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Abstract 

The future of computer networking will be dominated by dynamic, autonomous networks 
interacting with each other, while constantly forming new topologies by compositions and 
decompositions. These networks will be governed by distributed management entities, 
relying on a distributed data storage maintained by the individual members of the 
autonomous network. Distributed hash tables (DHT) provide a feasible solution for creating 
and maintaining data storage facilities for such networks. In our previous work we presented 
Chord-Zip, an algorithm that provides a scalable merger for Chord rings with continuously 
high data availability, thereby enabling DHTs to be used in dynamic environments of future 
networks. In this paper we propose a novel architecture for the composition of Chord rings, 
which maintains the individual ring structures, while providing the same interworking 
functions as our Chord-Zip merger. This new architecture enables a wider range of 
network-network interactions, including the movement of nodes between rings, joining or 
removal of rings from the architecture, and decomposition of a Chord-ring into multiple rings. 
The proposed architecture can also be used to provide advanced data management features, or 
replication of data elements based on network topology. It also provides an increased 
robustness for network failure scenarios, where a merger is not feasible. 
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1. Introduction  

Future networks  are imagined to be autonomous, where all management decisions are 
taken based on the common interest of the participating nodes [1]. As the number of mobile 
and versatile devices is ever increasing, such networks will inevitably become dynamic in 
nature. 

When connectivity is established between networks, they might decide to share some of 
their resources – such as routing or data storage – with each other in order to foster 
cooperation. An extreme case of this sharing is merger, where all resources, including 
management decisions are shared among all participants. 

Also these networks can at anytime separate into multiple sub-networks, either due to the 
lack of connectivity, or because a group of participants decide to lessen the degree of 
cooperation with the rest of the network. 

These network-network interactions can become arbitrarily complex, yet can be 
described by a few basic interactions. In a composition members of two networks make all 
their resources available to each other, and subordinate their decisions to the merged group’s 
common interest. In resource sharing, the individual structures of the networks are preserved, 
and only a subset of their resources can be used by the nodes of the other networks. In 
decomposition the network is split into two or more networks, where common knowledge 
might continue to exist in all emergent networks, while sharing of resources becomes limited 
or is completely nullified among them.  

Due to the dynamic nature of autonomous networks, fault tolerant data storage can only 
be achieved by spreading tasks among all participants. Several overlay networks were 
designed for providing such a distributed data storage. Unstructured overlays aim at 
providing a minimal overhead solution at the price of not guaranteeing the correctness of data 
operations. In contrast, structured overlay networks are designed to provide correctness, 
while keeping maintenance overhead scalable. 

Distributed hash tables (DHT) are a subclass of structured overlay networks, where the 
neighbourhood relations and the mapping of data to nodes is done based on hash functions. 
Many implementations of the DHT paradigm coexist, for example [2][3][4], all of which 
differ only in the routing and storage algorithms used. We base our work on the Chord-ring 
implementation [2], which is the most accepted by the research community. 

Common in the DHT approaches is that they aim at connecting every node into a single, 
global overlay network. All of these works concentrate on providing scalability and lessening 
lookup times, providing interactions only between nodes and the global DHT (join and leave), 
leaving network-network interactions out of scope. 

The difficulty of (de)composing hash tables is a consequence of the hashing, what 
unequivocally defines the overlay structure and data mapping for a given set of nodes. 
Therefore when DHTs compose, most of the data stored will need to be relocated from one 
node to another. At the same each node’s overlay neighbours need to be completely changed. 
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We observed that there is nearly enough topological information available at every node 
in order to execute the merger individually [5][6]. Chord-Zip was designed to provide the 
missing pieces of information thereby enabling a scalable merger with high data availability. 

In this paper we present a novel overlay architecture which enables data sharing 
autonomous Chord-rings while preserving their original structure. Using this architecture the 
data management substrate can also reflect resource sharing type of compositions. While this 
architecture has no additional overhead compared to mergers in stable scenarios, it allows the 
original Chord-rings to depart at any time, without disturbing the interworking among the rest 
of the rings. 

The rest of the paper is structured as follows. Section 2 gives an overview of the related 
works on the composition and decomposition of DHT overlays, along with an introduction to 
our previous work on the Chord-Zip algorithm. Section 3 describes the structure and 
functionality of the proposed interconnected architecture. Section 4 presents how network 
dynamism is handled, while Section 5 discusses data management considerations. Finally, 
Section 6 concludes the work presented in this paper. 

 

2. Related work 

Distributed hash tables have been extensively researched recently. The effort is mostly 
concentrated on the routing and storage algorithms, creating more and more sophisticated 
global data storage facilities. While these works are of primary importance, they do not 
provide interactions between mutually coexisting networks. The proposed solution in these 
situations is to revert to node-network interactions, i.e. disassemble a ring to separate nodes 
and have each of them interact with the other ring individually. 

 

2.1 DHT Composition 

Composition of Distributed hash tables has only been discussed in very few papers yet. 
These works either try to solve the composition by the reversion to node-network interactions, 
or by limiting the solution to specific scenarios. 

Papers [7][8] investigate the former approach. One of the rings is disassembled into 
nodes, and these nodes individually join the other ring without coordination. Both works 
investigate the composition from the aspects of feasibility and algorithmically correctness 
only, not considering performance metrics, such message complexity, data availability or 
completion time. 

The result of disassembling a ring is that perceived data availability becomes so low, it 
becomes impossible to rely on the facilities provided during the merger. Also, as a 
consequence of reversing to node-network interactions, these works also – directly or 
indirectly – rely on the stabilization mechanism of the Chord-rings, e.g., when joining the 
other ring. Because the stabilization periods used by these mechanisms are magnitudes higher 



Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 2 

www.macrothink.org/npa 135

than the network’s message passing time, the completion time of these algorithms becomes 
extremely long. 

The works of  [9][10] are examples for the latter approach. SkipNets are ring structures 
similar to Chord rings, but with different characteristics. They are aimed at environments 
where the nodes and their identifiers are hierarchically structured based on their network 
locations. If the composition only takes place between hierarchical groups of nodes, the 
merger process is reduced to interactions between two-two nodes at the edges of the merging 
rings (in terms of address spaces). The latter work provides an abstract algorithmic approach 
for the merger. While the proposed architecture is correct, no distributed algorithm is 
provided for building the architecture from existing Chord rings. Therefore this work can 
only be taken feasible in environments where a central management entity exists on top of the 
distributed data management. 

 

2.2 DHT Decomposition 

In the field of distributed hash tables, decomposition is not a real requirement, as the 
common interest of nodes dictates the creation of a global overlay network, where all 
information is available for all participating nodes. Therefore, decomposition is only 
investigated in the context of autonomous networks, where the cohesion of the network is 
based on policy and privacy constraints on the individual nodes. In this environment, due to 
the dynamic nature of node interests, a group of nodes might need to create a new separate 
network leaving the original one behind. 

The idea of decomposing autonomous networks is discussed in [11]. This work yet again 
uses a fallback solution for the decomposition of DHTs: the nodes of the departing sub-group 
leave the DHT one-by-one and build up a new DHT by joining in individually. Similar to the 
works on composition which relies on fallback solutions, this decomposition method will 
result in high execution time. Also data availability is not investigated, leaving both the 
original and the new network with low data availability. 

 

2.3 Chord-Zip 

We proposed Chord-Zip  as an algorithm for merging Chord-rings, free of the limitations 
of the existing works on composition. Our concerns were providing scalability in completion 
time, while maintaining high perceived data availability for applications[5]. 

The merger of Chord-rings must be done in a distributed manner in order to achieve 
scalability; however participating nodes are not in possession of enough information to 
individually execute the required changes. The required information is the new references on 
the merged ring, including the new successor and predecessor, and the list of nodes where 
data is needed to be transferred from. 

The Chord-Zip algorithm is based on our finding, that a node can possess all required 
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information by executing a search request on the other node. Also, once a node has the 
information, it is able to generate the required information for one another node without 
executing another search. Exploiting these properties, Chord-Zip works by bootstrapping a 
single node, and then passing a token around the rings from this node (Fig. 1). Each node 
upon receiving the token updates its references, initiates necessary data requests, and sends 
the token onward with updated information. 

 

 

Figure 1. The Chord-Zip algorithm. 

The basic Chord-Zip algorithm’s completion time is proportional to the total number of 
nodes (and is independent of the Chord-rings’ stabilization period). By bootstrapping multiple 
nodes in parallel, the total execution time of Chord-Zip can be reduced, inversely 
proportionally to the number of parallel initiations. We enhanced the parallelization of 
Chord-Zip by proposing a novel ring-size estimator and a bootstrapping algorithm which 
allows bootstrapping new nodes during the merger [6]. These features enable Chord-Zip to 
autonomously control the level of parallelization, in order to complement predefined 
requirements, while keeping messaging overhead minimal. 

 

3. Interconnected Chord-rings 

The interconnected architecture was designed to provide data sharing among Chord-rings. 
As compared to mergers, where a single Chord-ring is created, the interconnected 
architecture preserves the structure of the individual rings. 

This is not only beneficial when providing data storage for autonomous networks, but 
can also be used in place of a merger in a number of scenarios. Examples of these scenarios 
are where the original Chord-rings will need to return to their original structure at a later 
stage. For example when composing DHTs for a limited time only (e.g. for synchronization), 
or data sharing among DHTs formed on corporate networks, where the inter-site links are 
error-prone, and thus each site might frequently need to revert to its local DHT from the 
global data store. 

The interconnected architecture maintains the O(log N) routing property of the 
Chord-rings, even when extending the routing scope to all participating rings. The 
maintenance overhead required is the same as in the case of the individual Chord-rings, while 
node joins and failures require two extra message hops at most; thus providing similar time 
properties in recovery as the individual Chord-rings. 
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In the followings we will describe the interconnected architecture with the participation 
of two Chord-rings for easier understanding. However each of them can naturally be 
extended to an arbitrary number of interconnected Chord-rings. 

 

3.1 Architecture 

The architecture consists of the individual Chord-rings, and additional references 
between nodes of different rings. The internal architecture of the Chord-rings is preserved: 
each node maintains a predecessor and some successor references for maintenance and basic 
routing as well as a set of finger references for achieving scalable routing within its own ring. 
The interconnecting references are created on top of these original references. 

Each node N stores an interconnecting reference to node M in the other ring, if the 
responsibility intervals of N and M overlap. Figure 2. shows a segment of two rings 
(straightened for easier drawing), solid lines representing original Chord references 
(excluding fingers), dashed lines representing interconnecting references. As an example the 
responsibility interval of node N and M is also shown. These intervals overlap, therefore a 
symmetric reference between N and M exists. 

 

 

Figure 2. The interconnecting references. 

Because of the symmetrical property of overlapping intervals, the references will also be 
symmetric, i.e., if there is a reference from N to M, there will also be a reference from M to N. 
Nodes store the overlapping intervals along with the references, so they can directly forward 
requests to the responsible node of a given key on the other ring. 

For every node there will be at least one interconnecting reference, referring to its 
alternative successor, the node that would be the successor of the given node on the other ring. 
There is no upper limit on the number of references of a single node. However, as all 
references are formed between nodes and their alternative successors, the total number of 
these symmetric references within the architecture will always equal to the number of 
participating nodes. 
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M
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3.2 Routing 

Routing in the interconnected architecture can have a ring-local or global scope. Local 
routing is done by the original Chord algorithm, without modifications: a request is 
forwarded to the responsible node via finger and successor references. Routing in a global 
scope also starts by routing the request to the responsible ring locally. The responsible node 
in turn might extend the request to global scope. This is achieved by forwarding the request 
via the interconnecting references. In case of multiple Chord-rings in the architecture, the 
request is forwarded on all references in parallel. 

As the interconnecting references directly connect a responsible node to its responsible 
counterpart in the other ring, extending to global scope will only require an extra single hop. 
Thus, the O(log N) property of the request routing is not modified when using global scope 
instead of local. 

The existence of the interconnected architecture is transparent for applications. They 
continue to send requests to their local Chord entities. These requests will be forwarded to the 
responsible node on the ring as a local search. Write requests are executed on the local 
responsible nodes, and no further action is taken. Read requests are however extended to 
global scope, when needed. If the requested key can not be found on the local responsible 
node, the request is forwarded to the responsible node of the other ring via the 
interconnecting reference. In case of multiple Chord-rings, the read request can be forwarded 
to all the other rings in parallel. 

Multiple, conflicting responses can be handled in multiple ways. There are two trivial 
solutions: the node can either select one of the values (e.g., the latest one if a timestamp is 
available), or it can group all responses into a single reply message, leaving conflict 
resolution to the application. In case of cooperating autonomous networks, where same keys 
represent the same semantic meaning, the collected values can be aggregated into a single 
value before sending the response back. 

 

3.3 Maintenance. 

In the interconnected architecture only the individual Chord-rings are maintained actively. 
The maintenance is done by running the original Chord maintenance algorithm within each 
ring. Message sequences of the algorithm are not modified, but the data sent within these 
messages is extended. Nodes participating in the interconnected architecture not only pass 
their successor lists to their predecessors, but also their interconnecting references, including 
the corresponding overlapping responsibility intervals. References of the successors are also 
distributed during maintenance, which will result in each node having an up-to-date reference 
list for all nodes in the successor list. 

No active maintenance is used for the interconnecting references, i.e., no keep-alive 
messages are sent between nodes referencing each other. A reference is created during the 
interconnect architecture creation (see Section 4.1), or as a result of the internal Chord-ring 
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maintenance algorithms. References are deleted when nodes leave the network, or when a 
reference is found to be invalid and is not possible to be fixed. 

When a node joins a Chord-ring, it is bootstrapped based on the original Chord algorithm. 
Its predecessor and successor nodes are set, and the node receives its successor list as part of 
the maintenance algorithm. As the joining node inherits part of the responsibility interval of 
its successor, only the successor’s interconnecting references need to be taken care of. If a 
referenced node’s interval is completely taken over, the newly joined node sends an update 
message to the referred node, while creating the reference on itself as well. At the same time 
the successor invalidates its own reference. If the referred interval is separated by the newly 
joined node, the interval must be separated, where one segment will belong to the original 
successor and one to the newly joined node. Both nodes send an update to the referred node, 
the new one creating a new reference, the successor updating the overlapping interval. As 
both nodes are in possession of the same information, no extra coordination is needed 
between them, other then the modified maintenance algorithm’s messages. 

In case of a node failure the failure is detected by the node’s predecessor on the 
Chord-ring as the maintenance algorithm times out. The predecessor will possess the list of 
the failed node’s references as well as its successor (which will be the detecting node’s new 
successor). Thus the predecessor can send a notification to all referenced nodes on the failure 
indicating the new successor. In turn the notified nodes can update their references, also 
notifying the referenced nodes. 

In Figure 3. greyed lines represent references lost because of the failure of node N. Weak 
dashed lines show notification messages, strong dashed lines the affected interconnected 
references (straight ones modified, curved ones created). When node A detects the failure of 
node N, it sends notifications to nodes C and M, indicating that N failed and its successor was 
B. As a consequence, C creates a new reference to B (for the interval between A and C) and 
sends a create request to B. Also M extends its overlapping interval with B (to the interval 
between C and B), and sends an update on this to B. 

 

 

Figure 3. Example of handling node failures 

If a reference is found to be invalid by a node, it will try to see if it can contact the 
successor of the failed node, which is the potential inheritor of the lost reference. This 
successor will be referenced by one of the successors of the detecting node. In case the 
successor is referenced, the reference is updated, and the request is forwarded on the updated 
reference again. Otherwise the invalid reference is dropped, and will later be updated by the 
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maintenance algorithm of the ring of the failed node. 

Nodes leaving the Chord-ring are handled in a similar manner to failed nodes, however 
the notification is sent to the successor by the leaving node itself, this way increasing the 
responsiveness of the architecture. 

These basic maintenance steps enable transition of nodes from one ring to another. By 
sequentially executing the leave and join operations, a node can switch between rings of the 
interconnected architecture. As it already has a reference to its alternative predecessor and 
successor (in the form of interconnecting references), the joining procedure does not involve 
an initial search: the location of the node on the other ring is already known. 

As the maintenance of the interconnect architecture relies on the internal Chord 
maintenance algorithm, it can only survive failure scenarios a Chord ring itself would. This 
means that the architecture recovers if the number of mutually failing nodes is not higher than 
the length of the successor lists propagated by the Chord maintenance algorithm. 

Incorporating active maintenance on the interconnect references could increase the 
robustness of the network, but we prioritized on the maintenance overhead in our work, i.e., 
our aim was to have no more maintenance work involved in the architecture as in the case of 
separated (or merged) Chord rings, where the maintenance overhead is proportional to the 
number of nodes. 

4. Network interactions 

The interconnected architecture is formed by a set of individual Chord-rings with a 
similar algorithm to merger. Also Chord-rings can join this architecture at a later point, such 
as a Chord-ring can be merged to an already merged set of rings. However the architecture 
supports further network interactions, such as the departure of a Chord-ring. Furthermore this 
architecture provides a way for a Chord-ring to be decomposed into multiple rings, either as 
member of an interconnected architecture, or individually (thereby forming an interconnected 
architecture). 

4.1 Creating the interconnect architecture 

We have already discussed that in the interconnected architecture there is one reference 
from each node to its alternative successor. As the Chord-Zip merger algorithm was based on 
the idea of propagating the alternative successors to each node via tokens, that algorithm can 
be reused with minor modifications. 

The first step in the creation of the architecture is bootstrapping an arbitrary node. This is 
done by initiating a search for the node’s alternative predecessor and successor on the other 
ring. First a query is initiated for finding the node responsible for the bootstrapping node’s 
address, the result of which will be the node’s alternative successor. Then, the alternative 
successor is queried for its predecessor, which will naturally be the bootstrapping node’s 
alternative predecessor. Once the bootstrapping is finished, the node will act as if it received a 
token containing the alternative predecessor and successor, as described below. 
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A node upon receiving a token, reads the contained alternative predecessor and successor. 
From these data the overlapping responsibility interval with the alternative successor can be 
calculated. The lower bound of the interval is either the node’s predecessor or its alternative 
predecessor, depending on which one is closer to the node itself. The upper bound will 
always be the node in possession of the token. Once calculated, the node registers the 
reference along with the overlapping interval, and sends a notification to the alternative 
successor in order to create a back-reference to the node for the same interval. 

Finally the node sends the token, and sends it to the next closest node: either its successor, 
or its alternative successor. In the former case, the contents of the token are untouched, 
because then the node’s successor must have the same alternative references as the node itself. 
In the latter case, when the token is sent to the other ring, the alternative predecessor is set to 
the current node, and the alternative successor is set to the node’s successor. See Figure 4. 

Figure 4. Bootstrapping node 

The interconnected architecture is completed when the token reaches back to the 
bootstrapped node. By this time all symmetric interconnecting references have been created. 

The above presented algorithm’s completion time is linearly proportional to the total 
number of nodes. But, as it is algorithmically equivalent to the Chord-Zip algorithm, the 
parallelisation procedures discussed in [6] can directly be applied to this algorithm as well 
thus improving scalability. 

 

4.2 Chord-ring joining interconnected rings 

When a Chord-ring needs to join an interconnected architecture, missing references need 
to be created. These references go from nodes of the ring to the nodes in the interconnected 
rings, and vice versa, in a symmetrical manner. 

From an algorithmic perspective, this scenario is identical to the creation of the 
interconnected architecture, treating the rings as a single Chord-ring. To achieve this, nodes 
of the interconnected overlay will use their closest references (own or alternative predecessor 
and successor) instead of using their own ones. This is possible as the interconnecting 
references will always refer (among other nodes) to the node’s alternative predecessor and 
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successor. 

During the bootstrap phase, when the search is initiated on an arbitrary node of the 
interconnected rings, the request must be forwarded via interconnect references to the node 
that is the alternative successor of the bootstrapping node taking all interconnected rings into 
consideration. Also, when the alternative successor is requested for its predecessor, it must 
reply with the closer one of its own or alternative predecessor. During the token passing 
phase, the nodes of the interconnected rings will have to use the closer of their own or 
alternative successors as both next hops and alternative successors. 

 

4.3 Leaving or dismantling the interconnected architecture 

Each participating Chord-ring is autonomously maintained, so a ring will remain intact if 
it loses connection to the other rings, i.e., its interconnecting references become invalid. 
Therefore no action is to be taken either when a ring departs, or when the complete 
architecture falls apart. 

The interconnecting references will automatically be deleted the first time they are used 
and their invalidity is detected. If the leaving or dismantling is planned by a higher level 
management, the dissemination of this decision can be done in order to actively delete the 
references. The deletion can be done individually on the nodes; therefore an arbitrary 
dissemination algorithm can be used. The details on the decision and dissemination logic are 
out of scope for the present paper. 

 

4.4 Decomposing a Chord-ring 

When describing the maintenance of the interconnected Chord-rings, we already showed 
that this architecture provides a convenient way for a node to move from one ring to another. 
This architecture can also be used to enable the decomposition of a Chord-ring into multiple 
rings. The decomposing ring can already be part of an interconnected architecture, or can be 
an individual ring, thus using the architecture as an intermediary step during the 
decomposition. 

The details of the management and coordination of the decomposition are out of scope 
for the present paper. We assume that as the result of these actions a set of nodes participating 
in the decomposing Chord-ring will be appointed to depart and create a new ring. This set 
does not need to contain all nodes to depart: once the appointed core set created the new 
Chord-ring, the rest of the nodes can move over from the decomposing ring to the new one. 
At this point the original rings and those composed of the core set form a correct 
interconnected architecture. As a result, moving nodes already know their alternative 
predecessors and successors (based on the interconnecting references). Therefore moving a 
node from one ring to another does not involve an initial search operation, resulting in 
constant node-moving times. 
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As all nodes of the new Chord-ring are known, their predecessor successor and finger 
references can be set by the management, thereby creating a proper Chord-ring. At the same 
time each one of these nodes can leave the original ring, as described in Section 3.3. 

Besides, the interconnect creation algorithm is executed in parallel between the newly 
created and old rings (or in case the ring was part of the interconnected architecture, the 
algorithm is run between the architecture and the new ring). The algorithm can be started on 
all departed nodes concurrently. These nodes already have references to their original 
successors from the old ring; therefore these references can be used as the start of the 
bootstrapping process. Exploiting this feature, the execution time of the bootstrapping 
process becomes constant as compared to the original logarithmic time which involves a 
search. 

As a result of the decomposition the remaining ring and the newly created ring will take 
part in an interconnected architecture. The advantage of incorporating the architecture into 
the decomposition process is that, due to the data sharing, the applications will not perceive 
data loss on the newly created ring. Also it allows the possibility of saving the information 
from the old ring to the new one (as described in Section 5) before finally separating the two 
rings, by dismantling the interconnected architecture. The rings at this point are already 
maintained individually; therefore the interconnected architecture can be dismantled without 
further action. 

 

5. Data management 

The proposed data handling for the interconnected architecture is based on minimizing 
message overhead while providing global scope for the applications. By allowing an 
increased overhead, the scope of the requests can be changed, and new functions can be 
introduced in order to provide a higher level of resilience. 

 

5.1 Scope 

In the interconnect architecture, pieces of data are stored on the individual rings 
according to the original Chord algorithm. The architecture is transparent for applications: 
they use a single Chord API to initiate requests. Write requests are only handled on the local 
ring. Read requests are handled on a global scale, by forwarding requests to the other ring via 
the interconnecting references, if a local copy is not found. 

A drawback of the transparency is that an application has no means to communicate 
whether a request – either read or write – has a ring-local or global scope. Therefore the 
architecture must handle all requests as described above. If the backward compatibility 
towards applications can be broken, the API towards applications can be changed, enabling 
them to indicate the desired scope of their requests. Thereby requests could only be extended 
to a global scope when explicitly requested. 
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Providing explicit local and global scope on data for applications has a number of 
potential use cases. Restricting reads to the single rings for some keys enables the reuse of the 
same keys in separate rings for ring-local data. Enforcing write requests to global scope 
allows explicit replication of data to all Chord-rings. Given the set of rings are created on 
separate segments of the physical topology, this also enables topological redundancy. 

In overall, the enabling applications to explicitly indicate scope, reduces the bandwidth 
usage, especially on links connecting separate Chord-rings, and also provides a means to 
increase robustness by replicating data. 

 

5.2 Replication 

The basic operations described so far fulfil the data sharing requirement, but provide no 
robustness. Robustness can be achieved by also forwarding write requests on the appropriate 
interconnecting references, thereby duplicating all inserted data to all participating rings. As a 
result each piece of inserted data will be available in both rings after an incidental network 
split. 

If data availability is required on all rings, the architecture is also capable of actively 
replicating data from one ring to another when the Chord-rings are interconnected. This is 
done similar to the data transfers of the Chord-Zip algorithm: when a node initiates the 
creation of a symmetrical reference for a responsibility interval, the nodes also send each 
other a copy of their key-value pairs falling into the given overlapping interval. Conflicting 
keys can be handled differently, either on a network or on an application level. 

The replication can also be initiated at any time during the lifetime of the interconnect 
architect. The replication can be handled individually by nodes (and their referenced nodes), 
therefore it can be requested on all nodes by using arbitrary procedures. The nodes will send 
each other their key-value pairs over the symmetric references. This way, in case of a planned 
separation of networks, data security can be ensured. 

 

5.3 Robustness 

The interconnected Chord-rings based replication can potentially replace the replication 
facilities provided by various Chord-ring implementations. In most Chord-ring based 
replications, data elements are replicated to successors. Therefore in case of a node failure the 
data is already available on the new responsible, but need to be replicated to one another 
successor to maintain the robustness. In the interconnected architecture data is stored at 
responsible nodes of participating rings. After a node failure the new responsible can 
reacquire the lost data from any of the other rings. Figure 5 shows an example of these 
robustness facilities. The left figure shows a single merged ring, where a given key is 
replicated to the two successors. The right figure shows an interconnected architecture, where 
the key is stored in each separate ring (interconnecting references are omitted). 



Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 2 

www.macrothink.org/npa 145

 

Figure 5. Redundancy provided by Chord implementations 
and the interconnected architecture 

Furthermore, in a Chord-ring implemented replication scheme, one can only ensure the 
number of replicas available in the network, but cannot influence the physical location of 
these replicas. Therefore this solution cannot guarantee data availability after network splits. 
When using the interconnected architecture for robustness, a replica will be available in each 
ring. The network management, by locating the Chord-rings along potential failure 
boundaries, can ensure that all data will be available in each separated ring in case of a 
network split (see Figure 5.). 

 

6. Conclusion 

In this paper we proposed a novel architecture, the interconnected Chord-rings, which 
enables data sharing among Chord-rings, while preserving the composing ring’s autonomy. 
This is achieved by virtually merging cord rings into an interconnect overlay in which read 
and search operations are performed, while limiting write requests to the local rings. The 
composition, decomposition, maintenance and data management algorithms and the 
robustness property of the proposed architecture were discussed in details. The architecture 
enables Chord-rings to also be used in the context of autonomous networks, where a lower 
level of cooperation needs to be supported by the data management substrates. The 
architecture can also be used to provide DHT-related features, such as decomposition, or 
topological redundancy. 

We believe that the presented work can directly be reused and further investigated in the 
field of autonomous networks as well as in the context of distributed hash tables. 
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