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Abstract 

RNA interference (RNAi) high-content screening (HCS) enables massive parallel gene 
silencing and is increasingly being used to reveal novel connections between genes and 
disease-relevant phenotypes. The application of genome-scale RNAi relies on the 
development of high quality HCS assays. The Z’ factor statistic provides a way to evaluate 
whether or not screening run conditions (reagents, protocols, instrumentation, kinetics, and 
other conditions not directly related to the test compounds) are optimized. Z’ factor, 
introduced by Zhang et al., is a dimensionless value that represents both the variability and 
the dynamic range between two sets of sample control data. This paper describe a new 
extension of the Z' factor, which integrates multiple readouts for screening quality assessment. 
Currently presented multivariate Z’ factor is based on linear projection, which may not be 
suitable for data with nonlinear structure. This paper proposes an algorithm which extends 
existing algorithm to deal with nonlinear data by using the sequence kernel function. Using 
sequence kernel methods for projections, multiple readouts are condensed to a single 
parameter, based on which the screening run quality is monitored. The method is based on 
Sequence Alignment Kernel, a function reflecting the quantitative measure of match between 
two sequences. 
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1. Introduction 

Recently, RNA interference (RNAi), a natural mechanism for gene silencing (A. Fire, 1998; 
G.J. Hannon, 2003), has made its way as a widely used method in molecular biology in both 
academics and industry. Academic researchers have used RNAi to elucidate gene functions 
through studying a loss-of-function phenotype. Pharmaceutical and biotech companies have 
set up libraries for large-scale screens employing thousands of short-interfering RNA- 
(siRNA) or short hairpin RNA- (shRNA) encoding vectors to identify new factors involved in 
the molecular pathways of diseases (J. Kurreck, 2005). RNAi may lead to advances not only 
in drug target identifcation and validation but also in the development of a potential whole 
new class of RNAi-based therapeutic agents (N. Mahanthappa, 2005). The first clinical trials 
based on RNAi were initiated to treat patients with age-related macular degeneration (J. 
Whelan, 2005). RNAi has even been seen as the third class of drug targets after small 
molecules and proteins (Nature News, 2006). Based on siRNA or shRNA libraries, RNAi 
HCS enables massive parallel gene silencing to reveal the extent to which interference with 
the expression of specific genes alters the cell phenotype, and it is increasingly being used to 
reveal novel connections between genes and disease-relevant phenotypes (P. Zuck, 2004; J.P. 
MacKeigan, 2005; K. Nybakken, 2005; L. Pelkmans, 2005). 

Zhang et al. (1999) explored statistical methods for hit selection in RNAi HCS experiments. 
The application of genome-scale RNAi relies on the development of high-quality RNAi HCS 
assays. However, despite a strong need for a theoretically based and easily interpretable 
quality control (QC) metric in RNAi HCS assays, such a QC metric has yet to be developed. 
An important QC characteristic in an HCS assay is how much the positive control, tested 
compounds, and negative controls differ from one another in the assay. This QC characteristic 
can be evaluated using the comparison of two well types in HCS assays. Signal-to-noise ratio 
(S/N), signal-to-background ratio (S/B), and Z’ factor have been adopted to evaluate the 
quality of HCS assays through the comparison of two investigated types of wells. However, 
S/B does not take into account any information on variability; and S/N can capture the 
variability only in one group and hence cannot assess the quality of assay when the two 
groups have different variabilities. Zhang et al. (1999) proposed a screening window 
coefficient called “Z’ factor.” The advantage of Z factor over S/N and S/B is that it takes into 
account the variabilities in both compared groups.  

High-content screening (HCS) can provide information-rich data sets containing readouts on 
multiple cellular parameters, such as the number of cells, their shape, and even the 
intracellular distribution of cellular proteins. To monitor the sustained quality of screening 
assays, a “classical” Z' factor as used in screening assays with only a single readout is usually 
calculated using a preselected image readout (e.g., the intensity of a certain fluorescent stain).  
At present, there is multivariate Z’ factor (A. Kümmel, 2009) to monitor assay quality based 
on multiple readouts simultaneously. Such a method enables the assessment of the image 
readouts’ suitability to monitor relevant biological effects.  

Here, we illustrate the shortcomings of a univariate approach in comparison to a truly 
multivariate quality assessment of an HCS assay. For the multivariate analysis, we propose a 
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multivariate Z' factor as a means to monitor assay quality in HCS data sets. Currently 
presented multivariate Z’ factor is based on linear projection, which may not be optimal for 
data with nonlinear structure. This paper proposes an algorithm which extends existing Z’ 
factor algorithm to deal with nonlinear data by using the kernel function. Although 
multivariate Z’ factor works well for linear problems, it may be less effective when severe 
nonlinearity is involved. To deal with such a limitation, nonlinear extensions through 
sequence kernel functions have been proposed. The main idea of sequence kernel-based 
methods is to map the input data to a feature space through a nonlinear mapping, where the 
inner products in the feature space can be computed by a kernel function without knowing the 
nonlinear mapping explicitly (B. Schoekopf, 2002). 

2. Methods 

2.1 Z’ Factor 

Z’ Factor experiments are performed on one or more assay plates containing replicate wells 
designated for background subtraction, negative control samples, and positive control 
samples. Typically, negative control wells are those in which the cells receive an the 
appropriate treatment so as to elicit the lowest desired percent response (usually untreated 
cells); positive control wells are those in which the cells receive an appropriate treatment so 
as to elicit the maximum desired percent response; background wells are treated the same as 
the negative control wells, except primary antibody incubation is excluded. 

Z’ factor is proposed to measure the separation between “tested compound” wells and 
“negative control” wells or between “positive control” wells and “negative control” wells. 
Let Z’ denote Z’ factor. Z’ factor is defined as (J.H. Zhang, 1999). 

21

21 )(31'
μμ
σσ

−
+

−=Z             (1) 

 

σ1 = Standard deviation of positive controls 

σ2 = Standard deviation of negative controls 

μ1 = Mean of positive controls 

μ2 = Mean of negative controls 

Zhang et al. (1999) further use Z’ factor to refer to the parameter between tested compound 
wells and negative control wells and Z′ factor to refer to the parameter between positive 
control wells and negative control wells (Fig.1, 2) .  Z’ = 1 Indicates an ideal assay. As 
standard deviations become very small or the difference between signals for positive and 
negative controls approaches infinity, Z’ factor approaches 1. 1 > Z’ ≥ 0.5 Indicates a high 
quality assay exhibiting a wide separation between signal and background, and low data 
variability. 0.5 > Z’ > 0 Indicates a poor quality assay with marginal distinction between 
signal and background, and higher data variability. Z’ ≤ 0 Indicates unreliable data. Assay 
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conditions are not optimized or the assay is not capable of generating meaningful data. Z’ = 
-1 There is no distinguishable difference between background signal and sample signal.  

 

Figure 1. Illustration of data variability band for positive and negative and separation window 

 

 

Figure 2. Quality measurement of two assays. Assay 1: C1 mean 50, C2 mean 10 S/B = 5, 
S/N = 13, Z’ = 0.5. Assay 2: C1 mean 112, C2 mean 10 S/B = 11, S/N = 39, Z’ = 0.0 

2.2 Linear Projection 

For the multivariate analysis, a multivariate Z' factor has been proposed [11] as a means to 
monitor assay quality in HCS data sets.  For multivariate Z' factor linearly project data 
points from multidimensional space onto a line has been used. The values derived from these 
projections were then used to calculate a multivariate Z' factor. The projected value of a data 
point, Pn, is calculated by a weighted sum of the original data values, xnj, for all parameters j 
(with D as the number of assay parameters). Analog to the original calculation, the Z' factor 
was determined based on the means and standard deviations of the projected values, P, for 
each group (positive and negative). 

∑∑ =⋅=
=

D

j
jnjn xwP

1
over all paramters         (2) 

(projection weight of parameter j, x value for parameter j of data point i) 
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μ1  - mean (P1) with P1 ={Pn|n∈positive controls} 

μ2  - mean (P2) with P2 ={P2|n∈negative controls} 

σP1 = Standard deviation P1 

σP2 = Standard deviation P2 

The projection weights, wj, is calculated by linear discriminant analysis (LDA) as it turned 
out to robustly yield the highest possible Z' factors and is a widely used method for 
projection.  

2.3 Kernel methods for multivariate Z’ factor 

Multivariate Z’ factor based on linear projection, may not be optimal for data with nonlinear 
structure. LDA-based algorithms take the class structure into account and focus on the most 
discriminant feature extraction. The performance of LDA, however, is often degraded by the 
fact that its separability criterion is not directly related to the classification accuracy in the 
transformed space. Instead, the LDA optimization is based on the assumption that the 
intraclass distributions are all Gaussian with a common variance. In other words, the LDA 
assumes, aside  

from the linearity of the subspace, a linear separation between classes in the low-dimensional 
space. (There are many generalizations of the LDA optimization principle but they all impose 
parametric models on the within-class distributions). The kernel trick can be utilized to form 
classification algorithms that are based on nonlinear subspaces (Fig. 3). The basic 
methodology is to (implicitly) apply a nonlinear mapping on the input image processing 
parameters and then apply linear methods on the resulting feature space.  But, due to its 
limitation of linearity, LDA fails to perform well for nonlinear problems. 

 
Figure 3. Kernel Projection in compare to LDA Projection finds a linear transformation of 
predictor variables which provides a more accurate discrimination (right). LDA find the 

direction to project data on so that – between class variance is maximized and – within class 
variance is minimized 
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So the question is, how do we utilize the label information in finding informative projections? 
Fisher-LDA Objective is to find the vector w to maximize J(w): 

wSw
wSwwJ

W
T

B
T

=)(              (3) 

where SB is the “between positive and negative control scatter matrix”, SW is the “within 
controls scatter matrix” and wT is a vector transpose. Note that due to the fact that scatter 
matrices are proportional to the covariance matrices we could have defined J using 
covariance matrices – the proportionality constant would have no effect on the solution. The 
definitions of the scatter matrices are: 
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SW=S1+S2         (6)  
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∈i (positive control, negative control) 

Where N is a total number of compounds, N1 is the number of compounds as positive 
controls and N2 is the number of negative controls. The solution of this optimization problem 
is written as: 

)( 21
1 μμ −= −

WSw            (8)  

In order to solve equation 8, we need to know μ1, μ2, and Sw. The class‐mean vectors (μ1 and 
μ2) and the within‐class variance matrix (Sw) can be obtained if a decision boundary vector 
(equivalently, a threshold value in this article) is known. In other words, we need to know a 
decision boundary for the purpose of obtaining a decision boundary. To address this issue, we 
simply chose a single threshold value to obtain two classes and then computed μ1, μ2, and Sw. 

In many practical cases linear discriminants are not suitable. Fisher LDA discriminant can be 
extended for use in non-linear classification via the kernel methods. In Kernel methods, the 
original observations are effectively mapped into a higher dimensional non-linear space. For 

a given nonlinear mappingφ , the input data space X can be mapped into the feature space H: 

).(:: xxxwhereHX φφ →→                   (9) 
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Linear classification in this non-linear space is then equivalent to non-linear classification in 
the original space. Require Fisher LDA can be rewritten in terms of dot product. 

)()(),( jiji xxxxK φφ •=         (10) 

Unlike Support Vector Machine (SVM) it doesn’t seem the dual problem reveal the 
kernelized problem naturally. But inspired by the SVM case we make the following key 
assumption, 
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In terms of new vektor α the objective J (α ) becomes, 
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Correspondingly, a pattern in the original input space Rn is mapped into a potentially much 
higher dimensional feature vector in the feature space H. The scatter matrices in kernel space 
can expressed in terms of the kernel only as follows: 
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In this paper we make use of Sequence Alignment Kernel (Watkins, 2000; Surkov et al., 2001) 
to define the measure of similarity between two oligo sequences. Our method is based on 
building the kernel function K(si, sj) as a quantitative measure of similarity between two 
target gene mRNA of observer siRNA sequences R and Q.  Suppose we are given a matrix 
Swap(a, b) which defines the score corresponding to a single point mutation of letter a into 
letter b or vice versa (the matrix is symmetric). We are also given a vector Gap(a) which 
defines the score corresponding to a single point deletion or insertion of letter a. One of the 
schemes for simultaneous generation of two sequences over a given alphabet was proposed 
by Watkins (2000). The generative model may emit either two letters (one into each 
sequence), only one letter into the first sequence (which corresponds to a gap into the second 
one), or only one letter into the second sequence (which corresponds to a gap into the first 
one). The model is completely defined by the probabilities for each pair it may emit. For any 
two nonempty sequences there are several ways (or paths) to generate them using this model. 
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For every such path the corresponding probability is the product of probabilities along the 
path. The total probability P(a, b) that the sequences a and b will be generated by the model 
is the sum of probabilities of all the paths that lead to generating the given pair. Watkins 
(2000) has proven that the function P(a, b) is symmetric and positively definite, and so may 
be used as a kernel for kernel-based algorithms.  

 
Figure 4. Version of sequence alignment kernel 

Suppose we are given two sequences to align, Q = ‘ACCT ’ and R = ‘ACGT C’. Let us write 
them along the two dimensions of an empty matrix (Fig. 4). In each cell pi,j of the matrix we 
will be keeping the probability that Q1…j aligns with R1…i . It is convenient to start the 
calculations from the bottom left corner, which is initialized with the value of 1. Then, we fill 
all the other cells using the recursive formula: 

p0,0 = 1, pi,0 = p0,j = 0, for i > 0 and j > 0,  
pi,j ← (Swap(Ri ,Qj ) · pi−1,j−1) + (Gap(Qj ) · pi,j−1) + (Gap(Ri ) · pi−1,j)  (17) 

 

where the Swap(a, b) matrix and the Gap(a) vector of probabilities are given as parameters to 
the algorithm. The kernel value we are looking for is the probability 

 K = p|R|,|Q|         (18) 

in the top right corner of the matrix. Note, that to calculate values on any ‘backslash’ 
diagonals of the p matrix (i + j = D) we only need to know the values on the two preceding 
diagonals: i + j = D − 1 and i + j = D − 2. 

So, we have managed to express the problem in terms of kernels only which is what we were 
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after (Fig. 4). Note that since the objective in terms of α has exactly the same form as that in 

terms of w, we can solve it by solving the generalized eigenvalue equation. This scales as N3 
which is certainly expensive for many datasets. More efficient optimization schemes solving 
a slightly different problem and based on efficient quadratic programs exist in the literature. 
Projections of new test-points into the solution space can be computed by, 

∑
∈

=
controlsij

jiij
T xxKxw ),()( αφ             (19) 

In order to classify the test point we still need to divide the space into regions which belong 
to one class. Alternatively, one could train any classifier in the 1-d subspace. 

 

 

Figure 5. Z' factors based on separate parameters and a kernelized projection 

3. Results 

A good quality control (QC) metric should work in a variety of experiments. Thus in this 
paper we concentrate on plates extracted from different RNAi HCS experiments, which may 
have different data ranges and different numbers of positive and negative control wells, so 
that we can see the impact of sample size and data range on the QC metrics.  
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Table 1. Z' Factors for the Biogenesis Screen 

 
Z' Factor, Multivariate Z’ factor, Kernel Z’ factor for Biogenesis Screen 

Methods Z' – Factor Multivariate Z’ 
factor 

SeqKernel Z’ 
factor 

Number of cells 0.694 x X 
Intensity nuclei 0.583 x X 
Biogenesis screen 
(27 parameters) x 0.756 0.820 

Biogenesis screen 
(15 parameters) x 0.546 0.722 

Biogenesis screen 
(7 parameters) x 0.681 0.652 

For the purpose of validating the new assay quality method and showing its usability in actual 
research projects it has been applied to experimental data from biogenesis High Content 
Screening. The biogenesis project is dealing with ribosomes, which are macromolecular 
complexes used to synthesize proteins. Ribosomes are divided into a small and a large 
subunit, both consisting of ribosomal proteins and ribosomal RNA (rRNA). In eukaryotes, the 
biogenesis of these subunits is a complex multistep process including the assembly of 
different component to the subunits in the nucleolus, the export of these precursors in the 
cytoplasm, and the final maturation and fusion of both subunits to a functional complex. In 
this project the biogenesis of the small ribosomal subunit (40S subunit) is studied in human 
cells by performing a genome-wide siRNA screen detecting 2 classes positive/negative using 
image processing. Follow results has been provided from experiment: 27 image features, 500 
cells per well, 3 channels, 4 oligonucleotides, Total number of observations (records,-rows) = 
108324. Image processing parameters: 1:green mean intensity nuclei, 2: green std intensity 
nuclei, 3: green mean intensity cytoplasm, 4: green std intensity cytoplasm , 5: green mean 
intensity cells,  6: green std intensity cells, 7: blue mean intensity nuclei, 8: blue std 
intensity nuclei, 9: blue mean intensity cytoplasm, 10: blue std intensity cytoplasm, 11:  blue 
mean intensity cells, 12: blue std intensity cells,  13-27: nuclei texture green. The use of a 
specific assay enables the visual detection of nuclear 40S maturation defects upon depletion 
of a protein by RNAi. In total, 17 632 genes and 5 318 predicted genes are targeted by four 
different oligos.  

Average Z’-score values for this screen are represented in Table 1 and calculation of single 
sample (multiwall plates) on Figure 6.  The kernel Z’ factor was much higher than the best 
Z' factor (i.e., 0.65 for “Cell number parameter”; Table 1), demonstrating the superiority of a 
kernel based multiparametric analysis to discriminate between controls. The bottom of Fig. 5 
shows the data from plates 1–16 of genome wide biogenesis experiment. The data have the 
following notable features. The numbers of control wells at each plate differed in each of the 
three experiments: 16 positive control wells and 16 negative control wells in Experiment. The 
measured number of cells in −log2 scale were roughly symmetric with a few outliers 
Plate003, Plate 005, Plate 0014). The ability to discriminate between positive and negative 
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controls in the cell cycle data set was assessed with the Z' factor based on an Kernel 
projection. Plate 005 had small distance between positive and negative control for cell 
number parameter. Respectively Z’ factor for cell number was very weak for this plate. 
Nevertheless, considering all 37 parameters kernel Z’ factor gave significant score with good 
quality value.  

 

 

Figure 6. Data from positive (green dots)  and negative (red dots) controls (shown at the 
bottom) and the estimated values of kernel Z factor (shown at the top) for 16 plates from 
biogenesis screen  At the bottom, a red (or green) point represents the measured intensity of 
a positive (or negative) control well in a plate. At the top, small squares represent the 
seqkernel z’ factor. A black circle represents the estimated (or robust) value of Z’ factor in a 
plate. 

4. Discussion 

To obtain high-quality HCS assays, there is a strong need for a generally acceptable QC 
metric that can be applied to various HCS assays conducted in different labs and/or at various 
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times. There is a general limitation to the traditional Z’factor algorithm where it will fail to 
measure HCS assay quality. This occurs when we consider only one parametric analysis. For 
an unbiased hit selection, other data-mining approaches that do not rely on predefined sample 
classes as positive controls should be used to fully exploit the multidimensional 
response/parameter space. In these cases, the Kernel based projection can still be used in 
assay development for studying assay robustness and for exploring the effect of positive 
controls via the projection weights. The Z' factor obviously only reflects (1) whether the 
selected positive controls can be discriminated from negative control and (2) based on which 
effect(s) they are discriminated. This metric should have a solid theoretical basis and clear 
probability meanings. The classical Z’ factor for testing quality based on single parameter 
cannot work well as a QC metric in RNAi HCS assays as demonstrated in this paper. The 
currently available multivariate Z’ factor have disadvantages for nonlinear data. In this paper, 
a sequence kernel Z’ factor is proposed for measuring the magnitude of difference between 
two groups providing better projection and is then investigated for evaluating the quality of 
RNAi HCS assays. Kernel methods such as SVM achieve state-of-the-art results, in the case 
of sequence kernel Z’ factor the performance improvement in assay quality tasks over linear 
methods was also found to be significant. Kernel based Z’ factor turns out to be more 
effective than LDA in various applications; however, the sequence kernel Z’ factor algorithms 
are not as simple and transparent as one parametric Z’ Factor. It is the complicated 
formalization of sequence kernel Z’ factor algorithms that covers the intuitive characteristics 
of kernel discriminant analysis. Possible extensions to the approach suggested here include 
using graph kernel method design for specific screening data. Furthermore, the kernel 
calculations are not limited to the Z' factor but can also be used to calculate any similarity 
between sequences. 
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