
 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 70

Achieving Security by Intrusion-Tolerance Based on 
Event Correlation  

 

Massimo Ficco 

Laboratorio ITeM “Carlo Savy”,  

Consorzio Interuniversitario Nazionale per l'Informatica (CINI), 

Via Cinthia - Edificio 1, 80126 Napoli, IT 

Dipartimento per le Tecnologie,  

Università degli Studi di Napoli “Parthenope”, 

Centro Direzionale di Napoli, IT 

E-mail: massimo.ficco@consorzio-cini.it 

 

Received: June 22, 2010   Accepted: August 31, 2010   DOI: 10.5296/npa.v2i3.420 

 

Abstract 

Despite the increased focus on security, complex networked systems remain vulnerable to 
attacks. Intrusion Tolerance is an emerging paradigm for developing systems, which continue 
to operate correctly, and provide acceptable services even in the face of an intrusion. The 
effectiveness of this approach is strongly dependent on the efficiency of the adopted detection 
and diagnosis mechanisms. In this work, we propose an architectural framework, which 
collects information at several architectural levels, using multiple security probes, which are 
deployed as a distributed architecture, to perform event correlation and diagnosis analysis of 
intrusion symptoms. The experimental results show that the use of different security 
information sources can improve the detection and the diagnosis of attacks. 

Keywords: correlation; detection; diagnosis; reaction 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 71

1. Introduction 

Traditional approaches for building secure systems mainly focus on avoiding attacks to 
be successful. Such approaches are becoming insufficient when used in the context of 
complex networked systems, which are characterized by vulnerabilities that are impossible to 
identify and correct all before they are put in operation [1]. 

In the last years, Intrusion Tolerance (IT) has emerged as a new paradigm for developing 
networked systems. It aims to ensure that the considered system provides correct services in 
the presence of malicious intentional actions, which may lead to violates of the system 
security properties. IT is the ability of react, counteract, recover, mask errors, which may lend 
to failures if nothing is done to counter their effect on the system state. Unfortunately, the 
effectiveness of the IT approach is strongly dependent on the efficiency of both Intrusion 
Detection and Intrusion Diagnosis.  

Nowadays, Intrusion Detection Systems (IDSs) are the main solution to protect 
networked systems. Regrettably, products which are currently available do not directly detect 
intrusions, but only the attacks symptoms, i.e., the erroneous or anomalous states in a system 
component. Moreover, several works have observed that IDSs can generate thousands of 
alerts per days, up to 99% of which are false positives that make very difficult to identify the 
real attacks in progress over the system [2][3]. Essentially, neither diagnosis is performed in 
order to help the administrator to identify whether an alarm is a false positive or not, nor 
information are provided about consequences of the detected attacks [4]. 

On the other hand, clues of what is happening in real-time in the system are available, 
but spread out all over the network and the system components. For instance, many 
application servers write warnings and failures of the operations into their logs, all operating 
systems can log system and security events, and at the entry and exit points of the network, 
firewalls can track the packets that drop the security rules. Therefore, since an attack typically 
leaves different signs of its presence, correlating information found in multiple heterogeneous 
logs in near real-time, many false alerts (i.e., false positives), and attacks that are not evident 
by analyzing a single log, should be detected. Moreover, diversity and correlation capabilities 
potentially improves diagnosis performance [5][6] through the aggregation of different views 
of the same incident retrieved by sources of diverse nature that are physically located in 
different locations within the system [7].  

In this paper, we propose an architectural framework, which exploits an approach based 
on diversity both in information sources and detection methods used to monitor malicious 
activities. It collects streams of information at several architectural levels (i.e., network, 
operating system, and application), using multiple security probes, which are deployed as a 
distributed architecture. Both anomaly-based and misuse-based detection methods are 
adopted to processing security information produced by probes [8]. The triggered events are 
correlated and rearranged based on their confidence level, which indicates the likelihood that 
correlated events are symptomatic of an ongoing attack on the system. 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 72

Detect different symptoms of the same attack allows to improve the intrusion diagnosis 
capability to assess of the damage in individual system components, which can be used to 
infer the least costly and most effective error treatment actions in order to avoid intrusions 
from generating a system failure.  

Our preliminary experiments focus on the Distributed Denial of Service (DDoS) attacks. 
DDoSs have been one of the most frequent problems on the Internet. Currently, it is still a 
serious threat for mission and business critical systems [9]. The recent tide of DDoS attacks 
against high-profile web systems demonstrate how devastating DDoS attacks are [10]. 
Current IDSs, and especially the ones based on anomaly detection are not very efficient at 
detecting DDoSs. Indeed, it is hard to distinguish DDoS from traffic that presents marked 
legitimate variations. The experimental tests have shown that the proposed approach results 
in a better performance of the IDS, in terms of increasing detection capacity, as well as 
reducing the attack detection latency. 

The rest of the paper is organized as follows. Section 2 provides an overview of the 
solutions to intrusion tolerance and event correlation, and discusses their main limitations. 
Section 3 presents the architecture and operation of the adopted architecture. Section 4 
describes the proposed approach. Section 5 provides a description of the case study, and 
presents preliminary experimental results. Finally, Section 6 gives some concluding remarks, 
together with information concerning our future work in this field. 

2. Related work 

Even if IT notion is not a new concept, real research programs dedicated to this topic are 
relatively recent. MAFTIA [1] was the first project that uniformly applied the tolerance 
paradigm to the dependability of complex critical system. Its major innovation was a 
comprehensive approach for tolerating both accidental faults and malicious attacks. In 
accordance with the MAFTIA results, we agree that IT and Intrusion Detection are two 
tightly linked topics, but we claim that also on-line intrusion diagnosis is a key building block 
of IT. In order to operate the correct reaction to current intrusion, we propose an architecture 
that presents both diagnosis and detection properties. Moreover, in our work, the intrusion 
detection process is not implemented through the use of the combination of classical IDSs, 
but through a correlation approach based on diversity both in information sources and 
detection methods. 

Saidom et al. [11] propose a generic IT architecture for Web services based on adaptive 
redundancy and diversification principles. The redundancy level is selected according to the 
current alert level. On the other hand, they do not propose any mechanism to estimate and 
assign weights to the raised alerts according to the credibility of each error detection 
mechanism. We address this problem in this paper.  

Majarczyk et al. [12] propose an IT architecture based on COTS diversification applied 
to Web applications. The authors adopt an approach for anomaly detection using redundancy 
and diversification techniques. Although, the proposed solution provides a high coverage of 
detection, and a low level of false positives, no diagnostic function is defined in the system.  



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 73

In order to improve the attack detection rate, enrich the semantics of alerts, and reduce 
the overall number of false alerts, different work propose explicit alarms correlation 
approaches [7], [13], [14]. In particular, [15] proposes a correlation workflow intended to 
unify the various steps of the correlation process. They adopt an approach that combines 
events that represent the independent detection of the same attack occurrence by different 
probes. Our work is strongly inspired by the this framework, but we proposed a weight-based 
correlation approach, in which each monitored symptom is weighted on the base of the 
trustworthiness of probe to monitor a specific attack. 

3. Architecture and operation 

Understanding the security status of the monitored networked complex system needs the 
correlation of observations performed on different system components, and across several 
entities distributed within the network.  

In Figure 1, the architecture of the proposed framework is shown. It is characterized by 
several logical entities hierarchically organized: Probes, Agents, Decision Engine, 
Remediators, and Monitors. 

 

 

Figure 1. The proposed architectural framework. 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 74

• Probes :  They are entities deployed in strategic points in the system (i.e., 
network, host), and at different system architectural levels (e.g., network, 
operating system, application), which ensure the diversity with respect to 
information sources. They infer attack symptoms from real-time traffic and 
specific logs. Each probe monitors specific features of a single node or a network 
segment. For example, a network IDS monitors anomalous packets rate in order 
to discover if an intruder is attempting to cause a denial of service attack, a host 
monitor measures CPU utilization, user logins, disk activity, and so on. 

Each probe can assess if an anomalous activity is underway on the base of its 
local view, and send detailed security messages to nearby Agent. They can adopt 
different anomaly-based detection methods (both anomaly-based and 
misuse-based), which triggers different security message formats. 

• Agents :  They are autonomous software components that analyze, filter, and 
forward probe messages to the Decision Engine. Each Agent relies on a 
knowledge base to convert raw security data into attributes usable by the 
Decision Engine (e.g., timestamps, probe identifier, source and destination of the 
anomalous action). 

To decouple Decision Engine from the specific format of the Probe messages, 
Agents perform a normalization process, that enables different kind of Probes to 
generate messages using an unique language. In this work we use a standard 
representation of symptoms based on the IDMEF data model. 

• Decision Engine :  It performs both detection and diagnosis activities. It allows 
to recognize what attack can be hypothesized to be the cause of the monitored 
symptoms, and what parts of the system are supposed to be the targets of such 
attack. The enabling components are the Correlator, the Diagnoser, and the 
Reaction Modules.  

The Correlator aggregates continuous events in real-time. It uses a correlation 
schema defined by the ontology (not presented in this work) to infer a set of 
queries to be performed on the incoming messages streams. For each monitored 
attack type it extracts the corresponding monitored symptoms, and forwards them 
to the Diagnoser.  

The Diagnoser performs a ranking and filtering process of the produced event, 
in order to determine if the aggregated symptoms represent a real attack in 
progress in the system. Moreover, it identifies what part of the system is target of 
the attack.  

Finally, a security alert is forwarded to the Reaction Module, which is able to 
assess the attack effects on the target component. The information produced 
during this activity are used to instigate a remediation.   

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 75

• Remediators : They are components designed to remediate to a specific attack or 
intrusion. In particular, they receive control information from the Reaction 
Modules concerning a particular fault treatment, and perform the associated 
actions designed to react to the attack (e.g., network reconfiguration, revoke 
permits access).  

• Monitors : They are central analysis servers, which receive data from a Decision  
Engine. They provide a Web interface that allows: (i) to see the current attacks 
status; (ii) to make interactive querying of attack data for analysis, and (iii) to 
identify attack patterns.  

Finally, we adopt an open source framework, named Prelude [16], which acts as an event 
bus. It provides common features and standard API to enable IDMEF communication among 
the different involved entities. 

4. Reaction process 

The proposed solution emphasizes the relation among symptoms detection, intrusion 
diagnosis and reaction. In particular, at every time, it provides a synoptic view showing (i) 
what kind of attack is hypothesized to be the cause of monitored symptoms, (ii) what part of 
the system is under attack, and (iii) what are the attack effects. The results of this process can 
be used to active a reaction in order to mitigate the effects of the detected attack. The 
detection process is based on the correlation of symptoms monitored by multiple probes 
spread over the system.  

Alerts are not generated as results of all the monitored symptoms, but only when a 
confidence assessment of correlated symptoms indicates a really potential attack, hence 
reducing the number of false positives, and improving the detection capability of the overall 
system.  

As previously described, the Decision Engine receives the monitored symptoms by the 
Agents, and tries to correlate them by using correlation rules. In this work, we consider a 
correlation rule that aggregates symptoms based on the attack type, the target component and 
the temporal proximity. For each monitored target, an ontology identifies the symptoms to 
correlate for each potential attack associated with that target. The temporal proximity 
correlation is based on a time window Tc that is fixed as a parameter by the administrator. 
However, this approach requires that all clocks at probes be synchronized, e.g., by using a 
total ordering based on timestamps, or a finer-grained mechanism [17]. At the end of this 
phase, for each target a meta-event E(k) = {eA1(k), ..., eAm(k)} is triggered. For each possible 
attack Ai, eAi(k) contains the symptoms correlated during the time window k. 

In order to reduce the number of false positives generated by probes, we adopted an 
approach based on the confidence (C) of the events. Assuming that eAi(k) = {s1, ..., sz} is the 
set of correlated symptoms related with the attack of type Ai during the time window k, the 
confidence is the likelihood that the monitored symptoms represent an underlining attack of 
such a type.  



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 76

CAi(k) is the sum of several terms, one for each symptom. Each term is characterized by a 
weights wp and an Intensity Scores (IS). The IS is a probability value related to each 
monitored symptom. It is estimated by method used by probe to monitor the symptom. It 
reflects the likelihood that the observed symptom represents a malicious behavior. Since, the 
observed features are not commensurable, ISs are normalized to zero mean and unit variance. 
wp(s) is associated with trustworthiness of the probe p to monitor a symptom of the attack Ai. 
It is assigned on the base of a prior knowledge of the effectiveness of monitoring method 
being used for the given attack type. Although simple in implementation, choosing proper 
weights is of critical importance to highlighting the proper features under various attacks. The 
events ordered on the base of the CAi given an indication of most likely cause of detected 
anomalous behaviors at the step k. Such events are subjected to a filtering. If the confidence 
does not exceed a threshold (specific of each attack) estimated during a training phase, the 
event will be discarded (i.e., it is considered as a false positive).   

Finally, a compact diagnosis report is built and provided to both the system security 
administrator and the Reaction Module. For each produced meta-event, the report contains a 
summary of the information produced during the previous phases, including the likely cause 
analysis of the detected anomalous behaviors (i.e., the attack Ai), and the target Ti. Based on 
the results of this diagnosis, the security administrator can: (i) determine whether the error 
processing mechanism is appropriate (e.g., because the observed attack is not successful); (ii) 
prepare an adequate remediation action (e.g., by system reconfiguration or by removing a 
vulnerability); (iii) improve the quality of the error detection (e.g., to reconfigure the IDS by 
tuning of an anomaly detection threshold); and (iv) find out who/what performed the attack.  

During the reaction phase, for each target component identified in the diagnosis phase, 
the degree of success of the intruder in terms of damage or corruption is assessed. In 
particular, it is verified whether attack effects are present on the considered target (e.g., the 
memory consumption exceeds a fixed threshold). If an effect is identified, the Reaction 
Module determines the less costly and most effective remediation based on the severity of the 
error affecting the system component. It identifies the remediation action by using a grid of 
correspondence that associates the possible fault treatment with the observed effect. 

During this process, the state of the target component can be: TRUSTED, 
TRUSTWORTHY, SUSPECTED, or CORRUPTED. Figure 2 describes the evolution of the 
state according to the received events.   



Wh
event a
compon
level ex
the tim
TRUST
and an 
on the 
detected
CORRU
diagnos
TRUST

5. C

In 
approac
informa
improve
open so
server, a

Thi
on a co
typicall
memory
useless 
attack i
vulnera
TCP SY
(ACK) 
fully. T
requests
connect

hen the Dia
according to
nent state is
xceeds the c

mer expires, 
TED. If the 
alert is gene
severity of

d attack A
UPTED sta
sis data are
TED state of

Case study 

this sectio
ch in a labo
ation collect
e the detect
ource conten
and uses PH

is work focu
omputer sy
ly through t
y, and disk 
traffic from

is the most
ability of the
YN packets
to the attac

This kind o
s is large, 
tion request

Figu

agnoser rece
o its confid
s sets to TR
confidence t
the securit
confidence

erated. In th
f the intrus

Ai are verif
ate is reach
e sent to t
f the compo

and experi

on we pres
oratory expe
ted at sever
tion and dia
nt managem

HP v4.4.2 an

uses on Dis
ystem or a 
the consump
space. It aim
m distribut
t popular an
e TCP three
 with spoof

cker, but it n
of connectio

the system
ts. 

ure 2. Differen

eives an eve
dence. In p
RUSTWOR
threshold C
ty event is 
e threshold 
his state, the
sion. Using
fied. If a 
hed, otherw
the Remed
onent. 

imental res

sent prelim
erimental se
ral architect
agnosis capa
ment system
nd MySQL 

stributed De
 network, 

ption of the
ms at overw
ted and coo
nd effective
e-way hand
fed IP addre
never receiv
on is calle

m runs out

77

nt states of the

ent from the
particular, w
RTHY, and r
CAi fixed dur

considered 
CTAi is exce
e Reaction 
g the ontol
corrupted 

wise the sta
diator, whic

sults 

minary resul
etup. The ex
tural levels,
abilities. W

m written in
v4.1.11.  

enial of Serv
that cause

e victim res
whelming a 
ordinated a
e brute-forc

dshake. Duri
esses. Then
ves a reply b
d half-conn

t of resourc

 N

e target compo

e Correlato
when an ev
remains in 
ring a traini

a false po
eeded, the 
Module dec
ogy schem
state of th
ate is set 

ch performs

lts achieve
xperiments 
 using mult

We consider J
n PHP. It ru

vice (DDoS
es a loss o
ources, incl
target serve
ttack sourc
ce DoS atta
ing SYN fl

n, the victim
back, so the
nection. Sin
ces, and st

Network Pro

onent. 

r, it can pro
ent eAi is r
this state u

ing phase or
sitive and t
SUSPECTE
cides reactio

ma, all the 
he compon
to TRUST
s the react

d by apply
show that 

tiple securit
Joombla (v.

uns on an A

S), which is 
of service t
luding band
er with an i

ces. In part
ack [18]. S
ood, an atta

m returns an
e connectio
nce the nu
tarts the dr

tocols and Al
ISSN 1

2010, Vol. 

www.macrothi

ocess or ign
received, th
until the con
r a timer ex
the state re
ED state is 
on to opera
possible ef

nent is fou
TED. The r
tion to rest

ying the p
the use of d
ty probes, a
.1.5), a well

Apache v1.3

a distribute
to legitima
dwidth, CPU
immense vo
ticular, SYN
SYN flood 
acker sends
n acknowled
n is not est
mber of m
ropping of 

lgorithms 
943-3581 
2, No. 3 

ink.org/npa 

 

nore this 
he target 
nfidence 
xpires. If 
eturns to 

reached 
ate based 
ffects of 
und, the 
resulting 
tore the 

proposed 
different 

allows to 
l-known 
.34 web 

ed attack 
te users 

U usage, 
olume of 
N Flood 
exploits 
 a lot of 
dgement 
ablished 

malicious 
f normal 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 78

Figure 3 shows the effects of an DDoS attack on our web server (Pentium IV 2.4MHz 
with Mandrake 10.1). In particular, since experiments with SYN flood on commercial 
platforms show that the minimum flooding rate to overwhelm an unprotected server is 500 
SYN packets per second [19], we injected attack traffic for the duration of 10 minutes with 
five agents. The flooding rate used by each considered agent to overwhelm the server is 120 
SYN packets per second. The performed attack requests so many connections that after about 
3 seconds, the target machine memory is completely exhausted by allocating data structures 
for half-open TCP connections. When the maximum number of half-open connections is 
reached, the target operating system discards all new incoming connection requests. The 
server does not accept new connection until either the handshake is completed (an ACK 
message is received), or until the connection establishment timer fixed by the operating 
system expires. In our scenario, the timer is set to about 400 seconds. When the timer expires, 
memory structures associated with the connection are reallocated, and the server accepts new 
connections. On the other hand, since the attack is already in progress, the system resources 
are again exhausted by allocating data structures for new half-open connections. 

 

Figure 3. System under DDoS attack. 

 

5.1 Detection methods 

 In order to monitor the attack symptoms, we adopt different probes, which use both 
anomaly detection and misuse detection methods. By using anomaly detection methods, 
intensity score values (ISs) are assigned to the triggered events, which reflect the anomaly 
levels with regard to an established profile. For each observed feature, the anomaly detection 
approach can perform in one of two phases: training, and testing. In the training phase, data 
sets are used to parameterize the monitoring method (necessary to determine the 
characteristics of ‘normal’ behavior), as well as to establish the threshold, that is used to 
distinguish between regular and anomalous behaviors during the testing phase. In the testing 
phase, anomaly detection models are used to monitor anomaly behaviors with respect to 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 79

normal profile computed during the training phase. The threshold choice is the main problem 
in this process. It is a trade-off process between the number of false positives and the 
expected detection accuracy. A low threshold can result in many false positives, whereas a 
high threshold can result in many false negatives. Once the profiles and thresholds have been 
derived, the testing phase is operated. If the computed IS exceeds the fixed threshold a 
message is reported. For misuse detection method the IS value is fixed to 1. 

We briefly describe the considered features, and the models adopted to perform the 
monitoring methods.  

• Memory Consumption (MC) : Operating systems use different data structures of 
memory allocation (named backlog queues) for TCP connections establishment. 
There is a limit on the number of concurrent TCP connections that can be in a 
half-connection state. This limit is related with the length of the backlog queue. 
SYN flood can request so many connections that the target machine backlog 
queue can be completely exhausted.  

We adopt an anomaly-based model that estimates an approximation of the 
actual distribution of the backlog length, and monitors abnormal increasing of the 
queue with respect to normal profile. In particular, during the training phase we 
estimated an empirical mean and variance of the real queue length distribution. In 
order to estimate the observed queue length l, we used a Chebyshev function 
described by Equation 1, where x is a random variable.   

σ
μσμ ||1)*|(| 2

−
=≤≥−

lkwith
k

kxp      (1) 

Replacing k*σ with the distance |l - µ| is possible to obtain an upper bound 
p(l) on the probability that the attribute length deviates more from the mean than 
the current instance.  

Assuming that the training data set is attack free traffic, during the testing 
phase Equation 2 can be used to determine the deviation of the observed query 
attribute length from the normal behavior. 

2

2

)(
)(

μ
σ
−

=
l

lp   (2) 

IS is computed as one minus 1/p(l). Moreover, we choose the threshold that 
does not produce false alerts with training data sets. 

• Application Requests (AR) : The number of application requests can be used to 
detect anomalous behaviors. Typically, the average number of such requests do 
not vary much during the same period of the day. This behavior may change 
when SYN flood occurs (i.e., the number of requests can dramatically decrease). 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 80

We adopted an anomaly detection model to capture the abnormal rate of 
application requests with respect to ‘normal’ profile. During the training phase, 
for each week day, and for different period of the day, the relative frequencies of 
requests are computed. During the detection phase a “chi-square” function is 
adopted to identify anomalous behaviors. During a slicing time window T, if the 
rate of requests decreases below the threshold estimated during the training phase, 
the behavior is marked as anomalous and an event is triggered. T is a fairly short 
period of time (few minutes), since DDoS are usually attempted in a burst of 
half-connection requests. 

The chi-square (X2) values is estimated by using Equation 3. 

∑=

−
=

n

i Ei
EiOiX

1

2
2 )(    (3) 

where Oi represents the observed value, whereas Ei is the expected value. 
Using the X2 and the well-known lookup table [20], we compute the probability p. 
The IS is equal to one minus probability p. A probability p close to zero indicates 
an anomalous behavior that should yield a high IS. Considering that the training 
traffic is representative of the actual traffic, we choose the threshold that does not 
produce false alerts with the training data sets. In particular, we fix this threshold 
to the highest anomaly score seen during the training phase. During the detection 
phase the X2 function is adopted to identify anomalous behaviors. If the anomaly 
score exceeds the threshold an event is triggered. 

• Pattern Recognition (PR) : During SYN Flood the attacker exploits multiple 
agents to generate attack on its behalf. For each agent attacker uses many random 
source ports to connect to a single destination port of the victim. Therefore, the 
PR is a misuse method that computes the number of ports with the same IP source 
within a time slicing window, and controls that this value does not exceed a fixed 
threshold. Pukkawanna et al. [21] proposed a threshold for PR method equal to 
10,000 source ports per IP with an analysis interval of two minutes. In our 
experimentation we found that threshold of about 8,500 source ports is sufficient 
to monitor SYN flood attacks.  

5.2 Experimental evaluations 

For monitoring the attack symptoms, we considered different probes (one for each 
adopted method) : (i) an Apache log analyzer examines the rate of the application requests, (ii) 
a system analyzer examines the backlog queue of the operating system, and (iii) a network 
protocol analyzer explores a specific signatures contained in the HTTP traffic respectively.  
During the training phase, in order to estimate the desiderate profile and the threshold for 
each anomaly method, we used real traffic collected from production servers at the university 
in which the considered application runs, during an interval time of one month. 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 81

During the testing phase, we performed four experiments. For each one, we injected one 
hundred attack instances as described in Section 5. We added real background traffic 
(different from that used during the training phase) on top of DDoS attacks traffic. The 
background traffic is collected from server during an interval time of one week. Then the 
attacks are injected randomly in the background traffic (about one attack per hour).  

The experiments show, that using the estimated threshold, each method monitors 
correctly all the injected attacks. However, both anomaly-based methods present false 
positives. In particular, MC method triggers 22 false alarms, whereas AR triggers 76 false 
alarms.  

Subsequently, results predicted by single models are compared to correlation process 
effects. During the correlation process the events produced by single models are aggregated, 
and the resulting meta-events are ordered based on their Cf . Cf is computed fixing wm to 1 
(for each model). As we expected, although false positives are still present, results show that 
almost all false positives provide a confidence below 43 (e.g., false alerts that are not 
correlated with other events, or present low anomaly scores). A threshold value of 45 allows 
to reduce the false positives of about 99%, while leaving the number of detected attacks 
unaffected (only two attack instance are discarded).  

During experiments, we observed that the use of multiple complementary detection 
methods allows also: (i) to improve the coverage of different attack strategies, and (ii) to 
reduce the attack latency, i.e., the amount of time that an ongoing attack to the system has 
been undetected. For example, we observed that reducing the number of SYN packets per 
second injected by each agent below 70 source ports, the method PR does not monitor the 
attacks, although the attacks are successful. Only MC and AS monitor the malicious 
behaviors. A SYN attack can impact the server connectivity (i.e., memory resources) without 
necessarily opening a great deal of ports source per agent. Regarding latency, as presented in 
Figure 3, the MC should be already in charge of monitoring the attack within few seconds 
(after 3 seconds the backlog queue is exhausted), whereas PR and AS require at last two 
minutes to detect the same attack. 

We want to point out that the accuracy of the approach depends highly on setting 
appropriate thresholds and levels of confidence. However, the threshold for DoS attack may 
depend on many environmental factors, such as available bandwidth of current network, 
characteristic of DoS attack tools, number of generated attacks, duration of attack, operating 
system, and computer architecture of the target host. Therefore, the values used in this work 
may be specific for our experimental setup only. Administrators may need to adjust their 
values according to their operational environment to achieve high accuracy.  

Finally, in order to determine the remediation to perform in case of attack successful, it is 
necessary to identify the possible effects on the target components. A possible solution for 
SYN flood may be based on an active monitoring approach. It consists in monitoring TCP/IP 
traffic and collecting communication control information to generate a view of all half-open 
connections on the target host. When a DoS alert is received, the Reaction Module can active 
a recovery action on the base of the host resources status. In particular, when the allocated 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 82

resources exceed a fixed severity level (estimated during a testing phase), the Reaction 
Module alerts a Remediation Agent, which sends packets to reset the half-open connections 
by generating the third message of the three-way handshake. The purpose of this action is to 
release the resources allocated at the target machine for connection establishments. 

In the following, we show preliminary results of the considered recovery approach. In 
particular, we consider a scenario in which the attacker starts several processes that send 
many half-open connection requests with spoofed source addresses to the victim's target 
simultaneously. In Figure 4 is shown a simple example of remediation effect. When the 
Reaction Module detects the condition of a remediation action (the attack is in progress and 
the half-open established connections exceed the 95% of the maximum number of connection 
acceptable by the server), all the suspicious connections are reset. This kind of reaction 
allows to counter/mitigate the effects of the intrusion in order to ensure provision of the 
services (although in a degraded manner). Meanwhile, a reaction that requires more time can 
be undertaken. For instance, by using the information provided by the PR method, i.e., the 
malicious detected IP sources, an upstream Access Control Lists or a routing reconfiguration 
can be performed. 

 

Figure 4. DDoS remediation effects. 

6. Conclusions 

Preliminary results presented in this paper show that the correlation of information 
collected at several architectural levels, using multiple security probes, allows to improve the 
detection and diagnosis capabilities, in order to infer the fastest and most effective error 
treatment actions. 

Future work will follow two main directions. The first objective will be consider 
different types of DoS attacks (e.g., application level floods, ICMP floods ), which will be 
used to estimate the capability of the proposed solution to provide a detailed diagnosis of: (i) 
the attack that has produced the detected symptoms, (ii) the attack target, and (iii) the attack 
effects on individual system component. The second objective will be to conduct a thorough 
experimental analysis, in order to collect evidence of the effectiveness of the approach to 
reduce false positives on the base of the confidence values. 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 83

Acknowledgment 
The research leading to these results has received funding from the European Community’s 
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 225553 
(INSPIRE Project). 

References 

[1] Verissimo, P., Neves, N. F. , Correia, M., “Intrusion-tolerant architectures: Concepts and 
design”, in Architecting Dependable Systems, LNCS 2677. Pp 23-36, Springer-Verlag. May 
2003. 
[2] Axelsson, S., “The base-rate fallacy and the difficulty of intrusion detection”, in ACM 
Transactions on Information and System Security (TISSEC). Vol. 3, Issue 3. Pp. 186-205. 
August 2000. http://dx.doi.org/10.1145/357830.357849 
[3] Manganaris, S., Christensen, M., and Hermiz, K., “A data mining analysis of RTID 
alarms”, in IEEE Computer Network. Vol. 34. Issue 4. Pp. 571-577. October 2000. 
http://dx.doi.org/10.1016/S1389-1286(00)00138-9 
[4] Majorczyk, F., Totel, E., Mé, L., and Saïdane, A. “Anomaly Detection with Diagnosis in 
Diversified Systems using Information Flow Graphs”, in IFIP International Federation for 
Information Processing, LNCS. Vol. 278. Pp. 301-315. Springer Boston 2008. 
http://dx.doi.org/10.1007/978-0-387-09699-5_20 
[5] Al-Mamory, S, and Zhang, H., “Intrusion detection alarms reduction using root cause 
analysis and clustering”, in ACM Computer Communications. Vol. 32. Issue 2. Pp. 419-430. 
February 2009. http://dx.doi.org/10.1016/j.comcom.2008.11.012 
[6] Julisch, K., “Clustering intrusion detection alarms to support root cause analysis”, in 
ACM Transactions on Information and System Security (TISSEC). Vol. 6. Issue 4. Pp. 
443-471. November 2003. http://dx.doi.org/10.1145/950191.950192 
[7] Yu, D., and Frincke, D., “Alert Confidence Fusion in Intrusion Detection Systems with 
Extended Dempster-Shafer Theory”, 43rd ACM Southeast Regional Conference. Vol. 2. Pp. 
142-147. September 2005. http://dx.doi.org/10.1145/1167253.1167289 
[8] Hervé, D., Dacier, M., Wespi, A., “Towards a taxonomy of intrusion-detection systems”,  
in Computer Networks: The International Journal of Computer and Telecommunications 
Networking. Vol.9. Pp. 805-822. April 1999. 
[9] Xu, J., and Le, W., “Sustaining availability of Web services under distributed denial of 
service attacks”, in IEEE Transactions on Computers. Vol. 52. Issue 2. Pp. 195-208. February 
2003. http://dx.doi.org/10.1109/TC.2003.1176986 
[10]  Witter, Facebook fend off DoS attacks, at: http://www.securityfocus.com/brief/992. 
Published: Aug. 2009. 
[11]  A. Saidane, V. Nicomette, and Y. Deswarte, “The design of a generic intrusion-tolerant 
architecture for web servers”, IEEE Transactions on Dependable and Secure Computing. Vol. 
6. Issue 1. Pp. 45-58. January 2009. http://dx.doi.org/10.1109/10.1109/TDSC.2008.1 
[12]  Majorczyk, F., Totel, and L. Me´., L., “COTS Diversity Based Intrusion Detection and 
Application to Web Servers”, in Proceeding of the 8th International Symposium on Recent 
Advances in Intrusion Detection (RAID '05). Pp. 43-62. Sept. 2005. 
[13]  Haibin, M., and Jian, G., “Intrusion Alert Correlation based on D-S Evidence Theory”, 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 84

2th IEEE International Conference on Communications and Networking. Pp. 377-381. August 
2007. http://dx.doi.org/10.1109/CHINACOM.2007.4469406   
[14]  Morin, B., and Debar, H., “Correlation of Intrusion Symptoms: an Application of 
Chronicles”, in Proceeding of the 6th International Conference on Recent Advances in 
Intrusion Detection (RAID'03). September 2003. 
[15]  Valeur, F., Vigna, G., Kemmerer, A., “A Comprehensive Approach to Intrusion 
Detection Alert Correlation”, in IEEE Transactions on Dependable and Secure Computing. 
Vol. 1. Issue 3. Pp. 146-169. July 2004. http://dx.doi.org/10.1109/TDSC.2004.21 
[16]  Prelude, a hybrid ID system. Available at: http://www.prelude-ids.com. 
[17]  Bondavalli, A., Ceccarelli, A., Falai, L., “Assuring Resilient Time Synchronization”, in 
Proceeding of the IEEE Symposium on Reliable Distributed Systems (SRDS'08). Pp. 3-12. 
Oct. 2008. http://dx.doi.org/10.1109/SRDS.2008.12 
[18]  Gordon, L., and et al., “CSI/FBI Computer Crime and Security Survey”. Computer 
Security Institute. Available at: http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf 
(2004). 
[19]  Darmohray, T., and Oliver, R., “Hot Spares for DoS attacks”. Available at: 
http://www.usenix.org/publications/login/2000-7/apropos.html. November 2000. 
[20]  The Chi-Square Probabilities Table. Available at 
http://people.richland.edu/james/lecture/m170/tbl-chi.html. December 2008.   
[21]  Pukkawanna, S., Visoottiviseth, V., and Pongpaibool, P., “Lightweight Detection of DoS 
Attacks”, in Proceeding of the 15th IEEE International Conference on Networks. Pp. 77-82. 
November 2007. http://dx.doi.org/10.1109/ICON.2007.4444065 
 

Copyright Disclaimer 

Copyright reserved by the author(s). 

This article is an open-access article distributed under the terms and conditions of the 
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


