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Abstract 

Network Intrusion Detection Systems (NIDSs) have become an important component in 

network security infrastructure. Currently, many NIDSs are rule-based systems whose 

performances highly depend on their rule sets. Unfortunately, due to the huge volume of 

network traffic, coding the rules by security experts becomes difficult and time-consuming. 

Since data mining techniques can build network intrusion detection models adaptively, data 

mining-based NIDSs have significant advantages over rule-based NIDSs. Network and 

system security is of paramount importance in the present data communication environment. 

Hackers and intruders can create many successful attempts to cause the crash of the networks 

and web services by unauthorized intrusion. New threats and associated solutions to prevent 

these threats are emerging together with the secured system evolution. Network Intrusion 

Detection Systems are one of these solutions. The main function of NIDSs is to protect the 

resources from threats. It analyzes and predicts the behaviors of users, and then these 

behaviors will be considered an attack or a normal behavior. We use Random projection and 

Random Tree to detect network intrusions.   

Keywords: Data Mining, Network Intrusion Detection System, Random Decision Tree, 

Random Projection, Detection Rate, Confusion Matrix, False Alarm.  
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1. Introduction  

In recent years, Network Intrusion Detection System has become one of the hottest 

research areas in Computer Security. It is an important detection technology and is used as 

countermeasure to preserve data integrity and system availability during an intrusion. A 

network intrusion detection system monitors the activities of a given environment and 

decides whether these activities are malicious (intrusive) or legitimate (normal) based on 

system integrity, confidentiality and the availability of information resources. The network 

intrusion detection system collects information about the system being observed. This 

collected audit data is processed by the detector. The detector eliminates unnecessary 

information from the audit data and then makes a decision to evaluate the probability that 

these activities can be considered as a sign of an intrusion.  Network intrusion detections 

defined to be the process of monitoring the events occurring in a computer system or network 

and noticeably different from normal system activities and thus detectable. A network 

intrusion detection system (NIDS) is a program that analyzes what happened or what has 

happened during an execution and tries to find indications that the computer has been 

misused. An NIDS does not eliminate the use of preventive mechanism but it works as the 

last defensive mechanism in securing the system. In section 2 we give a brief introduction to 

network intrusion detection system. In section 3, give the related work. Section 4 explains the 

proposed work. In section 5, we perform the result analysis and finally in section 6 give the 

conclusion. 

 

2. Network Intrusion Detection System  

When an intruder attempts to break into an information system or performs an action not 

legally allowed, we refer to this activity as an intrusion [1, 2]. Intruders can be divided into 

two groups, external and internal. The former refers to those who do not have authorized 

access to the system and who attack by using various penetration techniques. The latter refers 

to those with access permission who wish to perform unauthorized activities. Intrusion 

techniques may include exploiting software bugs and system misconfigurations, password 

cracking, sniffing unsecured traffic, or exploiting the design flaw of specific protocols [1]. A 

Network intrusion detection System is a system for detecting intrusions and reporting them 

accurately to the proper authority. Network intrusion detection systems are usually specific to 

the operating system that they operate in and are an important tool in the overall 

implementation an organization’s information security policy [2], which reflects an 

organization's statement by defining the rules and practices to provide security, handle 

intrusions, and recover from damage caused by security breaches. There are two generally 

accepted categories of network intrusion detection techniques: misuse detection and anomaly 

detection. Misuse detection refers to techniques that characterize known methods to penetrate 

a system. These penetrations are characterized as a ‘pattern’ or a ‘signature’ that the NIDS 

look for. The pattern/signature might be a static string or a set sequence of actions. System 

responses are based on identified penetrations. Anomaly detection refers to techniques that 
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define and characterize normal or acceptable behaviors of the system (e.g., CPU usage, job 

execution time, system calls). Behaviors that deviate from the expected normal behavior are 

considered intrusions [3, 4]. NIDSs can also be divided into two groups depending on where 

they look for intrusive behavior: Network-based IDS (NIDS) and Host-based IDS. The 

former refers to systems that identify intrusions by monitoring traffic through network 

devices (e.g. Network Interface Card, NIC). NIDS are deployed on strategic point in network 

infrastructure. The NIDS can capture and analyze data to detect known attacks by comparing 

patterns or signatures of the database or detection of illegal activities by scanning traffic for 

anomalous activity. NIDS are also referred as “packet-sniffers”, because it captures the 

packets passing through the of communication mediums .A host-based IDS monitors file and 

process activities related to a software environment associated with a specific host. Some 

host-based IDSs also listen to network traffic to identify attacks against a host [3, 4]. One 

example is known as blocking NIDS, which combines a host based IDS with the ability to 

modify firewall rules [5]. 

 

3. Related Work 

Papadimitriou [6] use random projection in the preprocessing of textual data, prior to 

applying LSI. They present experimental results on an artificially generated set of documents. 

In their approach, the columns of the random projection matrix are assumed strictly 

orthogonal, but actually this need not be the case, as we shall see in our experiments. Kaski 

[7,8] has presented experimental results in using the random mapping in the context of the 

WEBSOM1 system. Kurimo [9] applies random projection to the indexing of audio 

documents, prior to using LSI and SOM. Kleinberg [10] and Indyk and Motwani [11] use 

random projections in nearest-neighbor search in a high dimensional Euclidean space, and 

also present theoretical insights. Dasgupta [12, 13] has used random projections in learning 

high-dimensional Gaussian mixture models. Other applications of random projection include 

e.g. [14,15].The problems of dimensionality reduction and similarity search have often been 

addressed in the information retrieval literature, and other approaches than random projection 

have been presented. Ostrovsky and Rabani [16] give a dimension reduction operation that is 

suitable for clustering. Agrawal et al. [17] map time series into frequency domain by the 

discrete Fourier transform and only retain the first few frequencies. Keogh and Pazzani [18] 

reduce the dimension of time series data by segmenting the time series into sections and 

indexing only the section means. Agarwal et al. [19] index market basket data by a specific 

signature table, which easens the similarity search. Wavelet transforms ([20, 21] etc.) are a 

common method of signal compression. 

 

4. Proposed Work 

A network based intrusion detection system monitor and analyze network traffics, and 

use multiple sensors for detecting intrusions from internal and external networks. Network 

intrusion detection system analyzes the information gathered by the sensors, and returns a 
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synthesis of the input of the sensors to system administrator or intrusion prevention system. 

System administrator carries out the prescriptions controlled by the intrusion detection 

system. In our proposed network intrusion detection system, two algorithm namely random 

project and random decision tree are used shown in figure 1. 

 

 Figure 1.  Proposed Network Intrusion Detection System 

In our network intrusion detection system, we are using two algorithm namely random 

project and random decision tree. Random projection used for dimension reduction and 

decision tree used for classifier of reduced data. The description of Random Projection and 

Random Decision Tree is given below. 

4.1 Random Projection 

In our network intrusion detection system we have used random projection for dataset 

reduction. For testing the NIDSs system we have used KDDCup99 dataset [22]. Initially in 

KDDCup99 dataset there is 41 attributes. When we apply the random project on KDDCup99 

dataset, it reduces 41 attributes into 10 attributes. 
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In random projection, the original d-dimensional data is projected to a k-dimensional   

(k << d) subspace through the origin, using a random K × d matrix R whose columns have 

unit lengths. Using matrix notation where is the original set of N d-dimensional observations, 

is the projection of the data onto a lower k-dimensional subspace. 

              NddK

RP

NK XRX  
                                      (1) 

The key idea of random mapping arises from the Johnson Linden Strauss lemma [23]: if 

points in a vector space are projected onto a randomly selected subspace of suitably high 

dimension, then the distances between the points are approximately preserved. For a simple 

proof of this result, see [24,25]. Random projection is computationally very simple: forming 

the random matrix R and projecting the d × N data matrix X into k dimensions is of order 

O(dkN), and if the data matrix X is sparse with about c nonzero entries per column, the 

complexity is of order O(ckN) [15]. Strictly speaking, (1) is not a projection because R is 

generally not orthogonal. A linear mapping such as (1) causes significant distortions in the 

data set if R is not orthogonal. Orthogonalizing R is unfortunately computation-ally 

expensive. Instead, we can rely on a result presented by Hecht-Nielsen [26]: in a 

high-dimensional space, there exists a much larger number of almost orthogonal than 

orthogonal directions. Thus vectors having random directions might be sufficiently close to 

orthogonal, and equivalently would approximate an identity matrix. In our experiments, the 

mean squared difference between and an identity matrix was about 1/k per element .When 

comparing the performance of random projection to that of other methods of dimensionality 

reduction, it is instructive to see how the similarity of two vectors is distorted in the 

dimensionality reduction. We measure the similarity of data vectors either as their Euclidean 

distance or as their inner product. In the case of image data, Euclidean distance is a widely 

used measure of similarity. Text documents, on the other hand, are generally compared 

according to the cosine of the angle between the document vectors; if document vectors are 

normalized to unit length, this corresponds to the inner product of the document vectors. We 

write the Euclidean distance between two data vectors 1X  and 2X   in the original 

large-dimensional space as|| 1X − 2X ||. After the random projection, this distance is 

approximated by the scaled Euclidean distance of these vectors in the reduced space: 

                     
||||/

21 XX RRKd 
                            (2) 

Where d is the original and k the reduced dimensionality of the data set. The scaling term 

Kd /  takes into account the decrease in the dimensionality of the data: according to the 

Johnson Linden Strauss lemma, the expected norm of a projection of a unit vector onto a 

random subspace through the origin is dK / [23].The choice of the random matrix R is one 

of the key points of interest. The elements   of Rare often Gaussian distributed, but this 
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need not be the case. Achlioptas [27] has recently shown that the Gaussian distribution can be 

re-placed by a much simpler distribution such as  
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3rij                      (3)  

In fact, practically all zero mean, unit variance distributions of   would give a mapping 

that still satisfies the Johnson-Lindenstrauss lemma. Achlioptas’ result means further 

computational savings in database applications, as the computations can be performed using 

integer arithmetics. In our experiments we shall use both Gaussian distributed random 

matrices and sparse matrices (3), and show that Achlioptas’ theoretical result indeed has 

practical significance. In con-text of the experimental results, we shall refer to RP when the 

projection matrix is Gaussian distributed and SRP when the matrix is sparse and distributed 

according to (3). Otherwise, the shorthand RP refers to any random projection. 

4.2 Random Decision Tree 

Random decision tree a supervised machine learning algorithm used to classify multiple 

dimension data efficiently. In our proposed NIDS random decision tree used for classification 

of reduced KDDCup99 dataset [22] that is output of random projection. Random decision 

tree classify KDDCup99 dataset into normal or attack. 

In most machine learning algorithms, the best approximation to the target function is 

assumed to be the “simplest” classifier that fits the given data, since more complex models 

tend to over fit the training data and generalize poorly. Ensemble methods such as Boosting 

and Bagging [9] combine multiple “base” classifiers to obtain new classifiers. It has been 

observed that ensemble methods can have significantly lower generalization error than any of 

the base classifiers on which they are based [28]. The base classifiers used in ensemble 

methods are usually “conventional” classifiers such as decision trees produced by C4.5, 

which are computationally expensive. The final step of combining these base classifiers can 

also be computationally intensive. However, Fan et al. [29] argue that neither of these steps 

(creating the classifiers and combining them) need be computationally burdensome to obtain 

classifiers with good performance. They present a fast and scalable ensemble method that 

performs better than the base classifiers, and frequently as well as the well-known ensemble 

classifiers. Counter intuitively, their ensemble classifier uses base classifiers that are created 

from randomly chosen decision trees, in which attributes for decision tree nodes are chosen at 

random instead of using a carefully defined criterion. The structure of the decision tree (that 

is, which attributes are in which internal nodes of the decision tree) is determined even before 

any data is examined. Data is then examined to modify and label the random tree. The end 

result based on creating an ensemble of random decision trees is an algorithm that scales well 

for large databases. The algorithm to build a single random decision tree is shown in Figure 1. 

The algorithm as presented works only for categorical attributes, though it can easily be 
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extended to continuous-valued attributes by choosing random thresholds for the chosen 

attribute. The algorithm recursively creates the structure of the tree (Build Tree Structure), 

and then updates the statistics (Update Statistics, Add Instance) at the leaves by “filtering” 

each training instance through the tree. Each leaf node of the tree holds T counters, α[1], . . . , 

α[T ], where T is the number of possible labels for training instances. After all the examples 

have been incorporated into the tree, the algorithm prunes away all internal and leaf nodes 

that did not encounter any of the examples in the training set. The running time of the 

algorithm is linear in the size of the database. The random decision tree classifier is an 

ensemble of such random decision trees. When a test instance needs to be classified, the 

posterior probability is output as the weighted sum of the probability outputs from the 

individual trees (see Figure 3). There are two important parameters to be chosen when using 

this ensemble method, namely (i) the height h of each random tree, and (ii) the number N of 

base classifiers.  

 

Algorithm Random Decision Tree (RDT) 

Input: D, the training set, and 

X, the set of attributes. 

Output: A random decision tree R 

R = Build Tree Structure(X) 

Update Statistics(R, D) 

Prune sub trees with zero counts 

Return R 

Subroutine Build Tree Structure(X) 

If X = Φ then 

Return a leaf node 

Else 

        Randomly choose an attribute F as testing attribute                                                                                                                                           

Create an internal node r with F as the attribute Assume F has m valid values. 

     For i = 1 to m do 

      ic  = Build Tree Structure(X − {F}) 

      Add ic  as a child of r 

 

 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2011, Vol. 3, No. 4 

www.macrothink.org/npa 100 

 

Figure 2. Random Decision Tree Algorithm 

Using Simple combinatorial reasoning, Fan et al. [29] suggest that a good choice for the 

height is h = m/2, where m denotes the number of attributes. They also find that a value for N 

as low as 10 gives good results. 

The advantage of creating a random tree is its training efficiency as well as its minimal 

memory requirements. The algorithm uses only one pass over the data to create a random 

decision tree. In a series of papers, Fan et al. [30], [31] show that the random decision tree 

algorithm is simple, efficient and accurate. They surmise that the reason for the superiority Of 

their ensemble method is that it optimally approximates for each example its true probability 

of being a member of a given class—that is, the random decision tree ensembles form 

efficient implementations of Bayes Optimal Classifiers. 

      End for 

End if 

Return r 

  

      Subroutine Update Statistics(r, D) 

For each x in D do 

          Add Instance(r, x) 

End for 

Subroutine Add Instance(r, x) 

       If r is not a leaf node then 

          Let F be the attribute in r 

          Let c represent the child of r that corresponds to the                                                               
value of F in x 

    Add Instance(c, x) 

     Else 

          /* r is a leaf node */ 

          Let t be the label of x 

          Let α[t] = # of t-labeled rows that reach r 

          α[t] ← α[t] + 1 

           End if 
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     Figure 3. Computing the probability for each possible label for a test instance. 

 

5. Experiment and Results 

For our experiments we are using of KDD CUP 99 dataset [22]. For our experiment we 

have selected 7473 instances randomly from KDD CUP 1999 dataset. 

Table 1. Description of input KDDCup99 dataset. 

Types of Attacks Number of Instances  

Normal 1091 

DoS 4633 

Prob2 1057 

U2R 93 

R2L 1057 

KDD CUP 1999 dataset contains 41 fields as an attributes and 42nd field as a label. The 

42nd field can be generalized as Normal, DoS, Probing, U2R, and R2L. The performances of 

each method are measured according to the Detection Rate and False Positive Rate using the 

following expressions: 

FPTP

TP
RateDetection


  

TNFP

FP
AlarmFalse


  

Where, FN is False Negative, TN is True Negative,TP is True Positive, and FP is False 

   Algorithm Classify 

    Input: { 1R . . . NR }, an ensemble of RDTs, and 

                         x, the row to be classified. 

    Output: Probabilities for all possible labels         

         For a tree iR  let i  be the leaf node reached by x 

         Let  ti  represent the count for label t in i  
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Positive 

The detection rate is the number of attacks detected by the system divided by the number 

of attacks in the data set. The false positive rate is the number of normal connections that are 

misclassified as attacks divided by the number of normal connections in the data set. 

Table 2. Correctly and incorrectly classified instance by RPRDT and naïve bayes. 

Instances Classification Type RPRDT Naïve Bayes 

Correctly Classified Instances 7197 ( 96.3067 % ) 4221 ( 56.4833 % ) 

Incorrectly Classified Instances 276 ( 3.6933 % ) 3252 (43.5167 % ) 

In our approach Random projection using Random Decision Tree, the Correctly 

Classified Instances 7197 ( 96.3067 % ) and Incorrectly Classified Instances is 276 

( 3.6933 %) which is much better and accurate in comparison to the Correctly Classified 

Instances 4221 ( 56.4833 % ) and Incorrectly Classified Instances is 3252 ( 43.5167%) in  

naïve bayes shown in table 2. 

 A “Confusion Matrix” is sometimes used to represent the result of , as shown in Table 3 

& Table 4 .The Advantage of using this matrix is that it not only tells us how many got 

misclassified but also what misclassifications occurred. For our model we get the following 

confusion matrix. Tables 3 showing the Result of Naïve Bayes classification [32] & Table 4 

showing the Result of Random Decision Tree Using Random Projection. 

Table 3. Confusion Matrix for Naïve Bayes. 

       Predicted Classes 

Actual Classes 
Dos U2R R2L Probe Normal 

Dos 2954 180 29 1286 184 

U2R 23 14 2 48 6 

R2L 96 14 40 442 7 

Probe 41 0 0 1016 0 

Normal 503 9 1 381 197 

Table 4. Confusion Matrix for Random Projection Using Random Decision Tree. 

       Predicted Classes 

Actual Classes 
Dos U2R R2L Probe Normal 

Dos 4614 2 2 5 10 

U2R 2 73 10 1 7 

R2L 6 6 498 4 85 

Probe 6 1 3 1045 2 
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       Predicted Classes 

Actual Classes 
Dos U2R R2L Probe Normal 

Normal 8 9 102 5 967 

In table 5 show our approach give much better detection rate and low false alarm as 

compare to naïve bayes classification. In each category our method perform better than naïve 

bayes classification.  

Table 5. Detection Rate and false alarm rate by Random Projection Using Random Decision Tree and Naïve 

Bayes. 

       Classification  

       Algorithm 

 

Attack Classes 

Random Projection via Random 

Decision Tree 
Naïve Bayes 

Detection Rate 
False Alarm 

Rate 
Detection Rate 

False Alarm 

Rate 

Dos 0.996 0.008 0.638 0.233 

U2R 0.785 0.002 0.151 0.028 

R2L 0.831 0.017 0.067 0.005 

Probing 0.989 0.002 0.961 0.336 

Normal 0.886 0.016 0.181 0.031 

Weight Avg. 0.963 0.009 0.565 0.198 

 

In Figure 4 shows our approach give much better detection rate as compare to Naïve 

Bayes classification. In each category our method performs better than naïve bayes 

classification. 
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Figure 4. Comparison of Detection Rate of Random Projection Via Random Decision Tree and Naïve Bayes. 
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In Figure 5 show our approach give low false alarm as compare to Naïve Bayes 

classification. In each category our method performs better than naïve bayes classification 

other than R2L.  
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Figure 5. Comparison of False Alarms of Random Projection Via Random Decision Tree and Naïve Bayes. 

 

6. Conclusion  

We have presented new and promising experimental results on random projection in 

dimensionality reduction of high dimensional real world data sets. When comparing different 

methods for dimensionality reduction, the criteria are the amount of distortion caused by the 

method and its computational complexity. Our results indicate that random projection 

preserves the similarities of the data vectors well even when the data is projected to moderate 

numbers of dimensions; the projection is yet fast to compute. We conclude that random 

projection is a good alternative to traditional, statistically optimal methods of dimensionality 

reduction that are computationally infeasible for high dimensional data. Random projection 

does not suffer from the curse of dimensionality, quite contrary to the traditional methods. 

The advantage of creating a random tree is its training efficiency as well as its minimal 

memory requirements. The algorithm uses only one pass over the data to create a random 

decision tree. 
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