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Abstract 

The received signal strength indicator (RSSI) and the link quality indicator (LQI) are the 
metrics that are commonly available in commercial off-the-shelf (COTS) sensor hardware. 
The former has been widely regarded as the main source for distance estimation and node 
localization. However, experimentally RSSI has been shown to behave in an inconsistent 
manner, even in ideal scenarios, and serve at best as bounds for distances. The latter is 
effectively a measure of chip error rate, and can be used to identify higher quality 
transmissions, and the combination RSSI/LQI can be expected to make more precise 
estimates with the tradeoff of increased delay and estimation cost. In this paper, we describe 
our distance estimation system that uses these two metrics and test our hypothesis purely 
through experimental measurements using sensor nodes. Results indicate that such a 
combination of metrics can be used to provide a tighter bound on the range of estimated 
distances. We then quantify the improvement in distance estimation by relying on these two 
metrics. Through a unique classification using fuzzy logic and TBM, we developed an 
algorithm that is capable of precise distance estimation within the range of 100cm to 400cm, 
on at least 80% of the times while reaching accuracy as high as 100%. 

Keywords: Indoor Distance Estimation, Link Quality Indicator (LQI), Received Signal 

Strength Indicator (RSSI), Transferable Belief Model (TBM), Wireless Sensor Networks 

(WSN).  
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1. Introduction  

The received signal strength indicator (RSSI) has largely been perceived by the wireless 

sensor network (WSN) community as an inadequate estimator and metric for determining 

link communication quality between any two neighboring nodes. In indoor radio 

communication, this problem is exacerbated by the known fact that the transmitted signal 

suffers from multipath fading due to reflection, refraction and scattering of radio waves by 

structures inside a building [1]. Performance of communication is therefore seriously 

degraded in indoor scenarios. Unfortunately, not much can be done to eliminate the problem, 

even when multipath medium is well characterized and nodes adequately model the channel 

to reduce the effect of these disturbances. Later experimental results showed that while 

detecting good links is possible with RSSI, link quality estimates with imperfect 

communication channels are not accurate [2]. 

But, besides being used for link quality assessment, RSSI has been suggested by the 

wireless network community to be used as a distance estimator and node localization 

mechanism [3–6]. Even though RSSI was not meant for this purpose, the idea of providing 

this information with no added cost to higher communication layers is very attractive. RSSI is 

a measure of dBm, which is 10 times the logarithm of the ratio of the received power (P) and 

the reference power (PREF). Power at the receiver is inversely proportional to the square of 

the distance. Therefore, this is a relatively straightforward conversion, and RSSI can be used 

as an indicator of distance. But, since RSSI is sensitive to the channel noise, interference, 

reflections and attenuations, it suffers from the antenna variability. Additional experiments 

have confirmed that RSSI can’t be completely relied on as an absolute metric [7]. 

For this reason, distance estimation and localization has been observed to be a very 

challenging problem [8, 9]. Since RSSI patterns are very complex, even the slightest 

movement significantly vary the received signal [10]. For example, for each given RSSI level 

there could be many, even distant locations in the room where the same value is received. 

This means that RSSI and the sender-announced power level does not necessarily reflect an 

unique theoretical value. Additional environmental factors such as temperature and humidity 

have been shown to interfere with RSSI readings as well [11]. So due to a strong non-linear 

characteristic of RSSI, any localization or distance estimation method that relies on 

previously measured RSSI fingerprint levels, may fail even for approaches that apply filters 

or signal processing [12–14]. Comprehensive studies of indoor RSSI have been conducted in 

[10, 15] where the authors show that the only way to improve the accuracy would be through 

a more complex model of the RSSI behavior. What has been generally accepted is that, while 

experimentally RSSI has been shown to behave in an inconsistent manner (even in ideal an 

scenario [16]), at best, it could be used as bounds for the distance [11]. 

All of the previous research results are not surprising, and are even somewhat intuitively 

anticipated. Basing such an important decision on a single value leads to limited accuracy and 

distorted predictions about future values. What practitioners have then tried to explore is the 

combination of RSSI with additional metrics. The link quality indicator (LQI), which is 

effectively a measure of chip error rate commonly available in COTS sensor hardware, has 
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been shown to be highly correlated with both RSSI [17] as well as with packet reception rate 

(except when operating at the edge of receiver sensitivity). Such a complementary 

combination shows that while RSSI can be an attractive agile link estimator, LQI can make 

more precise estimates with increased delay and estimation cost. 

Additional precision and positioning accuracy can be achieved by using other features 

besides LQI, such as both the short and long-term characteristics of the link quality, as well as 

information about dynamic variation and trends of the signal [17, 18]. For example, in [18], 

four distinct quality metrics are used. The tradeoff is complexity, since by adding metrics 

there is an increase in the calculation time. Some research has even been done to replace LQI 

altogether [19]. This, however, would require additional effort and complexity as well, as for 

this reason we do not consider it. The devices might also require the physical presence of 

additional components and interfaces. 

1.1 Related Work 

A distributed algorithm has been proposed [9] that first identifies neighboring devices 

with the highest RSSI and LQI readings. A coordinator is elected which is responsible for 

calculating an average of the neighboring device’s values. With this information, nodes then 

individually use a weighted centroid localization algorithm which results in a good accuracy. 

However, high cost of running a distributed leader election protocol and collection and 

generation of statistics of the RSSI and LQI are ignored. While the idea of reaching a 

consensus is good, we believe that this has to be done only on a local level, relying only on 

the nearest neighbors. 

A maximum likelihood estimation (MLE) algorithm [20] is proposed that deals with the 

noise better than a direct triangulation algorithm. The authors of [21] go one step further and 

propose both a hardware implemented MLE as well as a software implemented triangulation 

localization algorithm. They performed experimental test for both the indoor and the outdoor 

applications. However, these research papers require reference devices with previously 

known coordinates and it requires a substantially long and complex calibration phase. 

While [22] does not introduce any distance estimation algorithm, it proposes an RSSI 

approximation method that uses Newton interpolation polynomial (NIP) to continuously 

approximate RSSI with limited sample points. According to the authors, NIP is smooth in the 

domain and avoids continuity problems that arise with other interpolation methods. In our 

opinion, this is too complex and cumbersome to calculate on a sensor, and depending on 

previously deployed reference devices is not ideal. 

The “too complex” argument is also applicable to the work of [12] which uses 

Sigma-Point Kalman Smoothers; to the work of [4] which uses a centralized server to solve 

individual devices’ log-distance path loss equations and runs a genetic algorithm. The work 

of [18] proposes a combination of metrics for distance estimation and localization and uses 

four distinct metrics to represent a better model of the short and long-term quality of the link 

as well as information on the dynamic variation and the trend of the communication signal. 

While fuzzy logic based distance estimation has been done before [23, 24], indoor usage 
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and results are still lacking. In this paper, we propose the combination of fuzzy logic and the 

transferable belief model, a completely novel idea and, to our knowledge, no other similar 

work has been done.  

1.2 Main Contributions 

In this work, we present an ongoing study of indoor distance estimation. First, we 

describe our distance estimation system that uses only the RSSI and LQI values. We test 

whether our hypothesis is correct by creating a practical experimental setup and by 

performing real-life measurements by deploying real sensors. A simplified fingerprinting 

system is developed by evaluating the experimental analysis of RSSI and LQI readings over 

different power levels with limited interference. We do not consider any specific power level 

of the transmitting device, which means that when analyzing the values, receiving device 

initially infers a very large set of possible distances. While our subsequent steps rely on our 

measured experimental data in order to estimate the distance, we remind the reader that what 

we are proposing is a comprehensive solution that can be easily adapted to different types of 

sensor hardware and RSSI/LQI levels. Therefore, independent of the environment, the idea 

remains valid. 

With the fingerprint of the measured data determined, we use the RSSI as input to 

determine all possible distances from the measured data. We then further reduce this set of 

distances by considering the LQI value received. Our experimental results seem to provide 

tangible proof that this simple idea can significantly increase correctness of the distance 

estimation, reducing the possible number of distances. However, as previously mentioned, 

any practical system cannot just rely on fixed thresholds, nor on filters or signal processing 

for estimation. Therefore, after the transformation, we execute a distributed consensus 

protocol between the communicating nodes, selecting the distance with the maximum 

likelihood. Devices exchange their estimated distance sets and execute a distributed protocol. 

The process of selecting the distance with a maximum likelihood of occurrence goes through 

a set of Fuzzy Logic [25] rules before being combined with the help of the Transferable 

Belief Model (TBM) [26]. This allows us to model and combine evidence in order to make a 

better decision. It generalizes the Bayesian approach without the need of previously known 

probabilities. Therefore, it is able to deal with redundant and conflicting information since it 

is based on the idea of building beliefs on a subjective knowledge. 

Experimental results of our proposed novel approach is shown to correctly infer 

distances between two devices in the range of 100cm to 400cm in indoor scenario, at least for 

80% of the times, reaching an accuracy as high as 100%. 

2. Analyzing RSSI and LQI as distance estimators  

In this Section, we describe our distance estimation system that uses the received signal 

strength indicator (RSSI) and the link quality indicator (LQI) metrics. We test our hypothesis 

purely through experimental measurements using sensor nodes. Results indicate that when 

the LQI is high, our algorithm is capable of significantly enhancing the accuracy of correctly 

estimating the distance between two communicating motes.  
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2.1 Experimental Setup 

We conducted experiments both inside and outside of our lab to determine how RSSI and 

LQI vary with different distances and power levels. Emphasis was placed on determining 

how reliable these two attributes could be for localization algorithms. The RSSI is the 

measured power (in dBm) of the received radio frequency (RF) signal. The LQI is a link 

quality metric defined in the 802.15.4 standard, and can be viewed as the chip error rate. 

During our experiments, emphasis was placed on determining how reliable these two 

attributes could be for the distance estimation algorithm. 

The sensor hardware used is Crossbow’s TelosB mote (TPR2420CA) that has an 

integrated IEEE 802.15.4/ZigBee compliant RF transceiver (CC2420 chipset). Inverted-F 

antenna was employed whose gain is measured to be +3.3dB. The CC2420 operates in the 

2.4GHz ISM band with an effective data rate of 256kbps. It has 16 channels with each one 

taking over 3MHz bandwith with a center of frequency separation of 5MHz between the 

adjacent channels. The encoding scheme used in the CC2420 encodes 32 chips for a symbol 

of 4 bits. It also uses an advanced orthogonal quadrature phase shift keying (OQPSK) and 

direct sequence spread spectrum (DSSS) to modulate the data [9, 27]. 

The CC2420 stores both the RSSI and the LQI for every received packet. This is 

measured over the first 8 symbols (32 bits) of a received packet. It is important to state that 

the standard only requires that the reported RSSI values should be linear and within ±6dB of 

the actual RSSI values. However, this is a wide error margin [28]. The CC2420 only 

calculates the LQI on the received packets, but continuously measures and calculates the 

RSSI. This allows a device to calculate the noise floor when there are no transmissions. LQI 

ranges from 50 to 110 and respectively corresponds to the minimum and maximum quality 

frames. The LQI measurement represents a correlation between the received symbol and the 

decoded symbol after appropriate radio decoding has been applied. 

 

Figure 1. Outdoor Mean RSSI Measurements and Curve Fit. 
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Much like previous research with RSSI [16], we placed emphasis on creating an ideal 

environment in which we could conduct the experiments. At each of the distance, RSSI and 

LQI are measured for approximately 30 seconds at every 250 milliseconds. On the receiver 

side of the experiments, the mote were connected via USB to a laptop which was raised to a 

height of 6 inches from the ground. The sender mote was also raised to the same level from 

the ground. Both the sender and receiver maintained line of sight transmissions throughout 

the experiments. The path between the sender and the receiver was clear from any sort of 

hindrance. This significantly reduced interference. However, we can not state that 

interference was zero. The motes were programmed in TinyOS to send and receive beacon 

signals between each other. RSSI and LQI values were calculated from the received beacon 

signals according to the specified equations in the sensor mote’s datasheet. Although 

consistently checked, the AA batteries never needed to be replaced throughout the span of the 

experiments. 

In this Section, we will discuss both indoor as well as outdoor measurements and results. 

We remind the reader that the second part of our work focuses solely on the open problem of 

indoor distance estimation. For the indoor environment, for each of the transmission power 

levels, RSSI and LQI value were recorded while increasing the distance between the sender 

and the receiver one centimeter at a time, as far as there was a connection between the nodes. 

In this set of experiments, we were able to vary the power level from 1 to 7. The same 

experiment was repeated in outdoors on a soccer field (using inches as the measurement unit) 

where we varied the distance between the nodes and the power level variation from 1 to 31. 

The difference in power levels from indoor to outdoor occurred due to the transmission range. 

Anything greater than a power level of 7 indoors would already transmit a message over a 

larger distance than the longest hall in any of the university’s buildings. 

 

Figure 2. Indoor Mean RSSI Measurements and Curve Fit. 
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2.2 Analysis of Measurements and Curve Fitting 

For each transmission power level and distance, we calculate the mean of the RSSI at the 

receiver. We then identify an exponential curve to fit the data. We also ran this step off-line 

using MATLAB and provided a simple lookup table for any real-time calculations. The curve 

fits for power level 2 in outdoor experiments can be seen in Fig. 1. The indoor data for the 

same power level can be seen in Fig. 2.  

 

Figure 3. Outdoor RSSI and Curve Fits for Different Power Levels. 

Instead of plotting all possible power level, we have considered all possible power levels 

at once. RSSI values and distances when plotted on the same graph, can be seen in Fig. 3 and 

Fig, 4. Respectively for outdoor and indoor. Notice that for the same RSSI value, a number of 

different distances and powers can be assumed.  

 

Figure 4. Indoor RSSI and Curve Fits for Different Power Levels. 
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As an example, consider that in an indoor transmission, the received node identified 

RSSI to be −93dBm. By looking this up on a pre-calculated table, the mote can determine the 

distance of the transmitting mote to be [10, 13, 36, 37]. In fact, if the mote relied only on the 

RSSI value, considering the number of unique distances that each of the RSSI value would 

provide, we get a histogram similar to the one seen in Fig. 5. Though the graph shows a few 

instances (7 to be exact) where only one possible distance/power could be assumed, it also 

demonstrates many sets with 69 unique distances from which the mote could assume the 

location of transmitter. 

 

Figure 5. Histogram of the Size of the Possible Distances at Receiver when Experiments where done Indoors. 

Fig. 6 shows a similar behavior (this time related to the outdoor measurements). Clearly, 

some kind of filtering technique needs to be employed in order to reduce the number of 

possible guesses made by the sensor mote. 

 

Figure 6. Histogram of the Size of the Possible Distances at Receiver when Experiments where done Outdoors. 
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2.3 Considering LQI for Better Distance Estimation 

The idea behind using both the RSSI and the LQI for a better distance estimation came 

from our analysis of the experimental data we collected. We discovered that, in an ideal 

scenario, the LQI could be used to filter out possible distances, since for certain combinations 

of power vs. distances, the expected best case of LQI could immediately indicate a (possibly) 

infeasible situation. So, to test our hypothesis, in a similar manner to the RSSI studies, we 

analyzed the experimental measured LQI data for the same dataset from the previous graphs. 

We calculated the mean and executed another round of curve fitting algorithms.  

An example of the results can be seen in Fig. 7 for power level 3, where an LQI value of 

100 (in an ideal environment) only occurs if the distance is less than 300cm. Therefore, if a 

possible tuple of estimated distances were [400cm, power level 3], then for LQI = 100, that 

tuple could be easily discarded 

 

Figure 7. Indoor Mean LQI Measurements and Curve Fit. 

Fig. 8 presents all the curve fits for indoor LQI. 

Our emphasis here is not on the exact values, but rather how a simple filtering process 

can be established based on given measurements from RSSI and LQI, such that it increases 

the precision of distance estimation. For that reason, we will not show the outdoor 

measurements values, as they will neither add nor delete from our objective. 
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Figure 8. Indoor LQI for Different Power Levels and their Curve Fits. 

2.4 Combining the two Metrics 

So, given the RSSI and LQI values, the sensor mote would first identify the set of all 

possible distances and the corresponding expected power level. This set would then be further 

filtered by using the LQI values (fits formed from LQI) and by analyzing the expected results. 

Simulations of RSSI = −100dBm and LQI = 80 resulted initially in the histogram seen in Fig. 

9(a). After applying our simple filtering mechanism, a new histogram can be obtained as 

shown in Fig. 9(b). 

 

Figure 9. Histogram of the Size of the Possible Distances at Receiver before and after filtering with LQI = 80 

(Indoor Experiments). 

For example, if the link quality is better, and the LQI is increased to 100, the histogram 

would be updated as seen in Fig. 10. If some uncertainty about an exact distance still exists, 

heuristics can then be applied to further decrease the estimated distance sets. Regardless, the 

reader may clearly note that with LQI = 100, the set size is significantly decreased. 
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Figure 10. Histogram of the Size of the Possible Distances at Receiver after filtering with LQI = 100 (Indoor 

Experiments). 

 

3. From a simple filtering to a distributed consensus  

So far we have described our distance estimation system that uses the RSSI and LQI 

metrics to increase the precision in estimating communication distances between any two 

wireless devices. To test our hypothesis, we set up experiments using sensor nodes. Results 

indicate that when the LQI is high, our algorithm is capable of significantly increasing the 

probability of correctly estimating this distance. We then build upon this simple filtering 

mechanism that does not consider the announced power level of the transmitting device, by 

adding a “communication layer” to the distance estimation process. That is, nodes will 

exchange their estimates and set of inferred distances with each other, through a distributed 

protocol, and merge the associated beliefs as to which distance is correct. 

3.1 Classification of Algorithms 

Distance estimation algorithms are often classified according to whether or not they 

require specific hardware. Those that do, are often denominated as “range-based”, while 

those that do not, are known as “range-free” [29, 30]. Range-free approaches are generally 

based on the connectivity information to estimate the location and the distances. The 

fundamental assumption behind these algorithms is that if two devices are able to 

communicate, then the distance between them (with high probability) is less than their 

maximum transmission distance. The distance is estimated through the number of hops 

between nodes, or based on an Euclidean value [30]. Albeit they are simple and of low cost, 

range-free approaches are highly dependent on the node density, network topology and 

well-defined references of devices [31]. 
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On the other hand, range-based approaches expect additional hardware or specific 

circuitry to exist. For example, the manner in which the distance information is obtained, can 

rely on the time of arrival (ToA), the time-difference of arrival (TDoA), the angle of arrival 

(AoA), or RSSI and LQI metrics. Both ToA as well as TDoA techniques measure distance 

between devices using the propagation time of the communication signal. AoA techniques, in 

addition to using the propagation time, use the antenna’s amplitude or phase response to 

identify the direction of the signal. In this work, we focus on a range-based approach that 

relies solely on the RSSI and LQI values. 

While approaches based on AoA, ToA or TDoA typically achieve higher accuracy than 

those using the RSSI measurements, in Section 2 we showed that improvements can be made 

through a complementary combination of RSSI and LQI. In fact, while RSSI can be an 

attractive agile link estimator, LQI can make more precise estimates with the tradeoff of 

increased delay and estimation cost [27]. So, as long as appropriate assumptions are made, a 

combination of LQI and RSSI leads to a useful solution for indoor distance estimation and 

localization. Additionally, since both RSSI and LQI are commonly present in all commercial 

off-the-shelf hardware, applicability of such a solution can be universal to almost all 

hardware network deployment. 

3.2 Characterizing the Experimental Set-Up 

The same experimental setup was used as previously stated in Section 2-A. Additionally, 

however, other data collecting experiments where run. Thousands of experimental data points 

were obtained and stored. We called this dataset as the “perfect experimental data” (PED), as 

it reflects a controlled scenario where obtained RSSI and LQI values are taken with minimal 

interference, although this dataset is far from “perfect”. After the implementation of our 

algorithm, as well as during the adjustment of it’s performance, we used experimentally 

obtained PED as an input to a MATLAB-based analysis and simulation. The simulation 

would read results from the PED, and output the estimated distance for each of the simulated 

device. Random behavior was introduced by arbitrarily choosing the data points within the 

PED. Incorrect behavior was considered by using input from the PED that originated from 

different distances. By doing this, we were able to induce an exact amount of failure 

(percentages) by simply using inputs from the PED that represented the percentage of the 

distance being simulated. 

3. Our Contribution 

In our proposed indoor distance estimation algorithm, we rely both on the Fuzzy Logic, 
as well as on the TBM to better deal with the variability and uncertainty of the RSSI and LQI 
signals. 

Details of Algorithm: 

1. First Step - Filtering Distances with RSSI and LQI 

The first step of our proposed algorithm is really just a simple filter to reduce the set 
size of the possible distances inferred. The idea behind using both the RSSI and the 
LQI is to increase the correctness of distance estimation and is a direct analysis of 
the PDE collected. Given varying distances and power levels, we uncovered the fact 
that, under our experimental scenario, the LQI could be used to filter out possible 
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distances. This is true for certain combinations of power vs. distances as the 
expected best case of LQI could immediately indicate a (possibly) infeasible 
situation. After calculating the mean of the signals for each transmission power level 
and distance, we identify an exponential curve to fit the data. So, when a device A 
decodes the tuple 

IA = [RSSI, LQI], 

the first step of our algorithm returns 

DA = [all possible inferred distances given IA]. 

This clearly is a very large set of distances, since we consider all possible 
transmission powers for the input tuple. For example, in Fig. 11, with the tuple RSSI 
= −100dBm and LQI = 80 we obtain the experimental results after executing this 
first step. It contains the number of sets with unique distances, considering all 
possible power vs. distances combinations. From this input, our algorithm inferred 
over 250 different distances. While the original RSSI guess, inferred was over 415. 

 

Figure 11. Histogram of the Size of the Possible Distances at Receiver after filtering with LQI = 80 

(Indoor Experiments). 

2. Second Step - Exchanging Sets and Ordering 

The second step of our algorithm consists of ordering the set from the smallest 
distance to the largest, and having the 2 communicating devices share their sets. That 
is, devices A and B, exchange DA and DB. After this exchange, both devices will be 
able to order the set of all distances as 

D = [ordered set including DA and DB]. 

3. Third Step - Determining Fuzzy Membership Class Values 

As the third step of our algorithm, we rely on the linguistic idea behind the fuzzy 
logic, and on the triangular membership functions to identify the number of elements 
from the ordered set that belong to each of the membership classes. Fuzzy logic is a 
multi-valued logic that is capable of mapping imprecise terms into crisp values. 
Impreciseness is represented through the use of linguistic terms. For example, 
devices may be classified as being “far” from or “close” to one another. Instead of 
specifying distance in terms of hard thresholds, a linguistic value of “close” become 
much easier to state and understand. We do not, however, fully utilize the building 
blocks of fuzzy logic (but refer the interested reader to [25] for further details). 
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We divide the set D into approximately 3 smaller overlapping sets, as well as 2 
additional sets that represent the overlap among themselves. The first 3 sets 
represents the linguistic terms “close”, “medium” and “far”. Fig. 12 may help in this 
explanation. Let’s assume that d contain values that range from 0 to 30. 
Approximately the first third of the distances becomes a part of the “close” 
triangular membership function. The next third becomes “medium”, and the last 
third “far”. 

 

Figure 12. Example of Membership Classes for a Distance Set. 

However, the intersections will also have linguistic terms. The one between “close” 
and “medium” will be denominated “close-medium”. While the other will be 
denominated “medium-far”. These 5 membership functions form our fuzzy 
membership classes. 

4. Fourth Step - Calculating Beliefs using TBM 

With the membership classes defined, the next step is to try to calculate the belief the 
device has with regards to the classes. We rely on the Transferable Belief Model 
(TBM) [26] as the tool for this step since it can easily handle uncertainty. In a typical 
probability theory, a random experiment is one in which the outcome varies in an 
unpredictable fashion whenever repeated under the same conditions. From each 
experiment, a set of one or more measurements or observations are made. The 
formalism introduced by the theory is supposed to model the actual situation. But, 
the question is what happens when the universe is unknown, or if the user is ignorant 
about a statement. Does this ignorance necessarily translate into the opposite 
statement, as assumed in the Bayesian reasoning? A paradigm shift took place in 
1976, when Shafer’s classical book [32] questioned such arguments. For example, 
according to Dempster-Schafer’s (DS) formalism, if the device believes in 
something with only 30% certainty, it does not necessarily mean that it is 70% 
certain that it does not believe in it. TBM is a variant of DS that allows one to model 
and combine evidence in order to make a better decision. It generalizes the Bayesian 
approach without the need of previously known probabilities. Therefore, it is able to 
deal with redundant and conflicting information, which is perfect for our need. It is 
based on the ideas of building beliefs on a subjective knowledge, and by 
incorporating the information using DS’s rule of combination. 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2012, Vol. 4, No. 4 

www.macrothink.org/npa 188 

Each device individually counts the number of elements that are within each of the 5 
classes. This result in a ratio determined by the belief of that class. For example, 
assuming there are 40 inferred distances in the distance set DA. If, after running the 
fuzzy logic membership that could identify the number of elements belonging to the 
“close” class, we arrive at the ratio 8/40. At the end of this step, we have individual 
beliefs that each device has with regards to each of the 5 membership classes. 

5. Fifth Step - Combining Beliefs using TBM 

Once we calculate the individual device’s belief, we merge their beliefs using TBM. 
TBM assumes a frame of discernment (FoD) Θ which contains all possible classes 
(including exclusive and exhaustive solutions). In our scenario, this represents: 

Θ = [(close), (medium), (far)].           (1) 

The power set 2
Θ
 contains all the singleton hypotheses, as well as all the disjunctions. 

Therefore, it is specified by: 

Θ = [(close), (close − medium), (close − far), 

(medium), (medium − far), ( far), 

(close − medium − far)].            (2) 

A basic belief assignment (bba) is given by m : 2Θ → [0, 1] with A⊂Θ m(A) = 1, 
where m(A) is the basic belief mass (bbm) given to A. Every A ⊂ Θ such that 
m(A) > 0 is a focal representation. Every subset that has some (even subjective) 
support for the real state provides a bbm. This is one of the key points of TBM, such 
that it can allocate masses to a subset of Θ, rather than depending only on mutually 
exclusive hypotheses [33]. 

Beliefs from two devices can be fused or combined using various rules of 
combination. DS has a normalized rule where the mass assigned to the empty set ∅ 
is always zero. The combination process relies on the DS operators. Given two 
distinct bba’s mA and mB obtained from devices A and B, combination of their 
beliefs defined on the same FoD is: 

mAB(C) = (X∩Y=C) mA(X) ∗ mB(Y). 

This is a formalism that can model and manage doubts independent of the hypothesis. 
This is another advantage of this theory as compared to the Bayesian probability. For 
the reader who is not familiar with the DS and the TBM, we provide a step-by-step 
formulation of the equations and provide an example of its potential use. When 
combining the beliefs of two devices A and B with regards to the “close” (clo.) 
membership class: 

mAB(clo.) = mA(clo.) ∗ mB(clo.) + 

mA(close − medium) ∗ mB(clo.) + 

mA(clo) ∗ mB(close − medium).      (3) 

When combining the beliefs of two devices A and B with regards to the “medium” 
(med.) membership class: 

mAB(med.) = mA(med.) ∗ mB(med.) + 

mA(close − medium) ∗ mB(med.) + 

mA(medium − far) ∗ mB(med.) + 
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mA(med.) ∗ mB(close − medium) + 

mA(medium − far) ∗ 

mB(close − medium) + 

mA(close − medium) ∗ 

mB(medium − far) + 

mA(med.) ∗ mB(medium − far).      (4) 

When the beliefs of two devices A and B are combined with regards to the “far” 
membership class: 

mAB( f ar) = mA(far) ∗ mB(far) + 

mA(medium − far) ∗ mB(far) + 

mA(far) ∗ mB(medium − far)..       (5) 

By calculating the TBM combination of all the membership classes (“close”, 
“medium” and “far”), the output of this fifth step would be the class with highest 
membership value. Notably, having this naming convention based on the linguistic 
terms helps us readily perceive how far away the nodes are from each other. 

 

4. Validation based on experimental values  

In this Section, we show the distance estimation results between devices that rely on our 

proposed algorithm. It may be noted that the results are based on real experimental data (i.e., 

PED). We describe both the failure-free results (where data used is from the exact distance 

where it was collected), as well as failure-induced results (when the data are from different 

collection distances). For a given RSSI and LQI, we run our algorithm and obtain the 

resulting estimated distance. We then compare if that distance is within certain linguistic 

bounds from the known distance. We calculate the success rate by calculating the number of 

times that our algorithm detects correctly if the nodes are “close”, “medium” or “far” away 

from each other. 

The linguistic terms are well defined - in that they represent distances while the exact 

value ranges of each linguistic term depends on the unique elements of the exchanged DA and 

DB distances. In this aspect, the ranges within the membership classes of “close”, “medium” 

or “far” could dynamically vary. This is very important to emphasize. For this reason, we 

have also plotted the mean of the range difference between the actual and the inferred values 

when our algorithm correctly judges the distances, as well as the range when the algorithm 

incorrectly infers the distances. This is represented through the percentages of actual distance. 

As we describe individual experimental results, these graphs can be better understood. 

With regards to the simulation environment, as previously stated, the input used comes 

from the PED files with the signals obtained from the experimental measurements. The 

MATLAB [34] code reads the input files and calculates both the fuzzy-membership functions, 

as well as the TBM merging and analysis of uncertainty. More details can be seen in Table I. 
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Table 1. Simulation Parameters. 

Parameter Values 

Distance 0cm – 100cm 

Number of Simulation Runs 100 for every instance 

Failure Probability 0% - 90% 

4.1 Failure-Free Experimental Results 

Our first set of experimental analysis considered using the experimental PED data from 

the exact location where it is measured. This means if the experiment measured the RSSI and 

LQI signals at 300cm, then for all the simulations between two communicating devices, we 

would randomly read from the 300cm file previously stored as the measured signals. We call 

this a “failure-free” scenario because the input values used are (supposedly) “perfect”. 

However, given the known variations in RSSI and LQI when measured indoors, this is far 

from true. In fact, the correctness of our algorithm given various distances can be seen in Fig. 

13.  

 

Figure 13. Results of Distance Estimation when in Failure-Free Scenario. 

The x-axis of our graphs identifies the actual experimental distance where the signals are 

measured. Although our experiments included distances over 25m, in this paper, we have 
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limited the data points from 0 to 10 meters. The y-axis on Fig. 13 shows the correct distance 

estimation of the failure-free runs. We have highlighted data points whenever the correct 

distance estimation is above 80% (in red). In our opinion, this percentage is one that most 

system designers might be comfortable with in a real deployment. Incorrect distances are 

inferred at both very short distances (< 50cm) as well as when they are further away. 

Although, given the random aspect of the simulations, there are moments when devices are 

considerably further apart (> 7m) where distances are correctly inferred over 97% of the time. 

To better understand how well our algorithm works, we simultaneously calculated the 

average error between the actual distance and the inferred distance. We denominated this as a 

“spread”, and Fig. 14(a) and 14(b) respectively illustrate an exact average as well as the 

relative average (with regards to the current distance). While for most of the cases the spread 

maintains itself around the 15cm mark, this obviously has a higher impact on the error and 

inaccuracy when the distances are smaller. However, as can be seen in Fig. 14(b), this error 

slowly tapers off from as high as 100%, to very low percentages (< 5%). 

 

Figure 14. Average Spread of Inferred Distances. 

 

In a similar manner, we have also plotted the results of the spread when our algorithms 

incorrectly infers the distance. In this case, what Fig. 15(a) and 15(b) show is how bad the 

errors are whenever they occur. 
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Figure 15. Average Error Spread of Inferred Distances. 

It may be noted that while our algorithm does not deal well with very short distances (< 

50cm), results are actually very good above that range. So, considering the fact that we used 

experimental data in an environment and scenario with minimal interference and wild 

fluctuations in the RSSI and LQI signals, we thought that a better way is to observe the 

performance of our algorithm when failures are present. 

4.2 Failure-Induced Experimental Results 

In this Section, we describe the behavior of our algorithm as failures are added. As we 

introduce failures, it is expected that the performance decreases, and more to our algorithm 

infers the incorrect distance. This can be clearly noted in Fig. 16. Although we later provide 

(in Fig. 19) all the plots from 10% − 90% induced failures, we would like to focus on 3 cases: 

20%, 50% and 90% of failures. 
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Figure 16. Correct Distance Estimation as Failures are Introduced. 

From Fig. 16, we notice a reduction in the number of instances of correct detections 

above the 80% threshold, but, within the 100cm to approximately 400cm even with high 

failure rates. The combination of fuzzy logic and TBM is able to consider the uncertain 

beliefs of each device before deciding on the distance between them. These results clearly 

show that the combination of RSSI and LQI used in our algorithms can be successfully used 

in a practical scenario. 

Due to the close similarities between most of the graphs among all failure percentages, 

we will show the spread of only the 20% and 90% cases in Fig. 17. As can be seen, the spread 

with the 100 − 400cm range is consistently found between 15% − 5% of the actual distance, 

respectively.  
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Figure 17. Average Spread as Failures are Introduced. 

 

Similarly, we show the results of the error spread in Fig. 18. As expected, the errors are 
greater when we induce 90% failures. Otherwise, the overall behavior is very consistent. 

 

 

Figure 18. Average Error Spread as Failures are Introduced. 
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Figure 19. Correct Distance Estimation as Failures are Introduced. 
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5. Conclusion  

Although the received signal strength indicator (RSSI) and on the link quality indicator 

(LQI) have previously been individually shown to be largely inadequate as a distance 

estimator for indoor scenarios, this paper proposes an algorithm that relies exactly on these 

two parameters to correctly infer distances between devices. While not denying previous 

experimental research which have correctly shown that they behave inconsistently, even in an 

ideal scenario - what we have done is embraced the inherent uncertainty of these signals. 

Initially, we developed a simple filtering mechanism that does not consider the announced 

power level of the transmitting device, but rather the RSSI and LQI values. This possibly 

large set of inferred distances are then exchanged, and run through a distributed protocol to 

merge the associated beliefs. 

The process of selecting the distance with the maximum likelihood of their occurrence 

goes through a set of fuzzy logic rules before being combined with the help of the 

transferable belief model (TBM) which enables us to model and combine evidence in order to 

make an improved decision. This unique combination is able to deal with redundant and 

conflicting information since it is based on the ideas of building beliefs on a subjective 

knowledge. Experimental analysis of this novel approach is observed to correctly infer 

distances between devices in the range of 100cm to 400cm in an indoor scenario, for at least 

80% of the times and reaching accuracy as high as 100%. 
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