
 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 126

A Smartphone Design Approach to User

Communication Interface for Administering Storage

System Network

Weider D. Yu

Computer Engineering Department, San Jose State University

San Jose (Silicon Valley), CA 95192-0180, United States

Tel: 1-408-924-7365 E-mail: weider.yu@sjsu.edu

Xiao Su

Computer Engineering Department, San Jose State University

San Jose (Silicon Valley), CA 95192-0180, United States

Tel: 1-408-924-7366 E-mail: xiao.su@sjsu.edu

Jason Hansen

Computer Engineering Department, San Jose State University

San Jose (Silicon Valley), CA 95192-0180, United States

E-mail: perlhack40@gmail.com

Received: August 5, 2012 Accepted: November 11, 2012 Published: December 16, 2012

DOI: 10.5296/npa.v4i4.2194 URL: http://dx.doi.org/10.5296/npa.v4i4.2194

Abstract

This paper investigates the feasibility and potential of using a mobile smartphone as a user

administration control for storage system network. It includes the design and implementation

of a mobile smartphone software system that can be used to perform system administration

activities on the storage system without the need of using a laptop or desktop system. In the

paper the design of some effective metaphors to present the storage system on the limited

display area of a mobile smartphone device and the set of system features chosen for

implementation are presented. Current storage system administration is limited to using

mailto:weider.yu@sjsu.edu
mailto:xiao.su@sjsu.edu
mailto:perlhack40@gmail.com

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 127

storage controller console or Microsoft Windows Clients. The solution described in this paper

provides an alternative smart interface to the storage system. This research effort is focused

on investigating the potential of using mobile smartphone software application as a smart

user interface protocol to communicate with the storage system network.

Keywords: Mobile computing, mobile smartphone, mobile user interface, portability, storage

system network.

1. Introduction

This paper is focused on investigating the potential and feasibility of using mobile

smartphone software as a smart user interface to communicate with a storage system network.

The effort does not attempt to expose every possible feature of a storage system network, but

endeavors to demonstrate the process of transforming the functions of a system management

platform called DataONTAP. DataONTAP is an on-demand, efficient, flexible and scalable

storage operating system platform to assist system administrators to manage data and

applications, and to scale-out storage infrastructure growth on the NetApp storage system

network to a more available and accessible smartphone environment, with the advantages of

enhanced mobility and smart interface for system administrators.

1.1 Proposed Areas of Study and Academic Contribution

The primary interest in the research work is to develop a model to map a complex system,

such as the NetApp storage system administration, to an interface that is as limited as the

iPhone OS. The scope of the work is to allow the manipulation of the standard filer

configuration and management through the small screen and limited capabilities of the iPhone

[1].

Section 2 describes the current state of the art. Section 3 of this paper discusses the

requirements and constraints of the application and the environment. Section 4 describes

the system architecture and subsystems. Section 5 describes the technologies used in the

development of the research work. Section 6 describes the design of the proposed system.

Section 7 describes the implementation of the system and how elements from a Windows

based User Interface (UI) are mapped to elements of an iOS application [2]. Section 8

provides a summary, and Section 9 includes the conclusion statements and elaborates the

major points regarding the research work mentioned in the paper.

2. Current State of the Art

Management of NetApp storage systems is handled through a variety of interfaces. The

storage system has a Command Line Interface (CLI) that is accessible through Secured Shell

(SSH), Telnet, and a serial console connection. The storage systems also present a web based

utility for configuration and interaction called FilerView. There are two client side applications

for managing storage system that are provided by NetApp, Operations Manager and System

Manager. System Manager is a client side tool that integrates with Microsoft Management

Console to manage the storage system [3]. Operations Manager is a client side monitoring tool

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 128

that gives a single place to get performance data from a set of storage systems [4]. NetApp also

provides a Software Development Kit (SDK) for custom tools and automation of the storage

systems. Many of the tools described above leverage the SDK for access to the storage systems.

The supported version of the SDK includes tools for Windows and UNIX operating systems

and C++, C#, Java, and Perl languages [5]. NetApp also has published an unsupported

Objective-C SDK called CocoaONTAP [5] [6] that provides access for applications built for

Apple Mac OSX systems and the iPhone [6] [7]. The CocoaONTAP SDK is the foundation of

this research.

From the finding of a recent InformationWeek 2013 Mobile Device Management and

Security Survey, it was found that both smartphones and tablets have been playing an

important role in raising company business productivity. For smartphones, the percentage of

the companies which agreed the statement is increased from 82% (in 2011) to 87% (in 2012).

For tablets, the percentage is increased from 79% (in 2011) to 91% (in 2013). This is a trend.

More and more companies have been actively looking into advanced features available on the

smart mobile devices to apply them in designing new software tools and processes to enhance

the efficiency and productivity of business operations. In recent years, the User Interface (UI)

features and capabilities available on smartphones (and tablets) become a major new software

design effort area for research and development. Most of smart mobile software vendors

provide a set of software tools to allow software engineers to design mobile software

applications [3] [8] [9] [10].

As mobile software code increases so will the number of software faults and

vulnerabilities; hence the need for adopting a secured software development process model.

The mobile software development process and its lifecycle are becoming major focus for

software engineering research. The area like mobile software security and vulnerability is

attracting researchers to gain deeper and effective solutions.

3. System Analysis Process

In order to be able to design and develop a mobile application that provides some of the

features and functionality of System Manager it is necessary to analyze the existing

application. The analysis that we were able to do was limited to the application UI and the

interfaces that that application uses when accessing the storage system. Further analysis and

possible code reuse could be achieved with access to the source code for the application to be

converted.

3.1 Application UI Analysis

The analysis of the user interface of the application can be achieved by examining each

element of the UI and the functions that those elements provide. The analysis breaks the

application down into individual components to determine the functionality that is

implemented. In the case of System Manager (shown in Fig. 1), the left side frame of the

application consists of a list of areas that can be managed through the application.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 129

Figure 1. System Manager

The application is broken down in to the following areas indexed by the left frame.

1. Storage

This category contains a collection of features for storage management. The right hand

frame shows some frequent tasks when this item is selected.

1.1. Volumes

This category presents volume information in the right hand frame. This information

includes, name, size, containing aggregate and other information about the volumes in the

storage system. This window also allows for creation of new volumes and management

functions for existing volumes.

 1.2. Shared Folders

This category only contains the Exports subcategory which contains information about the

exported directories and volumes on the storage system.

 1.2.1. Exports

 This section shows the detail about exported file systems on the storage system.

 1.3. LUNs

This section shows the LUN information for SAN related storage on the storage system.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 130

 1.4. Quotas

This section shows the quota information in use on the storage system. Quotas are a

mechanism that administrators can use to limit the amount of space available to any one group

or individual using the storage system.

 1.5. Qtrees

This section shows the qtree usage on the storage system. Qtrees allow administrators to

control storage use in more detail than is allowed through volumes. Qtrees are similar to

directories in a Microsoft Windows system but can be exported by the storage system as well as

having quotas applied to them.

 1.6. Disks

This section shows the details of the disks in the system including the current usage of the

disks, and the node in an HA pair that owns them. This section also allows spare disks to be

added to aggregates.

 1.7. Aggregates

This section provides details of aggregates similar to what is shown for volumes by the

Volumes section. This section also allows for the creation of new aggregates and other

aggregate management functionality.

2. Configuration

 2.1. Local Users and Groups

This section allows for administration of users and groups that are locally managed by the

storage system.

 2.2. Network

The networking section has four subsections for DNS, NIS, Interfaces and Network Files.

These sections allow the administrator to manage the name services, network interface settings

and the host files.

 2.3. Protocols

This section allows the administrator to manage iSCSI and NFS storage information. If

CIFS is configured on the storage system it should also appear in this section.

 2.4. Security

This section handles the management of security settings related to the password of the

storage system.

 2.5. System Tools

The System Tools section provides a set of functions that allow the administrator to

manage some miscellaneous features that are not easily included in other parts of the

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 131

application. This includes things like AutoSupport, date/time settings, license management,

and system logs.

3. Diagnostics

The systems I was using were unable to use the Diagnostics section so I am uncertain of the

features that are contained in this section.

4. Active/Active Configuration

This section is outside of the sets of entries for each node of the storage system. This

section allow the storage administrator to manage to configuration of the HA Pair for node

failover. This section also allows to administrator to force a takeover or giveback of in the

storage system.

This breakdown of functions and responsibilities summarizes the features that can be

implemented by a management application. System Manager is a general management

application and therefore must provide a broad a set of functions as possible.

The target application for a mobile device has a different set of goals and needs. The mobile

device usage pattern is going to be more limited. The initial feature selection is based on a set

of use cases where an administrator receives a notification of a problem and wishes to resolve it

quickly. The notifications about storage space and usage on a storage system and failover

events were the triggers for the use cases that were selected. These use cases will require access

to disk, aggregate and volume information about the storage system as well as the

Active/Active control described above.

In order to provide the needed information to map the functionality between System

Manager and the mobile application, further analysis of the planned components is needed.

3.1.1 Disk Component Analysis

The Disks function of System Manager provides a table of details about the disks in the

system. The table consists of Name, State, RPM, Size and Container. Each disk has a disk

name which is includes the HBA port and one or more numeric identifier that define the shelf

and bay that the disk occupies. The State field indicates the current usage state of the disk.

Present indicates that it is a disk in a volume or aggregate local to the node. A spare state

indicates that the disk is owned by the local node but is not currently in a volume or aggregate.

A partner state indicates that the disk is owned by the partner node in an HA pair, other usage

information is not given for partner disks. Broken disks are reported as broken state. The RPM

column indicates the RPM of the disk, Fiber Channel and SAS disks are generally 10,000 or

15,000 RPM while SATA disks are generally 7,200 RPM disks. The size field of the table

indicates the usable size of the disk in gigabytes. The Container field indicates that aggregate or

volume that the disk is a part of if it is currently in the present state.

Below the table of disks is detailed view of information about the disk that is selected. The

detailed view shows the RPM, Size, Container, and RAID state that are presented in the

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 132

summary table. Also in this view is the disk ID, disk type (FCAL, SAS, SATA, etc.), and

several other fields that provide more detail about the disk. See Fig. 2.

Figure 2. Disk View

The Disk window also provides functions to add a disk to an existing aggregate as well as

creating new aggregates from multiple selected disks. The only other function provided by this

interface is a refresh button to poll the storage system for any updates that may have occurred

since the application was started.

3.1.2 Volume Component Analysis

The right portion of the Volume window is very similar to the Aggregate window. The

view presents a summary table of volumes that includes the name, hosting aggregate, status,

available and total space and the percentage of used space. The lower half of the view contains

a set of tabs that provide further information about the selected volume. See Fig. 3 for the

details of the view.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 133

Figure 3. Volume View

The Volume view also provides functions to create and destroy volumes, modify volume

settings and create snapshots of volumes.

3.1.3 Aggregate Component Analysis

The upper right portion of the Aggregate window (shown in Fig. 4) shows a table of the

aggregates in the system. The table has columns for the name, number of disks, status,

available space, used space, percent committed and total space. The lower half of the aggregate

view is divided between two tabs, Details and Space Breakout both of which display

information about the aggregate selected in the summary table. The details tab shows

information such as RAID type, type of aggregate (aggregate or traditional volume), Root flag,

files, maximum files, Checksum Type and whether or not it is a 64-bit aggregate. The right half

of the Details tab contains a summary table of the disks in the aggregate with disk name, usage

type (parity, dparity or data), and the RAID group that the disk belongs to. The Space breakout

tab shows space usage in a table and a graph for the aggregate. The table also shows the method

of space guarantee for the volumes.

The aggregate view provides functionality to create aggregates, offline and destroy of

aggregates, and editing some of the settings of the aggregates.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 134

Figure 4. Aggregate View

3.1.4 Cluster Component

The Cluster view (shown in Fig. 5) provides controls for takeover and giveback between

the nodes of a high availability (HA) system. This view also provides access to enabling

and disabling the HA abilities.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 135

Figure 5. Cluster View

3.2 Mobile Application UI Requirements

Working from the analysis of System Manager described above, the UI requirements for

the mobile application will be limited to the Disk, Aggregate, and Volume functions. The use

cases described above include functions such as adding disks to an aggregate; modifying the

size of a FlexVol to resolve an out of space condition and examining the state of the aggregates,

volumes and disks in the system.

The mobile system screen is limited to the point where each table presented in System

Manager in different areas of the view will need to be a separate view in the mobile application.

The data will also need to be reorganized into views that will provide useful information to the

user at each level but may not be able to show all elements of each table in the equivalent table

on the mobile UI. An example of this reduction is in the aggregate summary table. The System

Manager aggregate summary table presents multiple fields with different information. The

mobile application summary table will present the name, and state of the aggregate and leave

the other elements to be displayed by the detailed view.

The mobile application UI will need a way to select which area to examine and administer.

Each area can initially present a list similar to the summary list of data that is common for each

area of the System Manager that is being modeled. The summary list can be used to select a

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 136

detailed view. The detailed view can provide access to information that is similar in purpose to

the information System Manager presents in the lower half of the views for each area.

3.3 Mobile Application Functional Requirements

The functional requirements for the mobile application are based on the functionality

described above in the System Manager analysis. The functions to be implemented are listed

here in summarized form to simplify development and verification of completeness.

3.3.1 Disk Functions

Examine the disks in the system and the current state of the disks

Add selected disk to an aggregate

3.3.2 Volume Functions

Create a volume within an aggregate

Offline a volume

Online a volume

Destroy a volume

Modify size of a volume within the constraints of the aggregate

3.3.3 Aggregate Functions

Create an aggregate with a specified number of spare disks

Offline an aggregate

Online an aggregate

Destroy an aggregate

3.3.4 Cluster Management

Initiate a takeover from either node

Initiate a giveback

3.4 ManageONTAP API Analysis

The ManageONTAP API is a collection of web service interfaces provided by the

DataONTAP operating system on NetApp storage systems. The API provides interfaces to

perform almost every function that is provided by the DataONTAP CLI. Using the functional

requirements as a guide it is possible to identify which API calls will be needed by the various

components of the application.

3.4.1 Disk Functions

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 137

The disk-list-info API provides a collection of data for each disk in the system. The level of

detail provided by this function is exceeds the requirement to display summary data about the

disks.

In order to add a disk to and aggregate, aggr-add is used. This function requires a disk name

and an aggregate name.

3.4.2 Volume Functions

Volume information is provided by volume-list-info. The information returned by this

command includes the information that is needed for the summary as well as additional

information that could be used in future development.

The volume-create, volume-offline, volume-online and volume-destroy commands provide

the functionality to create, offline, online and destroy volumes as the names imply.

The volume-size API is a setter/getter function and can be used to retrieve the current size

or change the size of the volume depending on the usage.

3.4.3 Aggregate Functions

The aggregate functionality specified in the Functional Requirements above is provided by

the APIs aggr-create, aggr-online, aggr-offline, aggr-destroy, aggr-list-info. These commands

are similar in behavior to the volume commands.

3.4.4 Cluster Functions

The cluster functionality to provide information about the current state of the HA

configuration is provided by cf-status API. The cf-takeover and cf-giveback APIs provide the

functionality to initiate the takeover and giveback between the nodes of an HA pair.

As is implied by the complete feature set of System Manager, there are many more APIs

available from ManageONTAP. These APIs provide a rich environment to implement

additional features in the iPhone application if they are needed.

4. System Architecture

This system is divided into several components. Each component addresses one of the

areas that were selected for requirements. The interface of the application to the NetApp

system being managed is through the CocoaONTAP library that is provided by NetApp. The

application consists of several packages that encapsulate a specific feature set. In addition to

the CocoaONTAP library which provides access to the storage system and handles the

communication between the storage system and the application, there is one other set of

infrastructure components. The System Selection component will present systems that have

been used previously and allow for them to be selected for management. The login package

will verify that filer, username and password match and store that data for future use by the

System Selection component. The Main Menu is the last piece of infrastructure provided that

allows for the selection areas of management. The application contains a set of features and

presents a list of the features as the main menu once a node has been selected. Each item on the

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 138

main menu will load the associated package which contains the entire Model-View-Controller

pattern for that feature. Each package will be passed the node information needed to

communicate with the node and will instantiate the data model objects that are required for the

feature that it supports. Each package will be responsible for handling any errors that are

returned from the node through the CocoaONTAP library.

4.1 Architecture Subsystems

This section describes the roles of the system components shown in Fig. 6. These

components show the organization of the iPhone application based on the functional

requirements determined from the analysis of System Manager.

Figure 6. System Architecture

CocoaONTAP represents the supporting library provided by NetApp to develop

automation for system administration. This element is not strictly part of the system but it

provides the necessary interface between the iPhone application code and the storage system.

The NewSystem component gathers the credentials and system information from the user

that is needed to communicate with the storage system. This component also verifies the

credentials are correct and saves the system credentials for future use. The SystemSelection

component is the starting point for the application after launch. The List is populated from a

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 139

file of saved system credentials. Selection of a system from the list will load the MainMenu

Component.

The Aggregate, Volume, and Disk components perform the management tasks associated

with those parts of the storage system. Each component contains the data model that represents

the state of the respective part of the storage system.

The Aggregate component deals with the configuration and maintenance of aggregates

which are related to RAID groups.

The Volume component deals with the configuration and maintenance of volumes which

are the storage components that are exported as NFS mount points and CIFS shares.

The Cluster component allows for the verification of the current state of a clustered system

and control of node takeover and giveback.

4.1.1 Aggregates Subsystem

The Aggregates subsystem is made up of a data model that provides the required

information about the aggregates in the storage system, and several views and their associated

view controllers that allow the user to see different parts of the data model and perform certain

operations on the storage system. The views provided by the subsystem provide a summary of

all aggregates on the node as the initial view, a detailed view of a specific aggregate and a view

that provides the ability to create new aggregates. The detailed view also provides functionality

to offline, online and destroy the aggregate.

The data model for the aggregates subsystem is made up of an array of Aggregate objects.

The Aggregate object is a custom object that contains the required data for each aggregate in

the storage system.

4.1.2 Volumes Subsystem

The Volumes subsystem is very similar to the Aggregates subsystem. The primary

difference is the set of information provided by the Volume object.

4.1.3 Disks Subsystem

The Disks subsystem contains a data model that is different from the Aggregates and

Volumes subsystems. The data model for disks consists of several lists that are mutually

exclusive. Multiple lists are used to simplify the development of the views and views

controllers. Each list represents a different collection of disks. For example, there is a list of

disks for each aggregate, separate lists for spare, broken and partner disks. The increased

complexity of the data model provides a simpler mechanism for grouping the disks according

to their current usage in the views.

4.1.4 Cluster Subsystem

The Cluster subsystem is simpler than the other subsystems because it has only a single

view and view controller and the data model only requires minimal information about the

current state of the storage system.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 140

5. System Technology

The technologies used in this system work are primarily client side technologies, Cocoa

and iOS [11]. The interface to the storage system leverages a library developed by NetApp, Inc.

called CocoaONTAP that provides a set of classes for communicating commands to the storage

system and returning the results from the storage system to the other areas of code. The

mechanism used by CocoaONTAP to communicate with the storage system is XML over

HTTP or HTTPS depending on the settings selected by the user of the CocoaONTAP library.

The Cocoa Touch environment provided by Apple provides a wide array of libraries that

simplifies design and development of applications for the iPhone environment. The iPhone

Human Interface Guidelines describes the differences between the iPhone user interface and

describes some of the design options that should be considered when building applications for

the iPhone platform. iPhone OS offers the TableView and NavigationController which

together present an environment that allows for the translation of and application like System

Manager to the iPhone [12]. NavigationController helps manage a set of views, in this case

TableViews, which present a hierarchy of data. This application model is well defined in the

Table Views Programming Guide [2] [11] [13].

The Manage ONTAP API that CocoaONTAP uses to communicate with the filer is well

documented and used both internally by System Manger as well as custom tools and

automation developed by NetApp customers. Manage ONTAP API provides programmatic

interfaces to almost every feature of the Storage System. This API will be used within the

application to collect data from the storage system and send commands. CocoaONTAP

provides the infrastructure for building Manage ONTAP commands, sending them over the

network, and parses the response into Objective-C objects [6] [13] [14].

The design of the system is loosely structured based on the functionality presented by the

System Manager tool provided by NetApp. The relationship between System Manager and the

iPhone application is described in Section 3.

The NetApp storage systems consist of one or two controllers which can be arranged in an

Active/Active cluster for high availability and a set of disk shelves. Aggregates are a collection

of disks which can be divided into volumes which can be exported by the system and mounted

by clients. There are many features of the NetApp storage system that provide features for

disaster recovery and data protection. This application will focus on basic storage

administration for aggregates, volumes and disks and the cluster behavior of the storage

system.

6. System Design

The goal is to design a system that can run on the constrained screen and computing

platform of the iPhone or iPod Touch that provides similar functionality to the administrative

tools provided by NetApp. The functionality of System Manager is the model for the

application design in terms of functionality. The application will be designed using

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 141

Model-View-Controller paradigm preferred by Apple in the Cocoa development environment.

The applications design is driven by the limitations of the user interface provided by the iOS

environment [2] [13], specifically a very limited screen; the features set desired for the final

product; and the user interface provided by System Manager that is the inspiration for this

system. The initial window presented by System Manager provides several pieces of

information. In Fig. 7 the initial windows is shown.

Figure 7. System Manager Main Window

Along the left side of the window is a list of systems for which administrative credentials

are known. The upper right window shows a list of nodes that belong to the systems listed on

the left including information about the current state of the system, the IP address and the

version of DataONTAP that is currently running on the node. The lower right portion of the

window shows more information about the node selected in the upper right portion of the

window.

6.1 View Design

The primary challenge with translating presentation information between a computer

screen and an iPhone is selecting a set of data that is appropriate for the smaller display. The

iPhone interface lends itself to presenting only a limited set of information at any given time. In

the case of translating the rich desktop interface to the iPhone, partitioning the application into

specific views is the simplest approach. Because the items displayed on the right side of the

System Manager screen are primarily informational and aside from selecting different nodes to

see detailed information are not interactive, the left hand view is of primary interest. Fig. 8

shows the System Selection screen from the application.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 142

Figure 8. System Selection iPhone Screen

Fig. 9 shows the Main Menu view from the application that can be compared to Fig. 10

which shows the content of the left side of System Manager when the system hierarchy is

expanded. Differences here demonstrate the subset of features and administrative functions

that have been implemented in the application as compared to the full feature set provided by

System Manager.

Figure 9. Main Menu

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 143

Each item on the list presents a new view (Fig. 10) that exposes more information and

functionality to the user based on the features selected.

Figure 10. System Manager Expanded Tree

As the user navigates through the tree of views in the iPhone the views are analagous to the

various levels of the hierarchy presented in System Manager for each node. When a leaf elemet

is reached the source of the mapping moves from the left side of the screen to the right side.

Aggregates in System Manager opens a list on the right side that shows a list of aggregates on

the node with a summary of information about the aggregates. This information maps the the

Aggregate list shown in Fig. 11.

Figure 11. Aggregate List

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 144

While the Microsoft Windows UI has certain accepted paradigms for UI layout and

certain accepted button designs and behaviors, these standards are not the same on iOS. iOS

has its own models and standards [13]. When examining the System Manager UI for features

to implement in the iPhone application, certain conversions became obvious. In each table

that allowed for the addition or creation of a new entry or element there was an Create

button in the toolbar. This Create button becomes a “+” button in the navigation bar for each

analogous view. The Edit button in the System Manager toolbar does not have an analogue in

the iOS application. Because of the touch nature of selections editing must be selected from

the detailed view that is presented when items are selected from the list of summary tables.

6.2 Controller Design

The controller objects contain the code that handles presenting the views and providing

them with the data from the model objects. Each view will have a controller class that

handles the creation of the model classes and the collection of data from the storage system to

populate the model objects. The controller design is partially driven by the decision to use

UITableView classes to develop this application. UITableViewControllers have certain

required interfaces that provide the data that is required for the view.

6.3 Model Design

The model components of the application depend on the information that is provided by the

ONTAPI API for the commands that control the features and by the design decisions made

around what features to support in each area. For example, aggregates are represented by an

array of objects that contain a subset of the information available about the aggregate. The

subset of data is determined by the selection of data that will be presented to the user. It would

be possible to add additional fields to this object to provide additional information to the user.

This information could be presented in additional views that could be added to the application

as enhancements.

The aggregate model is representative of the various data models. The aggregate

information is fetched from the storage system when the aggregate selection is made at the

Main Menu. The data is stored in a custom object which contains a list of objects that represent

each aggregate on the storage system. The custom Aggregate object contains the data that the

application will use to present the detailed aggregate view.

In order to minimize the network activity required for the iPhone application, the data

models are use a smaller set of data than what is presented by System Manager. The

Aggregates view in System Manager presents both summary information about the aggregates

as well as disk information for the selected aggregate. The ManageONTAP API that provides

the summary information presented by System Manager, aggr-list-info, does not provide disk

information. System Manager must make use of a second API call to disk-list-info to gather the

information about the disks contained in the aggregate. The iPhone application does not collect

this additional information in the Aggregate model and therefore lacks the ability to add disks

to an aggregate from the Aggregates Views.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 145

The iPhone application models do make use of multiple calls when it improves the user

experience by providing critical information to aid the user in making decisions. This is

demonstrated in the use of Aggregate models in the Volume component to provide information

about the available space in an Aggregate when creating a volume or increasing the size of the

volume. Fig. 12 shows the aggregate data that is presented when attempting to add space to a

volume.

Figure 12. Volume Size Increase View

7. System Implementation

The procedures for converting System Manager functionality to a mobile application are

primarily based on the differences in the user interfaces between Microsoft Windows and a

touch based mobile device. The UI design of System Manager consists primarily as a series of

tables showing different pieces of information from the storage system and several sets of

dialog boxes that allow for the modification of the storage system components. The

implementation of tables in iOS is a widely used UI paradigm. The TableView is used in many

of the built in iOS applications as well as many third party applications. Mapping between the

tables of System Manger and the TableView in iOS is straight forward. The mapping of dialog

boxes to the iOS application requires more thought about what the dialog is doing and where it

would fit into the iOS UI model.

7.1 Table Translation

The tables displayed by System Manger present multiple pieces of information in each

view and are divided between a summary table of all elements and a detailed table of a single

selected element. In iOS the limitations of screen size require that each of the tables be

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 146

presented by separate views. Compare the Disk View in System Manger in Fig. 13. This view

lists all of the disks in the system and some of the data about the disks. The detailed view in

the lower part of the window displays additional information about the selected disk.

Converting this information to iOS, the summary table becomes a list of disks grouped by

current usage type which is the most important data point from the summary table for the use

cases defined for the mobile application. Selection of a disk from this table then presents an

additional view that shows the detailed data for the selected disk. Fig. 14 shows the two iOS

views that show the data provided by the single System Manager View.

Figure 13. Disk View

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 147

Figure 14. iOS Disk View

The translation of table views throughout the application focused on providing the most

import single piece of data from the summary table in System Manager in the first level view

of the iOS. In the case of disks the use information is most important. For volumes and

aggregates, the state, whether online or offline was the most important piece of information to

provide in the initial view.

7.2 Functional Elements Translation

For functional elements there are two types identified within the System Manager

application, create and modify. The availability of these functional elements depends on the

part of System Manager that is being used. For example there is no create function for disks.

The create functionality in System Manager relates to the element types being managed. In

the initial System Manager view there is an Add Systems function, in Aggregates and it is a

Create function. In iOS there is a fairly common model of adding a “+” button to the navigation

bar when it is possible to add an entry to the displayed list. This same model is used in the iOS

application to allow the user to access the functionality to create volumes and aggregates and

add system credentials to the list of systems. Fig. 15 shows some of these items.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 148

Figure 15. Create Buttons

The editing functionality provided by System Manager does not translate directly to the

iOS application. The first thing to consider is that the item to be edited is the item selected in

the summary table. In the iOS application selection from the summary table opens the detail

view. The detail view must be the start point for edit functionality. For volumes the use case

dictates that the user must be able to increase the size of a volume. The detailed view for

volumes provides size information for the volume. In many iOS applications based on

TableViews selection of a cell opens additional information about that content of the cell. In

this application the selection of the volume size cell opens a view that provides the

implemented edit functionality. Fig. 16 shows the detailed view and edit functions for the

volume component of the application.

Figure 16. Edit Functions

 In addition to the ability to modify the size, the volume detail page also provides buttons to

change the state of the volume and if the volume is offline, destroy it. The aggregate views

provide the same features. Fig. 17 shows these features.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 149

Figure 17. Offline Volume View

7.3 Cluster Management Translation

The characteristics of System Manager’s view for Active/Active Configuration are very

different from the other views that are implemented by the application. This view consists of

some informational text and buttons to initiate a takeover of each node by the partner.

Because of the simplicity of this view, the translation to iOS is almost direct. Fig. 18 shows the

details of the System Manager window and the equivalent iOS application Window.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 150

Figure 18. Cluster Views

The performance of this application is not easily measured in an objective way. In

qualitative terms the performance of the application is adequate to perform the basic

functionality that is desired for the application. There is noticeable degradation of performance

when using the application over 3G when compared to WIFI.

The iPhone and other iOS devices in their default state require that all applications be either

loaded through a development system or installed through the iTunes App Store which is run

by Apple. The deployment of this application if it were to be released by NetApp would by

necessity be through the iTunes App Store. Most likely this application would be offered under

similar terms to other system management tools and it would be up to the administrators of the

storage system to acquire the application and configure the storage systems that they manage to

support the application.

Maintenance, like deployment, is accomplished through the iTunes App Store. When a new

or updated version of the application becomes available the device on which it is installed will

indicate that updates are available in the store.

8. Summary

While developing this system, there were two application systems that we looked at for

user interface models. FilerView is a web based management system that manages a specific

node for a DataONTAP system. System Manager is a windows based system that allows the

management of several nodes from the same interface as well as management of the high

availability relationship between the nodes. While these interfaces differ in the tools the

presentation of the data, there are some underlying characteristics. Each application provides a

hierarchy of data in one or areas of the screen. The System Manager system has a tree like view

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 151

of functions in the left frame of the window. This view is similar to the way Windows Explorer

presents the directory structures on a disk. While the most direct process of mapping this type

of data to an iPhone application would be to present a single view for each level of the

hierarchy, this would produce a very fragmented application. It is useful to consider the likely

use case of the iPhone application. It is not likely that the user is going to use the iPhone to

configure every part of the storage system. The much more likely use case is a storage

administrator gets a notification at night or on a weekend that a volume is reaching capacity or

an aggregate is out of space. The administrator will want to quickly add a disk to the aggregate

or increase the size of the volume to resolve the immediate issue until they can get to a

computer at a more convenient time to resolve the matter in a more complete fashion. The other

possible event that could trigger a notification is a controller takeover. The administrator may

want to initiate the giveback operation to bring the node that failed back into service. Given the

use cases described above a subset of the features provided by System Manager can be selected

to provide the administrator with the tools to quickly resolve these issues and return to their

other activities.

In addition to these activities, a well-designed system can be expanded incrementally based

on user feedback. The application implemented in this system could be easily expanded to offer

any of the other features that are offered by System Manager without compromising the

existing functionality. As each function is added it would be necessary to evaluate the layout of

the main menu to determine if further partitioning is needed.

9. Conclusion

The translation of applications from the desktop to a mobile device requires an

understanding of both the functionality to be provided and the usage patterns of the mobile

device [15] [16]. In this case, the goal of the desktop application is to manage the configuration

and monitoring of a NetApp storage system from a desktop application. The monitoring

component shown in the right frame of Fig. 19 is something that does not translate to the usage

model for an iPhone. It is also highly improbable that a storage administrator is going to

configure every aspect of the storage system from a mobile device. The long list of capabilities

can be trimmed to a few and those can be flattened into a single list of capabilities in the main

menu.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 152

Figure 19. System Manager Monitoring Screen

Early in the development, the iPhone application presented information from both nodes at

each level of the hierarchy when lists were presented. Making the system division at the top

level as it is in System Manager greatly simplifies the application because there is only one

system to talk in each component. This division also improves the response time reducing the

number of interactions between the application and the storage system.

When considering the right frame of the application, most of the areas of interest tended to

be tables with buttons that provided access to functionality. The conversion from large tables as

presented in System Manager to the single column table views used in iPhone applications it is

necessary to convert the tables into a series of views. The top level view is a list of the rows of

the table with a possible secondary element added to the cell. For an example compare Fig. 20

the Aggregate window from System Manager to Fig. 21 the top level Aggregate view from the

iPhone application and Fig. 22 the Aggregate Detail view from the iPhone manager. Another

view could be added to show the disk roles used in the aggregate but that level of detail has not

been implemented. There is space in the detail view to provide additional information mapped

from the System Manager table. This view also shows the button implemented for changing the

state of the aggregate. An additional button will appear when the aggregate being viewed is

offline that enables destroying the aggregate.

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 153

Figure 20. System Manager Aggregate View

Figure 21. iPhone Application Aggregate List

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 154

Figure 22. iPhone Application Aggregation Detail

These views show the general guidelines used in the conversion of System Manager

functionality to the iPhone interface. The guidelines are generally useful for mapping similar

applications to iPhone but would not be appropriate for all types of applications. A word

processing application, for example, has a very different interface and goal and would not be

able to use the same types of translations.

Acknowledgment

The authors would like to thank NetApp, Inc, Francis Tang, David Halliwell and the San

Jose State University graduate student Foram Patel for their excellent support of this work of

the paper.

References

[1] Sunday, J. RE. iPhone apps. (2008, December 15). Retrieved March 14, 2010,

from http://communities.netapp.com/message/5811

[2] About Table Views in iOS Apps

http://developer.apple.com/library/ios/#documentation/windowsviews/conceptual/viewpg

_iphoneos/CreatingViews/CreatingViews.html. Retrieved November, 22, 2012.

[3] NetApp, Inc. Management Software – System Manager. Retrieved March 14, 2010, from

http://www.netapp.com/us/products/management-software/system-manager.html

[4] NetApp, Inc. Management Software – Operations Manager. Retrieved March 14, 2010,

from http://www.netapp.com/us/products/management-software/operations-manager.html

http://communities.netapp.com/message/5811
http://developer.apple.com/library/ios/documentation/userexperience/conceptual/tableview_iphone/AboutTableViewsiPhone/AboutTableViewsiPhone.html
http://developer.apple.com/library/ios/%23documentation/windowsviews/conceptual/viewpg_iphoneos/CreatingViews/CreatingViews.html
http://developer.apple.com/library/ios/%23documentation/windowsviews/conceptual/viewpg_iphoneos/CreatingViews/CreatingViews.html
http://www.netapp.com/us/products/management-software/system-manager.html
http://www.netapp.com/us/products/management-software/operations-manager.html

 Network Protocols and Algorithms

ISSN 1943-3581

2012, Vol. 4, No. 4

www.macrothink.org/npa 155

[5] NetApp, Inc. Manage ONTAP SDK Introduction and Download Information. Retrieved

March 14, 2010, from http://communities.netapp.com/docs/DOC-1110

[6] NetApp, Inc. Objective-C ManageONTAP SDK. Retrieved March 14, 2010, from

http://communities.netapp.com/docs/DOC-1984

[7] View Programming Guide for iOS: About Windows and Views

http://developer.apple.com/library/ios/#documentation/windowsviews/conceptual/viewpg

_iphoneos/Introduction/Introduction.html. Retrieved November, 22, 2012.

[8] Lam, S.C.K. A smartphone-centric platform for personal health monitoring using wireless

wearable biosensors. 7
th

 International Conference on Information, Communications and

Signal Processing, (ICICS 2009), Macau, 8-10 December 2009.

http://dx.doi.org/10.1109/ICICS.2009.5397628

[9] Zhang, L., Liu, Y., & Guo, W. Research on Diversified Designing Methods and User

Evaluation of Smartphone Interface. International Symposium on Computational

Intelligence and Design (ISCID 2010), Hangzhou, China, 29-31 October 2010.

http://dx.doi.org/10.1109/ISCID.2010.89

[10] Yun, M., Lee, J., & Kim, S., Downloadable User Interface for Mobile Devices. Fourth

International Conference on Networked Computing and Advanced Information

Management, (NCM 2008), Gyeongju (South Korea), 2-4 September 2008.

http://dx.doi.org/10.1109/NCM.2008.32

[11] Conway, J., Hillegass, A.; IOS Programming, The Big Nerd Ranch Guide, Big Nurd

Ranch, Inc., 2nd Edition, 2011.

[12] Apple iPhone Features OS X

http://web.archive.org/web/20080111051348/http://www.apple.com/iphone/features/inde

x.html#macrox. Retrieved June 15, 2010.

[13] About iOS App Programming

http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogra

mmingguide/Introduction/Introduction.html. Retrieved November, 22, 2012

[14] Liu, Q., Wang, G., & Wu, J., Efficient Sharing of Secure Cloud Storage Services. 10th

IEEE International Conference on Computer and Information Technology (CIT 2010).

Bradford (UK), June 29 - July 1, 2010. http://dx.doi.org/10.1109/CIT.2010.171

[15] Teng, C., Mobile Application Development: Essential New Directions for IT Seventh

International Conference Information Technology: New Generations (ITNG 2010), April

12-14, 2010. Las Vegas (USA). Pp. 471-475. http://dx.doi.org/10.1109/ITNG.2010.249

[16] Yu, W. D., Le, K., Towards a Secure Software Development Lifecycle with SQUARE+R.

IEEE 36th International Conference on Computer Software and Applications Workshops

(COMPSACW 2012), Izmir, Turkey, 16-20 July 2012. Pp. 565 – 570.

http://dx.doi.org/10.1109/COMPSACW.2012.104

Copyright Disclaimer

Copyright reserved by the authors.

This article is an open-access article distributed under the terms and conditions of the

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

http://communities.netapp.com/docs/DOC-1110
http://communities.netapp.com/docs/DOC-1984
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fdeveloper.apple.com%2Flibrary%2Fios%2Fdocumentation%2Fwindowsviews%2Fconceptual%2Fviewpg_iphoneos%2FIntroduction%2FIntroduction.html&ei=P2OxULCgNcGriQKPrIHoAQ&usg=AFQjCNFsDERR0iQTj40qw1uawZ4e5PkzOA&sig2=Hvo7HbcsJlBkw75z75OhCQ
http://developer.apple.com/library/ios/%23documentation/windowsviews/conceptual/viewpg_iphoneos/Introduction/Introduction.html
http://developer.apple.com/library/ios/%23documentation/windowsviews/conceptual/viewpg_iphoneos/Introduction/Introduction.html
http://web.archive.org/web/20080111051348/http:/www.apple.com/iphone/features/index.html#macrox
http://web.archive.org/web/20080111051348/http:/www.apple.com/iphone/features/index.html#macrox
http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/iphone/conceptual/iphoneosprogrammingguide/Introduction/Introduction.html

