consisted of only a genus match to the known isolate or a species match, irrespective of its ranking. If the replicate of a known organism did not show a correct identification to genus or species, irrespective of the SI, it was categorized as unidentified. The isolates which were consistently identified had a SI >0.5 and were <0.1 SI within the range of the first rank. Only fatty acids >5% of the total were shown, otherwise the amounts were designated as trace.

3. Results

3.1 Gram-Positive Isolates

Arthrobacter sp. 5B6 was identified as A. aurescens based on its fatty acid profile (Table 3). Alteration in anteiso 15:0 fatty acid percentage led two of five replicates to be identified as Brevibacillus choshinensis as the first rank with <0.1 SI difference for A. aurescens. However, the MIDI indicated that a good match is considered when a SI \geq 0.1 occurs between the first and second rank. Three replicates identified as A. aurescens at the first rank showed A. agilis at the

second rank with a SI>0.1. Bacillus subtilis 5D1 was identified correctly to the species level due to a very high SI (Table 1). For all replicates, B. subtilis was the first rank on the possible match list indicating that the fatty acid profile (Table 3) matched the RTSB50 entry. Micrococcus varians 7F1 was identified previously using API Staph Trac (good ID) but the MIS identified the isolate as M. luteus-GC subgroup B (Table 3). Saturated straight- and branched-chain fatty acids were prominent in *Staphylococcus epidermidis* and *S. xylosus* but differed quantitatively and qualitatively (Table 3). Among the five replicates for S. epidermidis ATCC 14990, four were correct (Table 2) while one replicate was identified with low confidence (SI = 0.322) as S. simulans. All five replicates of S. xylosus 13A4 were identified as S. gallinarum which was the only option in the MIS list. Most of the fatty acids of strain 13A4 (Table 3) were within the RTSB50 range for S. gallinarum but iso 13:0, anteiso 13:0, anteiso 15:0, and iso 17:0 concentrations differed by approximately 14%, 4%, 14%, and 5%, respectively, from the library means. Streptococcus faecium 6A4 exhibited a narrow fatty acid composition (Table 3) and a high SI (Table 1). Although the total response was below the recommended limit of 50 000 for all replicates, these were identified as Enterococcus faecium. All possible identifications in the listing consisted of *E. faecium* GC subgroups A and B.

Fatty Acids	Arthrobacter sp. 5B6	Bacillus subtilis 5D1	<i>Micrococcus</i> <i>varians</i> 7F1	Staphylococcus epidermidis ATCC 14990	Staphylococcus xylosus 13A4	Streptococcus faecium 6A4
14:0	Т	Т	Т	Т	Т	7.21 ±0.37
16:0	Т	Т	Т	6.33 ± 1.77	Т	16.68 ± 0.56
18:0	Т	Т	Т	14.67 ± 3.49	Т	Т
20:0	А	А	А	11.44 ±3.36	Т	А
i13:0	Т	Т	Т	Т	27.29 ± 0.94	А
i14:0	6.33 ±1.23	Т	Т	5.16 ± 0.75	Т	А
i15:0	6.52 ± 3.10	23.68 ± 3.27	13.81 ± 0.33	14.44 ± 1.66	13.81 ± 0.44	А
i16:0	Т	Т	8.48 ± 0.49	Т	Т	А
i17:0	Т	10.27 ± 0.47	Т	Т	7.74 ± 0.24	А
ai13:0	Т	Т	Т	Т	9.20 ± 0.58	А
ai15:0	77.94 ±4.03	38.72 ±1.34	57.09 ± 0.18	31.45 ± 4.64	16.89 ± 0.47	А
ai17:0	Т	11.47 ±1.42	13.09 ± 0.20	Т	Т	А
18:1 ω7c	А	Т	А	Т	А	47.79 ±2.07
19:0 cy8c	А	А	А	А	А	8.74 ± 1.45
SF3	A	А	А	Α	Т	17.37 ± 0.52
Total ^b	91	84	92	83	75	98

Table 3. Fatty acid profiles^a of Gram-positive bacteria from the KSCC and ATCC

^aEach value is an average \pm standard deviation of five replicates. T denotes trace amounts <5%; A denotes absent/below detection; *iso* (i); *anteiso* (ai); cyclopropane (cy); *cis* (c); summed feature 3 (SF3) indicates fatty acids are 16:1 ω 6c or 16:1 ω 7c

^bTotal is the sum % of the fatty acid values >5%

3.2 Gram-Negative, Oxidase-Negative Isolates

Fatty acid profiles of Citrobacter freundii 4E5 indicated that 16:0, SF3 and 18:1 w7cis were the major fatty acids, while branched-chain fatty acids formed a minor component (Table 4). Previously identified using API 20E, strain 4E5 was identified correctly in four of five replicates (Table 1) irrespective of its position in the MIS list. In two of the replicates, the first match was Erwinia chrysanthemi and separated from the C. freundii match by a SI<0.1. Strain 4E5 was not identified for one replicate from any choices in the RSTB50 list. Most of the fatty acids of all replicates were near the mean or within the prescribed percentage range. The replicate not identified as C. freundii had lower 16:0 (21%) and 18:1 ω 7cis (14%) and higher SF2 (13%) and SF3 (34%) than the percentage ranges of the corresponding library entries. In three of five replicates, E. cloacae 12D5 was identified to species but it was incorrectly identified as E. coli at the first rank in the RSTB50 list. The difference between the first rank and E. cloacae had a SI>0.1. All identifications as E. cloacae had a narrow SI range (Table 1) and the differences between fatty acids quantities were subtle. Major fatty acids comprising strain 12D5 were SF3, 17:0 cyclopropane (cy), and 18:1 ω 7*cis* (Table 4). The possible explanation for *E. cloacae* not being the first rank was the difference between the mean fatty acid percentage of the library entry and the replicates. Similarly, the identifications of the other two replicates identified only to genus may be explained by the higher percentage of 17:0 cyclopropane (11%) and lower percentages of SF3 (14%) and 18:1 w7cis (21%). The differences between these fatty acids and the RSTB50 entry means were approximately 10% for SF3, 6% for 17:0 cy, and 4% for 18:1 ω7cis. The identification capability of strain 12D5 was challenged by its incorrect identification as E. coli. The five replicates of E. coli ATCC 11303 were identified correctly to species at the first or second rank with a SI<0.1. Two replicates had Salmonella enteritidis as the first rank, followed closely (SI<0.1) by E. coli as the second possible candidate. Similarly, in three correct replicates, the first rank was followed by S. enteritidis and a SI<0.1. The two H. alvei strains were identified previously (Table 1) using API 20E (excellent ID). Among the five replicates of strains 12E1 and 2F1, two replicates were identified as the first match. Major fatty acids comprising H. alvei included SF2, an unknown fatty acid (equivalent chain length of 14.502), SF3, and 17:0 cy (Table 4). Serratia fonticola 2D3 and S. marcescens ATCC 13880 were identified to species in all replicates and three of five replicates, respectively (Table 1 and 2). Strain 2D3 was identified previously using API RapidE (excellent ID) but showed ambiguous MIS results (SI<0.5) in the five replicates and might be due to the major fatty acids such as 15:0, 16:0 and SF3 (Table 4) falling outside the percentage range for the library entry. For the remaining two replicates, Yersinia aldovae (SI = 0.703) and S. fonticola (SI = 0.614) were the first ranks. Of the three correct replicates, S. marcescens was the first rank once while Salmonella choleraesuis subsp. houtenae and *Klebsiella pneumoniae* were the first ranks for the other two replicates separated by a SI>0.1. This variation in identifications in replicate analysis might be due to absence of minor fatty acids such as anteiso 16:0, SF6 and iso 19:0 (Table 4). Chromatograms showed the presence of these fatty acid peaks, but were not integrated by the software and subsequently not considered during comparison with the library. Fatty acid profile of the S. marcescens replicate, not being identified, was missing anteiso 16:0 and iso 19:0 but had a higher percentage of SF2 (11%), 13:0 was present, and a lower percentage of 16:0 (27%) compared to the RSTB50 entry.

Table 4. Fatty acid profiles^a of Gram-negative, oxidase-negative bacteria from the KSCC and ATCC

Fatty Acids	Citrobacter freundii 4E5	Enterobacter cloacae 12D5	Escherichia coli 1D3	Hafnia alvei 12E1	Hafnia alvei 2F1	Serratia fonticola 2D3	Serratia marcescens ATCC 13880
14:0	$6.70\pm\!0.42$	7.28 ± 0.21	5.64 ± 0.26	7.45 ± 0.46	6.28 ± 0.41	5.79 ± 0.18	6.15 ± 0.38
15:0	Т	Т	Т	Т	Т	5.53 ± 2.92	Т
16:0	24.02 ± 1.58	26.57 ± 0.75	27.32 ± 0.88	33.36 ± 0.68	33.07 ± 0.56	28.15 ± 0.92	28.24 ± 0.81
18:1 ω7c	16.56 ± 1.73	21.28 ± 1.03	28.61 ± 3.01	7.47 ± 1.11	7.44 ± 0.89	8.12 ± 0.59	17.01 ± 1.18
17:0 cy	Т	8.64 ± 1.71	9.84 ± 3.06	17.63 ± 5.31	21.57 ± 5.11	12.25 ± 2.78	7.77 ± 3.00
SF2	9.82 ± 1.45	8.52 ± 0.55	8.37 ± 0.54	8.96 ± 0.69	9.21 ±1.25	8.74 ± 0.56	9.86 ± 0.69
SF3	33.25 ± 0.87	16.18 ± 3.01	8.96 ± 2.73	14.88 ± 5.07	10.63 ± 2.99	$21.79\pm\!6.38$	19.11 ± 2.82
Total ^b	90	88	89	90	88	90	88

^a Each value is an average \pm standard deviation of five replicates. T denotes trace amounts <5%; A denotes absent/below detection; *cis* (c); cyclopropane (cy); summed feature 2 (SF2) indicates peak tentatively designated as 12:0 aldehyde or unknown at retention time 10.947 min; SF3 indicates fatty acids are 16:1 ω 6c or 16:1 ω 7c

^bTotal is the sum % of the fatty acid values >5%

3.3 Gram-Negative, Oxidase-Positive Isolates

The MIS identified all replicates of A. hydrophila ATCC 35654 correctly and with a high SI (Table 2). The first rank was the A. ichthiosmia-A. hydrophila complex followed closely by other Aeromonas species in the RTSB50. Only two fatty acids were prominent in the profile for A. hydrophila (Table 5) but it was a repeatable identification. The fatty acid profiles of Alteromonas sp. 8C2 and S. putrefaciens ATCC 8071 and 49138 were very similar. Strain 8C2 was identified previously only to genus using classical taxonomic techniques plus it was proteolytic, lipolytic and hydrogen sulfide positive (data not shown). Strain 8C2 was identified as the S. putrefaciens-S. alga complex, the only entry for Shewanella. Although the Alteromonas name exists, there was no separate entry for any bacterium belonging to this genus in the RTSB50. Similarly, Shewanella putrefaciens ATCC 8071 and ATCC 49318 were identified as the S. alga-S. putrefaciens complex. Pseudoalteromonas nigrifaciens ATCC 19375 was correctly identified to species and had a high SI (Table 2). There are six species in the RTSB50 for Pseudoalteromonas separated by qualitative and quantitative differences in their fatty acids profiles (Table 5). Flavobacterium sp. 5C6 was the only isolate that belonged to the Gram-negative, oxidase-positive bacteria and was comprised of hydroxyl fatty acids (Table 5). In five replicates, strain 5C6 was identified as Myroides odoratus. The RTSB50 has five entries for Flavobacterium with only one entry for Myroides. Fatty acid profiles of Moraxella sp. 5E6 indicated a higher percentage of SF3 (16%) compared to 4% in Psychrobacter immobilis ATCC 43116 (Table 5). All replicates of strain 5E6 and P. immobilis ATCC 43116 were identified as P. immobilis even though the RTSB50 entries for Moraxella include several species. For Psychrobacter, library entries included only P. phenylpyruvicus and *P. immobilis*. The fatty acid profiles of strain 5E6 were different quantitatively from any of the Moraxella entries but matched well with the entry for P. immobilis. The SI for P. immobilis ATCC 43116 was high (Table 2) indicating that its fatty acid profile was very similar to the fatty acid profile of the RSTB50 entry. The lower SI determined for strain 5E6 might be due to higher percentages of 16:0 and SF3 (Table 5) which were close to the upper limit in the RSTB50. Low 18:1 ω9cis content, absence of SF6 (anteiso 18:0 or 18:2 ω6,9cis), and the low percentage of SF7 (19:1 ω 11c or 19:1 ω 9c), likely contributed to the lower SI (data not shown).

Providencia alcalifaciens 7F2 was identified previously from API 20E (excellent ID). The fatty acid profile indicated the presence of 14:0 which was not in any other isolate in the Gram-negative, oxidase-positive group (Table 5). All replicates were identified as Erwinia chrysanthemi biotype III as the first rank. The possible identification list of three replicates matched *P. rustigianii* which had a SI<0.1 from the first rank; in one replicate, the second rank with a SI<0.1 to E. chrysanthemi. Since strain 7F2 was identified only to genus, the average fatty acid profile was superimposed on the RSTB50 comparison charts of P. alcalifaciens and P. rustigianii to determine the closeness of the observed fatty acid profiles and the library entries for these bacteria. Most of the fatty acid quantities were within the range for P. rustigianii library entry rather than those for P. alcalifaciens (data not shown). Although the API 20E (excellent ID) was determined for strain 7F2 (Table 1), the MIS identified the same strain as E. chrysanthemi. Among the five replicates Morganella morganii 2E5, three were identified correctly as the first rank (Table 1). Although, the fatty acid profile of strain 2E5 was similar to P. alcalifaciens, the presence of 17:0 cy separated the two isolates (Table 5). Comparison charts of these replicates showed the SI increased when SF2 and 18:1 ω 7*cis* were closer to the average percentage of these fatty acids in the RSTB50 entry (data not shown). The other two replicates were identified as Salmonella typhimurium GC subgroup B (SI = 0.68) and *Ewingella americana* (SI = 0.738) and separated from *M. morganii* by SI = 0.23-0.32. Ten fluorescent Pseudomonas species comprising P. fluorescens and P. putida strains (Table 1 and 2) resulted in P. putida listed as the first rank while P. fluorescens had either a SI<0.1 or >0.1. Additionally, fatty acids such as 10:0 3-OH, 12:0 2-OH/3-OH, SF3, 17:0 cy, and 18:1 ω 7*cis* were found to deviate from the mean fatty acid profiles (Table 6) for the RSTB50 entries of P. fluorescens biotypes A, B, C, F and G.

Table 5. Fatty acid profiles^a of Gram-negative, oxidase-positive bacteria from the KSCC and ATCC

Journal of Biology and Life Science

ISSN 2157-6076

2013, Vol. 4, No. 2

Fatty Acids	Aeromonas hydrophila ATCC 35654	Alteromonas sp. 8C2	Shewanella putrefaciens ATCC 49138	Shewanella putrefaciens ATCC 8071	Pseudoalteromonas nigrifaciens ATCC 19375	Flavobacterium sp. 5C6	<i>Moraxella</i> sp. 5E6	Psychrobacter immobilis ATCC 43116	Providencia alcalifaciens 7F2	Morganella morganii 2E5
14:0	Т	Т	Т	Т	Т	Т	Т	Т	5.69±0.08	6.56±0.33
15:0	Т	7.25±1.15	9.15±1.44	6.39±0.67	8.76 ±0.19	Т	Т	Т	Т	Т
16:0	17.29±0.50	9.11 ±0.93	Т	6.89 ± 0.65	16.13 ± 0.68	Т	Т	Т	28.56 ± 0.48	32.21 ±1.11
i13:0	Т	6.52 ±0.64	5.48 ±0.25	7.91 ±0.70	Т	Т	А	А	А	А
i15:0	Т	10.17 ±0.64	23.41 ±0.88	15.69 ±1.46	Т	52.57 ±2.77	Т	Т	А	А
15:1 ω8c	Т	т	т	т	5.69 +0.22	А	т	Т	т	А
17:1 ω8c	Т	13.02 ±1.84	20.14 ±2.00	14.21 ±1.19	11.43 ±0.72	A	9.91 ±1.53	8.64 ±1.70	Т	Т
18:1 ω7c	18.77±0.53	Т	Т	Т	А	А	А	А	11.99 ±0.26	8.69 ±1.59
18:1 ω9c	А	Т	Т	Т	Т	Т	48.37±1.74	63.04 ±2.25	А	А
i15:0 3-OH	Т	Т	Т	Т	А	6.41 ±0.72	А	А	А	А
i17:0 3-OH	А	А	А	А	А	10.92 ±1.64	А	А	А	А
17:0 cy	А	А	А	А	А	А	А	А	А	18.26 ±3.05
SF2	6.67 ± 0.97	Т	Т	Т	Т	Т	Т	Т	8.07 ±0.51	9.62 ±0.92
SF3	36.35±1.59	20.51±1.31	10.03±1.25	18.60±0.80	30.33±0.99	2.20±0.30	16.13±1.08	3.99±0.15	37.39±0.81	8.97±1.56
SF4	Т	А	Т	А	А	16.84±1.30	Т	А	А	А
Total ^b	79	67	68	70	72	89	74	76	92	84

Macrothink Institute[™]

^aEach value is an average \pm standard deviation of five replicates except for *Moraxella* 5E6 where six replicates were used. T denotes trace amounts <5%; A denotes absent/below detection; *iso* (i); *cis* (c); cyclopropane (cy); summed feature 2 (SF2) indicates peak tentatively designated as 12:0 aldehyde or unknown at retention time 10.947 min; SF3 indicates fatty acids are 16:1 ω 6c or 16:1 ω 7c; SF4 indicates fatty acids are 10-methyl 16:0 or iso 17:1 ω 9

^b Total is the sum % of the fatty acid values >5%

Fatty	Pseudomonas									
Acids	fluorescens	putida	putida 7E4	putida						
	11A1	11B3	12A2	2A1	ATCC 17574	ATCC 31419	ATCC 13525	ATCC 12633		12A3
16:0	30.11 ±0.39	24.29 ± 0.82	32.14 ±1.51	27.37 ± 0.82	26.83 ±1.40	29.20 ±1.49	28.19 ±1.26	25.73 ±0.72	29.62 ±0.67	27.66 ±1.70
17:1										
ω7c	А	А	А	А	А	А	А	А	$17.67~\pm~0.6$	А
18:1										
ω7c	11.80 ± 0.47	20.23 ± 1.91	8.51 ± 0.77	14.97 ± 0.47	15.37 ± 1.33	15.29 ± 0.83	18.92 ± 0.79	18.04 ± 0.71	А	10.68 ± 1.23
12:0										
2-OH	6.45 ± 0.29	5.93 ± 1.09	5.54 ± 0.68	Т	5.11 ± 0.87	6.12 ± 0.96	Т	5.20 ± 0.44	5.85 ± 0.30	Т
13:0										
3-OH	5.37 ± 0.58	5.79 ± 0.96	Т	5.08 ± 0.31	5.16 ± 0.85	5.14 ± 0.77	Т	5.04 ± 0.37	Т	5.19 ± 0.21
17:0										
су	6.89 ± 2.63	Т	8.78 ±1.54	Т	Т	Т	Т	7.51 ±2.88	10.75 ± 2.52	$7.50\pm\!3.68$
SF3	31.03 ±2.61	30.08 ±1.71	30.45 ± 0.97	36.38 ± 0.63	36.54 ±0.72	29.69 ±1.93	33.16 ±0.72	28.21 ±3.07	22.57 ±2.45	32.23 ± 3.62
Total ^b	92	86	85	84	89	85	80	90	86	83

Table 6. Fatty acid profiles^a of Gram-negative, oxidase-positive bacteria belonging to *Pseudomonas* from the KSCC and ATCC

^aEach value is an average ± standard deviation of 5 replicates except for *P. putida* 7E4 and *P. fluorescens* 11B3 where six and seven replicates were used, respectively. T denotes trace amounts

<5%; A denotes absent/below detection; cyclopropane (cy); summed feature 3 (SF3) indicates fatty acids are 16:1 w6c or 16:1 w7c

^bTotal is the sum % of the fatty acid values >5%

4. Discussion

The 33 bacterial strains belonged to 18 genera comprising Gram-negative and Gram-positive strains. The majority of the isolates tested were Gram-negative since these have been determined as dominant bacteria in spoiling raw seafood (Himelbloom *et al.*, 1991; Himelbloom *et al.*, 1994; Gram and Huss, 2000). Overall, 57% of the KSCC isolates and 75% of the ATCC strains were identified correctly to species in all replications with a SI>0.5 and a SI range<0.1 of the first rank in the MIS list. Isolates belonging to Enterobacteriaceae and *Pseudomonas* species formed the remainder of the KSCC isolates. Gram-positive organisms had a high percentage of branched chain fatty acids (64–96%) with one exception. Gram-negative, oxidase-negative isolates were composed of 38–69% of saturated fatty acids and 19–50% of unsaturated fatty acids. Hydroxyl fatty acids were present in all Gram-negative, oxidase-positive isolates with only one exception, the branched chain fatty acids varied considerably (<1–74%).

Pseudomonas species misidentification at the first rank may be attributed to the closeness in the fatty acid profiles of *P. fluorescens* and *P. putida* to form a tight taxonomic cluster (Osterhout *et al.*, 1991; Moss and Dees, 1976; Oyaizu and Komagata, 1983; Vancanneyt *et al.*, 1996). Variation in fatty acid and subsequent identification between the replicates can be due to harvesting cells from the stationary phase along with the log phase of the culture (Osterhout *et al.*, 1991). Contrary to our findings, cellular fatty acid analysis effectively distinguishes clinical specimen strains of *P. fluorescens* and *P. putida* (Hsueh *et al.*, 1998). *Pseudomonas* strains analyzed in the present study were isolated from the psychrotrophic environment and may have changed in fatty acids by psychrotrophs from the same genus can be variable and strain-dependent (Gill, 1975; Herbert, 1981). The identity of the KSCC isolates belong in the *P. fluorescens-P. putida* complex designated by MIDI (Osterhout *et al.*, 1991) but the reproducibility of bacterial identification is strain-dependent.

The MIS reduced the microbial analysis time to ~1 h after a 24 h pure culture of isolates compared to classical techniques requiring several days. The system correctly identified the ATCC strains with higher SI compared to the KSCC strains (Table 1 and 2). These observations concur with those that show bacterial identifications using MIS are genus- or species-specific (Osterhout et al., 1991; Birnbaum et al., 1994; Steele et al., 1997; Odumeru et al., 1999). Challenges in the identification of certain isolates or low SI during repeated analysis can be attributed to: (1) difficulty in ascertaining the growth phase of the bacterial isolates. The MIDI protocol states that a bacterial mass of 40 mg should be collected from the 3rd quadrant which corresponds to the late log-phase. This phenomenon might not be always true since different organisms have different growth rates. Hence, the cells harvested from 3rd quadrant can belong to a different growth phase resulting in altered fatty acid profiles (Kaneda, 1991); (2) pinpoint colonies. For S. epidermidis ATCC 14990, it was observed that the required weight of 40 mg could not be procured from one plate and hence cells were collected from seven different plates. This resulted in the differences in percentages of iso 13:0, 14:0, 16:0, lower 20:0, and absence of 19:0 and anteiso 19:0, as compared to the RTSB50 entry and ultimately lower SI; (3) inclusion or omission of minor fatty acids. Replicate analysis of S. xylosus indicated a presence of minor fatty acids iso 17:1 $\omega 10cis$ (<1%) and anteiso 19:0 led to its identification as S. gallinarum; (4) increase or decrease in percentages of certain fatty acids. Deviation in the fatty acids such as cyclopropane fatty acid, SF3, and 18:1 ω 7*cis* lead to either low SI as in case of Pseudomonas fluorescens (KSCC strains) or change in ID as for Enterobacter cloacae 12E5. Comparison charts should be used to understand the variations in replicate analysis and to

increase the number of replications for specific bacterial isolates. Correct identification for some bacteria was not listed within the top ranked candidates and indicated that prior knowledge of the bacteria source is crucial to help eliminate misidentifications.

Therefore, the MIS must include accurate fatty acid profiles for targeting unique non-clinical bacteria by using well-identified, laboratory-isolated strains and the ATCC or other national repository strains. Library entries could be created prior to utilizing the MIS as a rapid screening method or for complementary identification. There exists a need to develop a customized database of cell membrane fatty acid profiles of spoilage bacteria isolated from cold-water fishery products. Then, the MIS may become a rapid method for identifying these bacteria in seafood and for tracking the microflora changes occurring during chilled storage.

Acknowledgements

This project was funded through USDA-CSREES grant #2004-34404-15017; an Alaska Sea Grant with funds from the National Oceanic and Atmospheric Administration Office of Sea Grant, Department of Commerce, under grant no. NA06OAR4170013 (project no. E/142-01); and from the University of Alaska Fairbanks, with funds appropriated by the State.

References

Bertone, S., Giacomini, M., Ruggiero, C., Piccarolo, C., & Calegari, L. (1996). Automated Systems for Identification of Heterotrophic Marine Bacteria on the Basis of Their Fatty Acid Composition. *Applied and Environmental Microbiology*. *62*, 2122-2132.

Birnbaum, D., Herwaldt, L., Low, D. E., Moble, M., Pfaller, M., Sherertz, R., & Chow, A. W. (1994). Efficacy of Microbial Identification System for Epidemiologic Typing of Coagulase-Negative Staphylococci. *Journal of Clinical Microbiology*. *32*, 2113-2119.

Brown, B. J. & Leff, L. G. (1996). Comparison of Fatty Acid Methyl Ester Analysis with the Use of API 20E and NFT Strips for Identification of Aquatic Bacteria, *Applied and Environmental Microbiology*, 62, 2183-2185.

Gill, C. O. (1975). Effect of Growth Temperature on the Lipids of *Pseudomonas fluorescens*, *Journal of General Microbiology*, *89*, 293-298. http://dx.doi.org/10.1099/00221287-89-2-293

Gram, L. & Huss, H. H. (2000). Fresh and processed fish and shellfish. In B. M. Lund, A. C. Baird-Parker, & G. W. Gould (Eds.), *The microbiological safety and quality of foods, Volume 1* (pp. 472-506). London: Chapman & Hall.

Harrigan, W. F. (1998). Laboratory methods in food microbiology. San Diego: Academic Press.

Herbert, R. A. (1981). A comparative study of the physiology of psychrotrophic and psychrophilic bacteria. In T. A. Roberts, G. Hobbs, J. H. B. Christian, & N. Skovgaard (Eds.), *Psychrotrophic microorganisms in spoilage and pathogenicity* (pp. 3-16). New York: Academic Press.

Himelbloom, B. H., Brown, E. K., & Lee, J. S. (1991). Microorganisms on Commercially Processed Alaskan Finfish. *Journal of Food Science*, 56, 1279-1281. http://dx.doi.org/10.1111/j.1365-2621.1991.tb04752.x

Himelbloom, B. H., Crapo, C., Brown, E. K., Babbitt, J., & Reppond, K. (1994). Pink Salmon (*Oncorhynchus gorbuscha*) Quality During Ice and Chilled Water Storage. *Journal of Food Quality*, *17*, 197-210. http://dx.doi.org/10.1111/j.1745-4557.1994.tb00143.x

Himelbloom, B. H., Oliveira, A. C. M., & Shetty, T. S. (2011). Rapid methods for the identification of seafood microorganisms. In C. Alasalvar, F. Shahidi, K. Miyashita, & U. Wanasundara (Eds.), *Handbook of seafood quality, safety, and health applications*, (pp. 226-236). Oxford: Blackwell Publishing, Ltd.

Hinton Jr., A., Cason, J. A., Ingram, K. D. (2004). Tracking Spoilage Bacteria in Commercial Poultry Processing and Refrigerated Storage of Poultry Carcasses. *International Journal of Food Microbiology*. *91*, 155-165. http://dx.doi.org/10.1016/S0168-1605(03)00377-5

Hoffmann, M., Fischer, M., & Whittaker, P. (2010). Evaluating the Use of Fatty Acid Profiles to Identify Deep-Sea *Vibrio* Isolates. *Food Chemistry*. *122*, 943-950. http://dx.doi.org/10.1016/j.foodchem.2010.04.015

Hsueh, P-R., Teng, L-J., Pan, H-J., Chen, Y-C., Sun, C-C., Ho, S-W., & Luh, K-T. (1998). Outbreak of *Pseudomonas fluorescens* Bacteremia Among Oncology Patients. *Journal of Clinical Microbiology*. *36*, 2914-2917.

Kaneda, T. (1991). *Iso-* and *anteiso-*Fatty Acids in Bacteria: Biosynthesis, Function, and Taxonomic Significance. *Microbiological Reviews*. 55, 288-302.

Komagata, K. & Suzuki, K-I. (1987). Lipid and Cell-Wall Analysis in Bacterial Systematics. *Methods in Microbiology*. *19*, 161-203. http://dx.doi.org/10.1016/S0580-9517(08)70410-0

Kovacs, N. (1956). Identification of *Pseudomonas pyocyanea* by the Oxidase Reaction. *Nature*. *178*, 703. http://dx.doi.org/10.1038/178703a0

Kunitsky, C., Osterhout, G., & Sasser, M. (2005). Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock® Microbial Identification System. In M. J. Miller (Ed.), *Encyclopedia of Rapid Microbiological Methods, Vol. 3* (pp. 1-17). River Grove: Davis Healthcare International Publishing, LLC.

Miller, J. M. (1991). Evaluating Biochemical Identification Systems. *Journal of Clinical Microbiology*. 29, 1559-1561.

Morita, R. Y. (1975). Psychrophilic Bacteria. Bacteriological Reviews. 39, 144-167.

Moss, C. W. & Dees, S. B. (1976). Cellular Fatty Acids and Metabolic Products of *Pseudomonas* Species Obtained from Clinical Specimens. *Journal of Clinical Microbiology*. *4*, 492-502.

Nedoluha, P. C. & Westhoff, D. (1995). Microbiological Analysis of Striped Bass (*Morone saxatilis*) Grown in Flow-Through Tanks. *Journal of Food Protection*. 58, 1363-1368.

Neyts, K., Huys, G., Uyttendaele, M., Swings, J., & Debevere, J. (2000). Incidence and Identification of Mesophilic *Aeromonas* spp. from Retail Foods. *Letters in Applied Microbiology*. *31*, 359-363. http://dx.doi.org/10.1046/j.1472-765x.2000.00828.x

Odumeru, J. A., Steele, M., Fruhner, L., Larkin, C., Jiang, J., Mann, E., & McNab, W.B. (1999). Evaluation of Accuracy and Repeatability of Identification of Food-Borne Pathogens by Automated Bacterial Identification System. *Journal of Clinical Microbiology*. *37*, 944-949.

O'Hara, C. M. (2005). Manual and Automated Instrumentation for Identification of Enterobacteriaceae and Other Aerobic Gram-Negative Bacilli. *Clinical Microbiology Reviews*. 18, 147-162. http://dx.doi.org/10.1128/CMR.18.1.147-162.2005

Osterhout, G. J., Shull, V. H., & Dick, J. D. (1991). Identification of Clinical Isolates of

Gram-Negative Nonfermentative Bacteria by an Automated Cellular Fatty Acid Identification System. *Journal of Clinical Microbiology*. 29, 1822-1830.

Oyaizu, H. & Komagata, K. (1983). Grouping of *Pseudomonas* Species on the Basis of Cellular Fatty Acid Composition and the Quinone System with Special Reference to the Existence of 3-Hydroxyl Fatty Acids. *Journal of General and Applied Microbiology*. 29, 17-40. http://dx.doi.org/10.2323/jgam.29.17

Paisley, R. (2004). *Training manual MIS whole cell fatty acid analysis by gas chromatography*. Newark: MIDI, Inc.

Powers, E. M. (1995). Efficiency of the Ryu Nonstaining KOH Technique for Rapidly Determining Gram reactions of Food-Borne and Water-Borne Bacteria and Yeasts. *Applied and Environmental Microbiology*. *61*, 3756-3758.

Steele, M., McNab, W. B., Poppe, R. E., Harris, L., Lammerding, A.M., & Odumeru, J.A. (1997). Analysis of Whole-Cell Fatty Acid Profiles of Verotoxigenic *Escherichia coli* and *Salmonella enteritidis* with the Microbial Identification System. *Applied and Environmental Microbiology*. 63, 757-760.

Suutari, M. & Laakso, S. (1994). Microbial Fatty Acids and Thermal Adaptation. *Critical Reviews in Microbiology*. 20(4), 285-328. http://dx.doi.org/10.3109/10408419409113560

Thornabene, T. G. (1985). Lipid Analysis and the Relationship to Chemotaxonomy. *Methods in Microbiology*. *19*, 209-234. http://dx.doi.org/10.1016/S0580-9517(08)70476-8

Vancanneyt, M., Witt, S., Abraham, W. R., Kresters, K., & Fredrickson, H. L. (1996). Fatty Acid Content in Whole-Cell Hydrolysates and Phospholipid Fractions of Pseudomonads: a Taxonomic Evaluation. *Systematic and Applied Microbiology*. *19*, 528-540. http://dx.doi.org/10.1016/S0723-2020(96)80025-7

Welch, D. F. (1991). Application of Cellular Fatty Acid Analysis. *Clinical Microbiology Reviews*. 4, 422-438.

Zachariah, P. & Liston, J. (1973). Temperature Adaptability of Psychrotrophic *Pseudomonas*. *Applied Microbiology*. 26, 437-438.

Zhang, D-C., Yu, Y., Xin, Y-H., Liu, H-C., Zhou, P-J., & Zhou, Y-G. (2008). *Colwellia polaris* sp. nov., a Psychrotolerant Bacterium Isolated from Arctic Sea Ice. *International Journal of Systematic and Evolutionary Microbiology*. 58, 1931-1934. http://dx.doi.org/10.1099/ijs.0.65596-0

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).