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Abstract 

Wireless sensor network (WSN) has emerged as a promising technology thanks to the recent 
advances in electronics, networking, and information technologies. However, there is still a 
great deal of additional research required before it finally becomes a mature technology. This 
article concentrates on three factors which are holding back the development of WSNs. 
Firstly, there is a lack of traffic analysis & modeling for WSNs. Secondly, network 
optimization for WSNs needs more investigation. Thirdly, the development of anomaly 
detection techniques for WSNs remains a seldom touched area. Among these three factors, 
the understanding regarding the traffic dynamics within WSNs provide a basis for further 
works on network optimization and anomaly detection for WSNs. 
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1. Introduction  

Wireless sensor network (WSN) has emerged as a promising technology because of the 
recent advances in electronics, networking, and information processing. The WSN research 
was initially driven by military applications such as battlefield surveillance and enemy 
tracking. Now, many civil applications of WSN have also been proposed, which include 
habitat monitoring, environmental observation and forecasting systems, health monitoring, 
etc. In these applications, many low power and inexpensive sensor nodes are deployed in a 
vast space to cooperate as a network. 

Although WSN is a promising technology which can be used in many applications, there 
are still a few obstacles to overcome before it finally becomes a mature technology. One of 
the key obstacles is the energy constraint suffered by the most inexpensive sensor nodes, 
where batteries are the main source of power supply. Given this obstacle cannot be removed 
in the near future, optimizing the design of WSNs thus the minimum energy will be 
consumed is very important.  

In WSNs, communication is believed to dominate the energy consumption [2]. Energy 
expenditure is less for sensing and computation. The energy cost of transmitting 1 Kb a 
distance of 100 meters is approximately the same as that for the execution of 3 million 
instructions by using a general-purpose processor [3]. Thus, minimizing the energy 
consumption due to communication is the key for the relief of the energy constraint in WSNs.  

Currently, the knowledge about the communication in WSNs is still partial and vague, 
especially for traffic characteristics and communication patterns. Obviously, the knowledge 
about the traffic characteristics and communication patterns can aid in the understanding of 
the energy consumption and its distribution in WSNs. Thus, the investigation of traffic 
characteristics and communication patterns is a good starting point in the search for more 
energy-efficient WSNs. Following on from this it will be possible to propose new solutions 
for the design of WSNs in order to optimize the energy consumption.  

Another concern for WSN technology involves security. WSNs will not be successfully 
deployed if the security issue is not addressed adequately. Security becomes more important 
because WSNs are usually used for very critical applications. Furthermore, WSNs are very 
vulnerable and thus attractive to malicious attacks because of their cheap prices, 
human-unattended deployment and the nature of wireless communication. The existing 
solutions to the security in WSNs include using key management and authentication [4]. 
However, these preventive mechanisms cannot deter all possible attacks (e.g. insider attacks 
possessing the key). Actually, malicious attacks may exhibit anomalous behaviours in WSNs. 
With regard to communication, malicious attacks can trigger arbitrary communications, while 
a normal communication must follow protocol specifications and application scenarios. Thus, 
it should be interesting to investigate the possibility of detecting malicious attacks by 
identifying the anomalies exhibited within the WSNs' communication traffic.  

Because sensor nodes are cheap devices and they can be deployed in harsh environments 
(e.g. battlefield, forest), they are prone to fail either by themselves or by means of others (e.g. 
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enemies, animals). Further, it is also common for battery-supported sensor nodes to fail 
because of energy exhaustion. To provide efficient maintenance for WSNs, those performing 
this maintenance require instant notifications about the sensor node failures. Because a failed 
sensor node cannot maintain efficient communication with the other nodes, sensor node 
failures have the possibility to be instantly noticed by observing the degraded or lost 
communication in relation to the failed nodes. This strategy has a similarity with the 
detection of traffic anomalies caused by malicious attacks. Both of them require 
comprehensive knowledge about the communication traffic before they can identify any 
traffic anomaly. 

The aim of this article is to investigate the communication traffic dynamics and patterns 
in WSNs and find their applications with reference to network optimization and network 
anomaly detection. The applications of WSNs are abundant. Because the communication 
traffic in WSNs is very dependent on the application scenario, only those selected typical 
WSN scenarios (e.g. surveillance, target tracking) will be investigated. Additionally different 
types of communication traffic exist, including data traffic, routing discovery traffic, link 
layer feedback and hello message, etc. This article mainly focuses on data traffic and there is 
a limited involvement of other traffic types. 

In the following, the survey of the works in the field of traffic analysis & modeling, in 
the field of network optimization and in the field of network anomaly detection will be 
presented separately. However, particular emphasis will be put on the relationships between 
traffic analysis & modeling and network optimization, and between traffic analysis & 
modeling and network anomaly detection throughout the presentation. 

2. Traffic Analysis & Modeling for WSNs  

WSNs consist of a large number of tiny and cheap sensor nodes that cooperatively sense 
a physical phenomenon. Existing research results and products have provided the possibility 
to build effective WSNs for many applications. If the traffic features inside WSNs were better 
understood then the WSNs could be made to be even more effective. For example, better 
routing protocols and sensor deployment strategy could be designed if the traffic burden 
among the sensors was better understood. Better fault and security management could be 
applied if normal and abnormal traffic could be kept apart according to traffic features.   

The traffic dynamics for different types of traditional networks, both wired and wireless, 
have been investigated in the literature. However, the specialty of WSNs makes a 
reinvestigation of traffic dynamics necessary. Constructing accurate and analytically tractable 
models for sensor network traffic will provide a basis for future work on network design, 
optimization and security. Unfortunately, at the time that this article was written, research 
regarding traffic modeling and analysis in WSNs was still rather limited. The few studies that 
do exist include works focusing on data traffic arrival process, sequence relations among 
general kinds of packets, and data traffic load distribution. 

2.1 Data Traffic Arrival Process 

Because the data traffic dynamics in different WSN scenarios are quite different, the data 
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traffic modeling and analysis in WSNs will be quite application dependent. In [5], it is 
suggested that WSN applications can be categorized as event-driven or periodic data 
generation. For periodic data generation scenarios, constant bit rate (CBR) can be used to 
model the data traffic arrival process when the bit rate is constant [6]. When the bit rate is 
variable, a Poisson process can be used to model the data traffic arrival process as long as the 
data traffic is not bursty [7]. For event-driven scenarios such as target detection and target 
tracking, bursty traffic can arise from any corner of the sensing area if an event is detected by 
the local sensors. A Poisson process has also been used to model the traffic arrival process in 
an event-driven WSN [8]. However, there is no solid ground to support the use of a Poisson 
process in this case. Actually, the widely used Poisson processes are quite limited in their 
burstiness [9, 10]. Instead of using Poisson processes, the author of this article proposes to 
use an ON/OFF model (see Figure 1) to capture the burst phenomenon in the source data 
traffic of an event-driven WSN [11]. Further, the distributions of ON/OFF periods are found 
to follow the generalized Pareto distribution in his considered WSN scenario. Ref. [12] 
studies a different WSN scenario - a mobile sensor network (MSN). In an MSN, the node 
mobility introduces new dynamics to network traffic. In [12], the authors find that the 
mobility variability of humans (in this case, sensor nodes are attached to humans) and the 
spatial correlation of the collected information lead to the pseudo-LRD (i.e. long range 
dependent) traffic, which exhibits characteristics significantly different to that of Markovian 
traffic. 

          

Figure 1: ON/OFF state transition diagram 

2.2 Sequence Relations among General Kinds of Packets 

Sequence relations exist in some kinds of packets. For example, a Routing Reply 
message always comes after a Routing Request message and that is specified by any ordinary 
routing protocol. In [13], the authors propose to use a finite state machine (FSM) to specify 
correct routing behavior for the ad hoc on demand distance vector (AODV) routing [14]. The 
rationale behind this is that the AODV protocol has specified the sequence relations among 
different kinds of routing messages and such sequence relations can be depicted by an FSM. 
The authors in [15] also use FSM to model the correct routing behavior for the dynamic 
source routing (DSR) [16]. Because the routing protocols AODV and DSR have clearly 
specified the routing operations, the sequence relations among different kinds of routing 
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packets can be manually abstracted into an FSM. In both [13] and [15], the authors have used 
their FSMs to validate real-time routing behaviors and detect possible malicious attacks. 

In addition to that the sequence relations among some special kinds of packets (e.g. 
routing messages) are possible to be specified according to protocol specifications, the author 
of this article suggests that the sequence relations among general kinds of packets can also be 
learned automatically by on-line training. In [17], the authors firstly classify the arriving 
packets according to their attributes (e.g. packet type, addresses) and then map the packet 
arriving sequence to an infinite character string. Afterwards, the on-line learning of the packet 
sequence relations are conducted by extracting every unique character substring encountered 
during the window-based scanning process. The learned packet sequence relations can be 
used to build the normal traffic profile for the node of interest in a static WSN. In a dynamic 
WSN in which some of the nodes are mobile, the traffic profile learned in this manner will 
evolve quickly over time and will thus be less meaningful.  

2.3 Data Traffic Load Distribution 

In a WSN, the data traffic load is not evenly distributed over the nodes. For example, the 
sensors which are one hop away from the sink relay the entire network's data traffic. This 
imbalanced data traffic load distribution can degrade the network's lifetime and functionality. 
Hence, efforts have been devoted to characterizing the data traffic load distribution in WSNs. 
Ref. [18] proposes an analytical analysis on the data traffic load distribution over a randomly 
deployed linear WSN. It has been shown that the data traffic load over a node increases the 
closer it is to the sink, however, a reduction in the data traffic load is expected for sensors that 
are very close to the sink. In [19, 20], data traffic load is formularized as a function of the 
distance to the sink in dense planar WSNs. In a similar manner to that in a linear WSN, the 
data traffic load over a node in planar WSNs also increases as the node moves closer to the 
sink. For a symmetric sensor network (i.e. all nodes of the same distance from the center of 
the network are similar) with nodes evenly distributed in the sensing field, the author of this 
article concludes that the expected data traffic load over a node is in direct proportion to the 
network radius, in inverse proportion to the mean routing hop length, and independent of the 
node density [20].  

Because the distribution of data traffic load is closely related to the distribution of energy 
consumption and the latter has a significant impact on the performance of WSNs, the research 
results concerning the distribution of data traffic load can be used to optimize the 
performance of WSNs. For example, the author of this article has proposed an optimal energy 
allocation scheme for WSNs based on the understanding of the data traffic related energy 
consumption in the network [21]. 

3. Network Optimization for WSNs  

There are many network optimization problems to be solved in WSNs, such as rate 
control, flow control, congestion control, medium access control, queue management, power 
control and topology control, etc. [22]. It is difficult to provide a complete overview in 
relation to all issues relating to network optimization in WSNs. However, it is worthwhile, 
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none the less, to aim for a fairly comprehensive summary of important topics, with particular 
emphasis on the optimization of energy consumption. 

3.1 Energy-Efficient Routing Design 

Because communication dominates the critical energy consumption, routing design is 
usually considered to be the core of sensor network design. Many routing algorithms have 
been proposed in prior research. The shortest path is the typical and fundamental 
consideration for network flow routing problems. A simple translation of this consideration in 
sensor network routing is the minimum hop (MH) routing. The AODV routing is an example 
of using the number of link hops as its routing metric. However as the limitation of battery 
power is one of the most fundamental aspects of sensor networks, routing algorithms for 
sensor networks generally attempt to minimize the utilization of this valuable resource. Many 
researchers have proposed shortest path algorithms in order to minimize the utilization of 
energy. For example, the minimum total transmission power routing (MTPR) proposed in [23] 
and the minimum total energy (MTE) routing introduced in [24, 25] attempt to reduce the 
total transmission energy per data bit, where the path length is the sum of the energy 
expended per data bit during its transmission over all links in the path.  

It was realized by the sensor network research community that improving the ratio of 
packets transmitted to energy consumed by the network is, by itself, not a good measure of 
the efficiency of the network [26]. Ref. [25] proposes an algorithm which attempts to 
minimize the variation in node energy levels. This metric ensures that all the nodes in the 
network remain up and running together for as long as possible. A flow augmentation (FA) 
[24, 27] algorithm incorporates MH, MTE, and other residual energy considered routing 
algorithms together with adjustable parameters. The maximum residual energy path (MREP) 
routing [27, 28] is an algorithm based on similar considerations which attempts to postpone 
the death of the first node by using the maximum remaining energy path.  

To provide more insights into the energy-efficient routing design, many theoretical 
analyses concerning the optimal routing performance have also been conducted. In [28], the 
authors consider the problem of choosing routes between a set of source nodes and a set of 
sink nodes of an ad-hoc network so that the time until the first battery expires, is maximized. 
The authors note that choosing a route which results in minimum total energy expenditure is 
not always desirable because some of the nodes may have an excessive relaying burden, and 
hence these nodes may expire too soon. This in turn could lead to a loss of connectivity. To 
overcome this problem, the authors suggest that the routes should be chosen with the ultimate 
objective of maximizing the time until the first battery expires. In order to achieve this 
objective, the minimum energy paths are not necessarily the best choices. In [28], such an 
energy-efficient routing problem reduces to a linear programming problem which is described 
as the following: 

        max   Lifetime 

s.t. 1. Energy Constraint 

      2. Flow Conservation Constraint             (1) 
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where Lifetime is the network operational time till the first battery expires, Energy Constraint 
specifies that the energy expended by sensing, communication and other operations cannot 
surpass the initial energy reserves, and Flow Conservation Constraint specifies that the 
number of outgoing data flows of each node should be equal to the sum of the number of 
incoming data flows of that node plus the number of data flows originating at that node. 
Obviously, the data flows which maximize the Lifetime correspond to the optimal routing 
strategy. The authors of [29] have a similar concern. They also consider the lifetime of a 
network until the first battery expires, and the network suffers from both the flow 
conservation constraint and the energy constraint. Besides the performance of the optimal 
routing, the authors are also interested in the following question: How much improvement in 
the lifespan of a network can be expected by changing only the routing algorithm? Thus, they 
have computed explicit bounds on both the minimal and the maximal energy that routings 
will consume, and used them to bound the lifetime of the network.  

However, the fact that the routing strategy is designed in such a way that all nodes die 
simultaneously (by attempting to postpone the time that the first battery expires) does not 
automatically imply that the energy utilization is optimal [26]. In reality, the energy possessed 
by a normal sensor node is very easily exhausted and thus the node fails. For many sensor 
network applications such as military surveillance, full or guaranteed sensing coverage can 
still be provided in the case of sensor failures, by leveraging the redundant deployment of 
sensor nodes. Given that the network can still be useful even after some of sensor nodes have 
died, the metric attempting to postpone the death of the first node is unable to offer an 
optimal solution. The authors of [26] have exhibited similar thinking and define the network 
lifetime as the time elapsed for some fraction of nodes in the network to die, which is more 
practical than earlier definitions which use the time to the death of the first node as the 
network's lifetime. Unfortunately, as the network lifetime definition changed, the 
fundamental performance bound or the reference to the optimal solution also became unclear.  

In [30, 31], the author of this article uses a new concept called application-tolerable 
network run-time information-collecting ability in judging the lifetime of a network, which is 
more information oriented compared to the definition used in [26]. With this new network 
lifetime definition, nodes are allowed to die during the network's operational lifetime, which 
means that the network topology could change during the network operational lifetime and 
the data transmission between any two nodes could become unstable. All these make it 
difficult to give a linear programming optimization model similar to those proposed in [24, 
28 and 32]. Thus, a relaxed linear programming optimization model which can give a tight 
upper bound is instead proposed in [30, 31]. In a similar manner to (1), the optimization 
problem formulated in [30, 31] is described as the following: 

max  Lifetime  or  Total Information Collected 

s.t. 1. Energy Constraint 

   2. Flow Conservation Constraint 

   3. Application-Dependent Requirement on Network Information-Collecting Ability (2) 
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In the above, Lifetime is the network operational time till the network's information 
collecting ability falls below the application-dependent requirement. Total Information 
Collected is a performance metric which could be more suitable for information-collecting 
purpose WSNs. It represents the total information collected by the entire network throughout 
its lifetime. Energy Constraint and Flow Conservation Constraint have the same meaning as 
those in (1). Application-Dependent Requirement on Network Information-Collecting Ability 
specifies the worst network information collecting ability which can be tolerated by the 
application. It can be also viewed as a translation of the network lifetime definition. The 
results obtained through this model offer insights for future routing design and can also be 
used as benchmarks in the evaluation of energy-efficient routing algorithms designed for 
WSNs. 

3.2 Energy-Efficient MAC Design 

Compared to routing protocols, medium access control (MAC) protocols provide more 
direct influence over the utilization of the transceiver which is the largest energy consumer in 
most sensor nodes. Traditionally, MAC protocols are designed to maximize packet 
throughput, minimize latency and provide fairness. However, the design of MAC protocols 
for WSNs focuses on minimizing energy consumption.  

It has been identified that the idle mode energy expenditure may spend a considerable 
amount of energy in WSNs [33]. Because many WSN applications possess a low message 
rate characteristic, most energy will be wasted by idle listening when traditional MAC 
protocols are used for WSNs: Since a node does not know when it will be the receiver of a 
message from one of its neighbors, it must maintain its radio in receive mode at all times. If 
nodes exchange short messages with their neighbors at an average rate of one per second and 
both the transmitting and the receiving of a short message take 5 milliseconds, then the radio 
will spend 99% of the time on idle listening [34].  

There are several solutions addressing the problem of energy waste due to idle listening. 
In general, some kind of duty cycle is involved, which allows each node to sleep periodically. 
TDMA-based protocols are naturally energy preserving. However, allocating TDMA slots is a 
complex problem that requires coordination. Another way of energy saving is to use an extra 
radio, which operates on a different frequency to that of the radio used for communication 
[35]. However, this approach is not appropriate for most wireless sensor nodes currently in 
use where only a single radio is available on each node. S-MAC [36] is a single-frequency 
contention-based protocol specially designed for WSNs. It divides the time into fairly large 
frames. Each frame consists of two parts: an active period and a sleeping period. During the 
sleeping period, a node turns off its radio in order to preserve energy. During the active 
period, a node communicates with its neighbors and sends any message queued during the 
sleeping period. In order to synchronize, the sensor nodes periodically transmit SYNC 
messages at the beginning of the active period. The SYNC messages allow the sensor nodes 
to learn of their neighbors' schedules so that they can wake up at the appropriate time. Each 
sensor node performs a simple contention avoidance algorithm based on a random backoff to 
limit the number of SYNC message collisions. The T-MAC [34] protocol extends S-MAC by 
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using a timer to indicate the end of the active period instead of relying on a fixed duty cycle 
schedule. By adaptively ending the active period, T-MAC nodes may save energy by 
lowering the amount of time they spend on idle listening and also by adapting to changes in 
traffic conditions. 

3.3 In-Network Processing 

WSNs are capable of collecting an enormous amount of data over space and time. Often, 
raw data is transmitted from each sensor node to a central processing location. This may 
cause a significant drain on communication and energy resources. However, in many 
applications, the ultimate objective is not merely the collection of “raw” data, but rather an 
estimate of certain environmental parameters or functions of interest (e.g., source locations, 
spatial distributions) [37]. Distributed in-network processing, which eliminates the need to 
transmit raw data to a central point, may significantly reduce the communication and energy 
resources consumed. 

There have been many existing in-network processing approaches many of which are 
combined with routing algorithms. If the ultimate objective is to compute the average or other 
quadratic cost functions of all the measurements, the estimate of the objective parameter can 
be passed and updated along a routing path which passes through all the nodes and visits each 
node just once [37]. Each node updates the estimate by adjusting the previous value to 
improve or reduce its local cost and then passes the update to the next node. In the case of a 
quadratic cost function, one pass through the network is sufficient to achieve the objective. In 
more general cases, several “cycles” through the network are required in order to obtain a 
solution. The LEACH protocol presented in [38] is an elegant solution to the data aggregation 
problem in which clusters are formed in a self-organized manner to fuse data before 
transmitting it to the base station or sink. In LEACH, a designated node in each cluster, called 
the clusterhead, is responsible for collecting and aggregating the data from sensors in its 
cluster and eventually transmitting the result to the base station or sink. In [39], the authors 
propose a new chain-based protocol called PEGASIS that minimizes the energy consumption 
at each sensor node. The key idea is that nodes organize to form a chain and each node takes 
turns in being the leader for communication to the base station or sink. The data is collected 
by starting from each endpoint of the chain and aggregated along the path to the designated 
head node. Unlike LEACH, PEGASIS uses a flat topology thereby eliminating the overhead 
of dynamic cluster formation. 

3.4 Load Balancing 

In WSNs, the dominating communication pattern is that a large number of sensor nodes 
deliver their sensed information to one or a few data sinks through multi-hop transmission 
[30, 31]. This kind of communication pattern causes a drastic imbalance to the traffic load 
distribution across the network in which the nodes close to a sink experience heavy traffic 
loads. Since communication is believed to dominate the energy consumption of a sensor node 
[38] and sensor nodes are usually provided with limited energy resources, the imbalanced 
traffic load distribution is very harmful and it could cause the nodes close to a sink to die at 
an earlier stage which thus renders the remainder of the network to be useless.  
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To counter or alleviate the harm resulting from an uneven traffic load distribution, many 
researchers have turned their attention to the problem of load balancing. The authors of [27, 
40, and 41] realize that the imbalanced traffic load distribution can cause one part of nodes to 
die earlier than the others, thus degrading the network performance. To counter the negative 
effect of the imbalanced traffic load distribution on network performance, new routing 
algorithms which resort to the measure of the remaining energy reserves and other kinds of 
path capacity measurements are proposed. The authors of [42] consider the load balancing 
problem of uniformly distributed traffic demands in a unit disk. By deliberately routing traffic 
along slightly longer paths instead of the shortest paths, the highly congested links are 
avoided and a particularly flat traffic load distribution is achieved. The authors of [43] 
address the problem of balancing the traffic load in multi-hop wireless networks with 
uniformly distributed point-to-point communication. They develop a routing algorithm called 
Curveball Routing which can avoid the crowded center and provide a performance which is 
not significantly worse than that of the optimum. The authors of [44] propose an algorithm 
that makes a decision at each step as to whether to propagate data one-hop towards the sink, 
or to send data directly to the sink in order to balance the energy consumption over the nodes. 
If appropriate, data aggregation and in-network processing techniques are also methods for 
balancing traffic distribution. The adoption of data aggregation not only reduces the total 
amount of packets being transmitted but also yields a more even traffic distribution.  

3.5 Resource Allocation 

Fair resource allocation is another approach to counter the harm resulting from uneven 
traffic load distribution as explained in Section 3.4.  

In the category of fair resource allocation, resources (e.g. energy, bandwidth, nodes) are 
allocated to an object (e.g. a node or an application) according to the workload of that object. 
The authors of [45] present an optimal energy allocation criterion and thus all clusters have 
the same exhaustion time in a cluster based WSN. The author of this article has discovered 
that the performance upper bounds in a WSN linearly increase with the energy reservation in 
an identified bottleneck zone; thus assigning more available energy resources to the important 
bottleneck zone can effectively alleviate the bottleneck effect [46]. Radio range adjustment is 
also proposed to save the energy consumption on a routing path [45, 47 and 48]. However, 
this must be conducted with caution since assigning shorter relaying ranges for nodes closer 
to the sink adds more imbalances to the already imbalanced traffic load distribution. In [49], 
the authors propose to place additional sensor nodes around the sink nodes to mitigate their 
hot spot problem (i.e. uneven traffic load distribution). Their results show that for certain 
networks only a limited number of additional nodes are required to fourfold network lifetime. 
Similar thinking appears in [50] where the authors propose efficient node placement and 
topology control protocols to balance the power consumption of sensor nodes. More 
specifically, they propose the allocation of more sensor nodes to the zone closer to the sink 
and also to assign a smaller packet transmission power to them. In addition, the author of this 
article proposes a fair energy allocation scheme such that the initial energy resource allocated 
to a node is proportional to its expected traffic load [21]. Because traffic load is an indicator 
of the energy consuming rate, the proposed fair energy allocation scheme maximizes the 
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network lifetime by equalizing the expected energy exhaustion time of all sensor nodes. 

4. Anomaly Detection for WSNs  

4.1 The Necessity of Anomaly Detection in WSNs 

WSNs consist of a large number of tiny sensor devices that have limited power and 
limited sensing, computation, and wireless communication capabilities. Sensor nodes usually 
operate in unattended and even harsh environments, and as a result, sensor nodes are prone to 
failures and are vulnerable to malicious attacks. Since it is not possible to avoid the 
appearance of failures and malicious attacks, it will be essential that these failures and 
malicious attacks are detected immediately after their appearance. Thus, emergency 
responses can be made accordingly in order to mitigate the harm due to sensor failures and 
malicious attacks. 

One common point between failures and malicious attacks is that they both cause errors 
inside the system. Therefore, the system can malfunction due to the errors caused. The 
difference is that failures cause errors randomly, but malicious attacks are usually done 
deliberately and will preferentially target the most important component in the system. In 
addition, failures can exist everywhere in the system and can happen at anytime, but the 
scope of malicious attacks is subject to the abilities of attackers. In terms of available 
techniques, there are similarities between the detection of failures and the detection of 
malicious attacks. Because errors caused by failures and malicious attacks are abnormal 
events in the system, it should be possible to detect such an event by realizing that there has 
been a deviation of a system's state to that considered normal. The technique of detecting a 
system's abnormal events or behaviors by comparing a system's run-time profile to its normal 
profile is called anomaly detection. Of course, the technique of anomaly detection can also be 
used to detect anomalies other than failures and malicious attacks. For example, a target's 
behavior change in a target-tracking system can also be detected by anomaly detection. 

Although anomaly detection usually suffers from a high false alarm rate in traditional 
systems, the anomaly detection in WSNs is expected to perform well because the operations 
of WSNs are less dynamic in comparison to those in traditional counterpart systems like the 
Internet.  

4.2 Packet Traffic in WSNs Serves as the Data Source of Anomaly Detection 

Packet traffic has been the most used data source in the anomaly detection for WSNs. 
The authors of [51] propose that an anomaly in WSNs could violate one of the following 
rules applied to packet traffic: 

1) Interval rule: A failure is raised if the time which passes between the reception of two 
consecutive messages is larger or smaller than the allowed limits. 

2) Retransmission rule: The monitor listens to a message, pertaining to one of its 
neighbors as its next hop, and expects that this node will forward the received message, 
which does not happen. 
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3) Integrity rule: The message payload must be the same along the path from its origin to 
a destination, considering that in the retransmission process there is no data aggregation 
by other sensor nodes. 

4) Delay rule: The retransmission of a message by a monitor's neighbor must occur 
before a defined timeout. 

5) Repetition rule: The same message can be retransmitted by the same neighbor only a 
limited number of times. 

6) Radio transmission range: All messages listened to by the monitor must have 
originated (previous hop) from one of its neighbors. 

7) Jamming rule: The number of collisions associated with a message sent by the monitor 
must be lower than the expected number in the network. 

By regularly monitoring the violations of the listed rules, network anomalies will be 
detected. 

Ref. [13] proposes a specification-based anomaly detection to detect malicious attacks on 
AODV routing. In this approach, the authors use an FSM to specify correct AODV routing 
behavior and use distributed network monitors to detect run-time violation of the AODV 
specifications. The rationale behind this is that the AODV protocol has specified the sequence 
relations among different kinds of routing messages, and such sequence relations can be 
depicted by an FSM. Any violation of the protocol specification will trigger an alert. Ref. [15] 
also proposes a specification-based anomaly detection to detect routing attacks. In their 
approach, they use an FSM to specify the DSR routing behavior, instead of the AODV 
routing behavior.  

In addition to the ability to specify the sequence relations among some special kinds of 
packets (e.g. routing messages) according to protocol specifications, the author of this article 
suggests that the sequence relations among general kinds of packets arriving at a sensor node 
can also be learned automatically by on-line training, thus anomalies can be detected by 
comparing the run-time traffic patterns with those prelearned normal traffic patterns [17]. If a 
“match” cannot be found between the runtime packet arriving sequence and any prelearned 
normal packet arriving sequence, the traffic profile has been violated and an alarm can be 
launched. 

Ref. [52] uses another traffic feature instead of packet sequence relations. It records the 
arrival time of each observed packet and checks the mean and the standard deviation of the 
interarrival times of the packets in a long term receive buffer and a short term intrusion buffer. 
An arrival is considered anomalous if the statistics in these two buffers deviate significantly.  

In [1], the author of this article suggests that the anomaly detection can be done in a 
sensor network for target tracking purpose, of which the traffic modeling results have already 
been presented in [11]. In [11], an ON/OFF model is used to capture the traffic bursts caused 
by intermittent target observations in a target-tracking sensor network. Each ON period 
indicates an event that the neighborhood of the considered sensor node has been visited by 
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the target, while the length of an ON period provides information relating to the duration of a 
visit. An OFF period corresponds to the idle time period when there is no target observation. 
It has been found that both the ON and OFF period distributions are steady (i.e. not changing 
with time) if the target follows a certain random mobility model. Further, both the ON and 
OFF period distributions have tails which decrease near-exponentially as the period lengths 
increase. That means, an unusual long ON/OFF period can only be observed with an 
extremely low probability in the normal situation, and its runtime observation should trigger 
an anomaly alarm to receive special attention. An ON/OFF state transition diagram for 
anomaly detection is shown in Figure 2, where the length of the “anomaly ON/OFF timer” is 
set to be a probabilistic upper length limit. 

       

Figure 2: ON/OFF state transition diagram with the function of anomaly detection 

In [53, 54], the authors introduce a new data mining method that uses “cross-feature 
analysis” to capture the inter-feature correlation patterns in normal packet traffic, thus it can 
make decisions based on multiple traffic features. These patterns can be used as normal 
profiles to detect deviations (or anomalies) caused by malicious attacks and network failures. 

More specifically, this approach computes a classifier iC  for each feature if  

using 1 2 1 1{ , ,..., , ,..., }i i Lf f f f f− + , where 1 2{ , ,..., }Lf f f  is the feature set. iC  can be learned 

from a set of training data. It predicts the most likely value of if  based on the values of 

other features. Based on a set of rules presented, this approach can identify the attack type of 
several well-known attacks. In some cases the rules can also identify the attacking or 
misbehaving nodes. 

4.3 Evaluating Anomaly Detection Strategies for WSNs 

The two commonly used measurements for evaluating the performance of an anomaly 
detection strategy are the false positive rate (FP) and the false negative rate (FN). FP is 
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defined as the proportion of normal events that are erroneously classified as abnormal. FN is 
defined as the proportion of abnormal events that are erroneously classified as normal. 
Obviously, a good anomaly detection strategy should have both a low FP and a low FN. 
However, a tradeoff is usually to be made between FP and FN, given that these two 
measurements are usually influenced in opposing ways, by adjusting the threshold parameters 
used in many anomaly detection strategies. In addition to FP and FN, the overhead introduced 
by an anomaly detection strategy is also a concern. Considering the extreme 
resource-constrained specialties of WSNs, a good anomaly detection strategy should 
introduce as little overhead as possible. Although WSNs are designed for low rate 
communication, a broad range of real-time applications, such as health care, highway traffic 
coordination and even multimedia transmission have also been proposed. When an anomaly 
detection strategy is designed for real-time applications, it should also fulfill the real-time 
requirement such that it will not cause performance degradation to the applications. 

5. Conclusions & Open Issues  

WSNs have been identified as one of the most important technologies for the 21st 
century. In this article, the author has provided a survey of the current works involved in 
traffic analysis & modeling, network optimization and network anomaly detection for WSNs. 
Through the presentation of this article, the readers can see that many of the works involved 
in network optimization and anomaly detection are based on the research results from traffic 
analysis & modeling. Actually, network traffic and its associated energy consumption play a 
key role in most of the works relating to network optimization for WSNs. It is also shown 
that detecting sensor network anomalies through the analysis of network traffic is technically 
feasible. 

As WSNs are still a young research field, much activity is still on-going in order to solve 
many open issues. For example, traffic dynamics in WSNs are application dependent. For 
many WSN application scenarios, the traffic dynamics are still very obscure. Network 
optimization continues to be the prime important research area for WSNs given the constraint 
of the very limited resources which are unable to be removed in the near future. As more and 
more WSNs become available for practical deployment, the problems relating to sensor 
failures and malicious attacks will attract more and more attention. Anomaly detection, which 
is a promising technique for the immediate detection of any network anomaly such as sensor 
failure and malicious attack, has as yet been touched upon only rarely.  

In the future, traffic analysis & modeling for WSNs should focus on those event-driven 
WSN scenarios because traffic dynamics in event-driven WSNs are much more uncertain 
than those in periodic data generation WSNs. Further, as node mobility has been utilized in a 
few WSN applications such as healthcare monitoring, it will be useful to investigate the 
traffic dynamics in WSNs when there is node mobility. In-network processing has been 
viewed as an essential method to reduce and balance the energy consumption within WSNs. 
Because in-network processing eliminates the need to transmit raw data to a central point, it 
also changes those familiar traffic patterns in WSNs. Investigating traffic dynamics in WSNs, 
when different in-network processing strategies are applied, will be very necessary. 
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In the future, network optimization for WSNs will continue to be of prime importance 
given the inherent nature of limited resources. For those WSNs with node mobility and 
in-network processing, the fundamental performance bounds are still not clear. More network 
optimization models could be built to investigate the fundamental performance bounds of 
such WSNs, and the provision of accurate traffic models will be a pre-condition for this 
option. For those well-investigated WSNs without mobility and in-network processing, the 
optimal performances which are achievable by centralized coordination algorithms are 
already known. The research focus should shift to the development of distributed 
coordination algorithms which are more practical in a real implementation. As to the optimal 
resource allocation for WSNs, there have already been schemes developed for simple WSN 
scenarios. The development of more resource allocation schemes for more general WSN 
scenarios should be very useful.  

In the future, anomaly detection for WSNs will become more and more important as 
more and more WSNs become available for real deployment. This article argues that packet 
traffic is a good source for anomaly detection in WSNs. This argument requires more support 
in the future. As malicious attacks will be low probability events in many WSNs, high false 
alarm rates are not tolerable in these WSNs. Designing an anomaly detection system with an 
extremely low false alarm rate will be a challenge. After a network anomaly is detected, 
either a person is required to be sent to the identified problem region or the network must 
take some measures to automatically recover from the possible damage. The development of 
such accompanying emergency response strategies will be necessary for future anomaly 
detection in WSNs. 
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