
 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 84

Centralized and Distributed Algorithms for

Stability-based Data Gathering in Mobile Sensor

Networks

Natarajan Meghanathan

Department of Computer Science, Jackson State University

1400 John R. Lynch Street, Jackson, MS 39217, USA

Tel: 1-601-979-3661 E-mail: natarajan.meghanathan@jsums.edu

Philip Mumford

Air Force Research Lab, Wright-Patterson Air Force Base, AFRL/RYWA

2241 Avionics Circle, Dayton, OH 45433, USA

Tel: 1-937-528-8553 E-mail: Philip.Mumford@wpafb.af.mil

Received: September 1, 2013 Accepted: November 15, 2013 Published: December 31, 2013

DOI: 10.5296/npa.v5i4.4208 URL: http://dx.doi.org/10.5296/ npa.v5i4.4208

Abstract

Due to the dynamic nature of the network topology in a mobile sensor network, a data

gathering tree is likely to frequently break, necessitating the need for stable data gathering

trees that can withstand node mobility for a reasonable amount of time. In this pursuit, we

propose two algorithms: (1) a centralized algorithm that can return the sequence of

longest-living stable data gathering trees such that the number of tree transitions (changes) is

the global minimum; (2) a distributed algorithm that is based on the idea of finding a

maximum spanning tree on a network graph whose edge weights are the predicted link

expiration times (LET). While the centralized maximum stability-based data gathering

(MaxS-DG) algorithm can be used to derive benchmarks for the optimal number of tree

transitions (and thence the sequence of longest living stable data gathering trees) over the

duration of a data gathering session, the distributed LET-based DG algorithm can be run

across the sensor nodes in a network to find stable data gathering trees that have a longer

lifetime bounded above by the MaxS-DG trees. In the simulations, we evaluate the tree

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 85

lifetime, delay per round, node and network lifetime incurred with the MaxS-DG and

LET-DG trees and observe a stability-delay tradeoff.

Keywords: Stability, Data Gathering Tree, Tree Lifetime, Link Expiration Time, Minimum

Distance Spanning Trees, Simulations, Mobile Sensor Networks

1. Introduction

A wireless sensor network is a network of several smart sensor nodes that can gather data

about the ambient environment as well as intelligently process them before propagating to a

control center called the sink, which is typically located far away from the field being

monitored and used to remotely administer the sensor network. Even though widely used for

data gathering in several real-time applications, wireless sensor networks are mostly deployed

for static environments, wherein the mobility of the sensor nodes, the users and the monitored

phenomenon are all totally ignored. A wireless mobile sensor network (WMSN) is the next

logical evolutionary step for sensor networks in which mobility needs to be handled in all its

forms. With the widespread growth of embedded systems and ubiquitous computing

technologies, a mobile sensor network could be envisioned as a homogeneous or

heterogeneous network of sensor-equipped computers, mobile phones and vehicles, generally

referred to as nodes (having one or more sensors like a camera sensor, microphone, GPS

sensor, etc) [1]. The nodes of a WMSN often move in an arbitrary fashion, independent of

each other. Some of the applications [2] of WMSNs could be traffic monitoring, route

planning, civil infrastructure monitoring (say, attaching vibration sensors to cars and

monitoring the conditions of roads/pot holes), geo-imaging and etc. WMSNs can be used to

monitor and collect data over a much larger geographical area with less number of sensor

nodes compared to static sensor networks. With mobility, the entire area could be covered

with fewer sensors/nodes over a period of time.

Like their static counterparts, the mobile sensor nodes are likely to be constrained with

limited battery charge, memory and processing capability as well as operate under a limited

transmission range. Two sensor nodes that are outside the transmission range of each other

cannot communicate directly. The bandwidth of a WMSN is also expected to be as

constrained as that of a static sensor network. Due to all of the above resource and operating

constraints, it will not be a viable solution to require every sensor node to directly transmit

their data to the sink over a longer distance. Also, if several signals are transmitted at the

same time over a longer distance, it could lead to lot of interference and collisions. Thus,

there is a need for employing energy-efficient data gathering algorithms that can effectively

combine the data collected at these sensor nodes and send only the aggregated data (that is a

representative of the entire network) to the sink.

Over the past few years, the sensor network research community has proposed a number

of data gathering algorithms to effectively combine the data collected at these sensor nodes

through a properly constructed communication topology and send only the aggregated data

(that is a representative of the entire network) to the sink. However, a majority of these data

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 86

gathering algorithms are meant for static sensor networks (i.e., static sensor nodes) with

either a static (e.g., [3][4]) or mobile (e.g., [5][6]) sink. Tree-based data gathering is

considered to be the most energy-efficient [7] in terms of the number of link transmissions;

however, almost all of the tree-based data gathering algorithms have been proposed for static

sensor networks without taking the mobility of the sensor nodes into consideration. In the

presence of node mobility, the network topology changes dynamically with time – leading to

frequent tree reconfigurations. Thus, mobility brings in an extra dimension of constraint to a

WMSN and we need algorithms that can determine stable long-living data gathering trees

that do not require frequent reconfigurations. Our contributions in this paper are two fold:

 First, we propose a centralized algorithm that can be used to find a sequence of

longest-living stable data gathering trees for mobile sensor networks such that the

number of tree discoveries is the global minimum. We present a simple but powerful

polynomial-time greedy algorithm, referred to as the Maximum Stability Data

Gathering (MaxS-DG) algorithm, to determine the sequence of longest-living stable

data gathering trees. Given the complete knowledge of the future topology changes,

the MaxS-DG algorithm operates based on the following greedy principle: Whenever

a data gathering tree is required at time instant t, choose the longest-living data

gathering tree from t. The above strategy is repeated over the duration of the data

gathering session. The sequence of such longest-living data gathering trees is called

the Stable-Mobile-DG-Tree. The worst-case run-time complexity of the MaxS-DG

tree algorithm is O(n
2
Tlogn) and O(n

3
Tlogn) when operated under sufficient-energy

and energy-constrained scenarios respectively, where n is the number of nodes in the

network and T is the total number of rounds of data gathering; O(n
2
logn) is the

worst-case run-time complexity of the minimum-weight spanning tree algorithm (we

use Prim’s algorithm [8]) used to determine the underlying spanning trees from which

the data gathering trees are derived.

 Second, we propose a distributed spanning tree-data gathering algorithm for mobile

sensor networks, based on the notion of link expiration time (LET) [9] that is

predicted according to a model used for the highly successful Flow-Oriented Routing

Protocol (FORP) [10], a stable unicast routing protocol for mobile ad hoc networks.

The LET-data gathering tree (LET-DG tree) is a rooted directed spanning tree

determined in a distributed fashion on a network graph comprising of links whose

weights are the predicted expiration time. The LET-DG tree has been observed to

yield long-living stable trees that exist for a longer time.

As observed in the simulation studies of this paper, the drawback of using stable trees is

that they tend to overuse certain nodes (especially the intermediate nodes of the data

gathering tree) and lead to their premature failure. As sensor networks are often deployed

with higher density, one or more node failures do not immediately bring the network to a halt.

The live sensor nodes (the nodes that still have a positive available energy) maintain the

coverage and connectivity of the underlying network for a longer time.

The rest of the paper is organized as follows: Section 2 presents related work on data

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 87

gathering in mobile sensor networks. Section 3 reviews solutions proposed in the literature

for Mobile Ad hoc Networks (MANETs) to discover stable communication topologies and

also highlights the lessons learnt from our performance comparison studies (in earlier

research) on these MANET protocols, all of which form the basis of the research conducted

for this paper. Section 4 presents the system model, including the models for the link

expiration time and energy consumption, as well as defines the various terms used and states

the assumptions. Section 5 presents the MaxS-DG algorithm, analyzes its run-time

complexity for both sufficient-energy and energy-constrained scenarios, and provides a

formal proof of correctness of the algorithm. We also present an example to illustrate the

working of the MaxS-DG algorithm. Section 6 describes the proposed algorithm to determine

the LET-DG trees in a distributed fashion. Section 7 presents an exhaustive simulation study

evaluating the performance of the MaxS-DG and LET-DG trees under diverse conditions of

network dynamicity (node mobility and number of static nodes), network density

(transmission range) and energy level at the nodes (sufficient-energy and energy-constrained

scenarios). The performance metrics evaluated are the tree lifetime, delay per round, node

lifetime and network lifetime. We compare the performance of the MaxS-DG trees with that

of the LET-DG trees. Section 8 presents the conclusions along with a summary of the

simulation results. For the rest of the paper, the terms ‘node’ and ‘vertex’, ‘edge’ and ‘link’,

‘data aggregation’ and ‘data gathering’ will be used interchangeably. They mean the same.

2. Related Work on Data Gathering in Wireless Mobile Sensor Networks

The research on mobile sensor networks started with the deployment of mobile sink

nodes on a network of static sensor nodes. A common approach of data gathering in such

environments is to employ a mobile data collecting agent (e.g., [11][12][13]) that goes around

the network in the shortest possible path towards the location from which the desired data is

perceived to originate. The mobile-agent based algorithms do not gather data from all the

sensor nodes in a round; data is gathered only from the nodes in the vicinity of the

anchor-points (the stops made by a mobile agent at any particular data gathering round). The

focus of these algorithms is thus to choose the anchor-points in such a way that data can be

gathered from all the sensor nodes within a certain time threshold and simultaneously

maximize the network lifetime and utility (usefulness of the information gathered) as much as

possible. Due to the work of Kurs et al [14] in the area of wireless energy transfer,

researchers have recently started to envision "rechargeable sensor networks" [15] and have

proposed models for joint wireless energy replenishment [16] and anchor-point based mobile

data gathering [15]. However, the sensor nodes in such rechargeable sensor networks are still

considered static. Our proposed LET-DG distributed data gathering algorithm can be very

well adapted to a rechargeable network of mobile sensor nodes.

Very few topology-based data gathering algorithms have been proposed for mobile sensor

networks where the sensor nodes actually move. Among these, most of the work on data

gathering algorithms for WMSNs is focused around the use of clusters wherein researchers

have tried to extend the classical LEACH (Low Energy Adaptive Clustering Hierarchy) [3]

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 88

algorithm for dynamically changing network topologies. Variants of LEACH for WMSNs

that have been proposed in the literature include those that take into consideration the

available energy level [17] and the mobility-level [18] of the nodes to decide on the choice of

cluster heads; stability of the links between a regular node and its cluster head [19]; as well as

set up a panel of cluster heads to facilitate cluster reconfiguration in the presence of node

mobility [20]. In another related work [21], the authors assume the network to comprise of a

mix of static and mobile nodes: A cluster is evolved within the neighborhood of every static

node, with the static node as the cluster head; a mobile node chooses the closest static node as

its cluster head. The static nodes directly forward the aggregated data to a leader node that

does one more level of aggregation before forwarding the data to the sink node. The problem

with this approach is that the static sensor nodes need to be provided with surplus of energy

compared to the mobile sensor nodes to sustain their lifetime throughout the duration of the

network. Also, if sufficient static nodes are not deployed, a mobile sensor node may have to

transmit over a longer distance to reach out to the closest static node; in this case, the mobile

node will also soon run out of energy. In [22], the authors propose a distributed cluster-head

based algorithm in which cluster-heads are elected based on node IDs (0 to C-1, C to 2C-1 …,

to operate with C clusters at a time) or node locations (nodes that are closest to certain

landmarks with in a WMSN serve as the cluster-heads). In [23], the authors investigate the

use of a directed acyclic graph as the underlying communication topology of a sensor

network field, modeled according to the theory of thermal fields, to form propagation paths

such that the temperature of the nodes on the path increases as data progresses towards the

sink, which is considered to be the warmest.

Tree-based data gathering is considered to be the most energy-efficient [7] in terms of the

number of link transmissions; however, almost all of the tree-based data gathering algorithms

have been proposed for static sensor networks without taking the mobility of the sensor nodes

into consideration. In the presence of node mobility, the network topology changes

dynamically with time – leading to frequent tree reconfigurations. Thus, mobility brings in an

extra dimension of constraint to a WMSN and we need algorithms that can determine stable

long-living data gathering trees that do not require frequent reconfigurations. The only

tree-based data gathering algorithm we have come across for WMSNs is a shortest path

tree-based algorithm [24] wherein each sensor node is constrained to have at most a certain

number of child nodes. Based on the results from the literature (e.g., [25][26][27]) of mobile

ad hoc networks (MANETs), minimum hop shortest paths and trees in mobile network

topologies are quite unstable and need to be frequently reconfigured. We could not find any

other related work on tree-based data gathering for wireless mobile sensor networks.

Both MANETs and WMSNs exhibit mobility of nodes in an arbitrary fashion and are

constrained by the limited transmission range of the nodes and network bandwidth. However,

one should note that there are some subtle differences between MANETs and WMSNs. The

network density in WMSNs is much larger than that seen in MANETs and the sensor nodes

operate with relatively very little battery charge. MANET protocols typically try to extend the

time of first node failure, as every node (could be a PDA, laptop, etc) is considered important.

WMSNs typically focus on prolonging the network lifetime (the time at which the network

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 89

gets disconnected due to the failure of one or more sensor nodes). The MANET literature has

several solutions to determine stable topologies for unicast, multicast and broadcast

communication (e.g., [28][29][30]). However, the MANET communication protocols focus

on optimizing the paths from a source node to one or more receiver nodes, depending on the

nature of the communication. On the other hand, data gathering algorithms for WMSNs focus

on collecting data from all of the sensor nodes and forwarding the aggregated data towards a

root node. Hence, though both MANETs and WMSNs have dynamically changing

communication topologies, it is not possible to directly employ any existing MANET

communication algorithms for data gathering in WMSNs.

As a precursor to the proposed LET-DG algorithm, one of the authors of this paper had

recently studied the different forms of spanning tree-based topologies (minimum

distance-based, predicted LET-based and minimum velocity-based topologies) [31] that could

be used for efficient broadcasting in MANETs. All the three broadcast topologies were

determined in a centralized fashion with the complete knowledge of topology changes under

idealized settings for medium access, bandwidth and energy-availability. The LET-based

broadcast topology (LET-BT) was observed to be relatively more stable; while the minimum

distance and minimum velocity-based broadcast topologies were observed to respectively

yield a higher energy-efficiency and lower end-to-end delay. However, as noted above,

MANET solutions cannot be directly extended and/or applied for WMSNs. Moreover, in a

graph theoretic context, LET-BT spanning trees are not rooted and not directed; whereas, we

need a data gathering tree (a rooted and directed spanning tree) in the context of WMSNs.

In this paper, we have proposed the LET-DG algorithm as a distributed data gathering

algorithm for WMSNs and compared its performance with that of the MaxS-DG algorithm, a

benchmarking algorithm based on the idea of graph intersections. The lifetime of the

LET-DG trees is bounded above by that of the MaxS-DG trees. The protocol development

and simulation framework presented in this paper can become a model for developing a

benchmarking algorithm to obtain theoretical bounds on a performance metric for a

topology-control problem (in this research, our focus is to arrive at the theoretically possible

maximum lifetime of the data gathering trees such that the number of tree discoveries is the

global minimum) and develop a distributed algorithm for the same problem as well as

conduct a comparative performance evaluation of the distributed algorithm vis-a-vis the

centralized algorithm under identical operating conditions. The proposed MaxS-DG

algorithm can be used to validate the claims on the stability of data gathering trees

determined using any distributed algorithm for WMSNs (like the LET-DG algorithm).

3. Review on MANET Solutions for Stable Communication Topologies

The MANET literature has several protocols and algorithms proposed for determining

sequence of stable communication topologies for unicast (paths), multicast (trees) and

broadcast (connected dominating sets) communication. The unicast solutions focus on

determining a sequence of stable paths between two particular nodes (source-destination

nodes) using some form of link stability metric (like the number of beacons exchanged in the

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 90

past between the end nodes of the link [32], predicted link expiration time [9], rate of change

of signal strength for the messages transmitted on the link [33], etc). In an earlier work [34],

it was observed that routes determined through unicast routing protocols that model link

stability based on future predictions (like the LET [9]) are more stable than those determined

through protocols based on the past history (like the protocols in [33] and [32]). The

relatively better performance of the LET-based Flow Oriented Routing Protocol (FORP) [10]

in a MANET context is a motivation for the authors to use the LET as the underlying link

stability metric for the distributed data gathering algorithm proposed in this paper.

The multicast solutions (e.g., [35][36][37]) proposed for MANETs focus on determining a

sequence of stable trees or meshes connecting a source node to one or more receiver nodes

forming the multicast group. In prior works (e.g., [38][39]), multicast trees (e.g., [36][37])

were observed to be more energy-efficient and bandwidth-efficient; whereas, the multicast

meshes (e.g., [35]) are observed to be more stable (robust to link failures) at the cost of

energy and bandwidth efficiency. The MANET multicast tree protocols are designed to be

either minimum-hop based (e.g., [37]) or minimum-edge based (e.g., [36]). The

minimum-hop based protocols connect the source on a minimum hop path to each of the

receivers; whereas, the minimum-edge based protocols aim at connecting the source to all of

the receivers through as minimum links as possible. The minimum-hop based multicast trees

contain more links than the minimum-edge based trees. The general trend observed in the

simulation studies (e.g., [27][40]) comparing the performance of the minimum-edge based

and minimum-hop based multicast trees is that larger the number of links on the tree, the

lower the stability as well as higher the energy consumption. The relatively better

performance of minimum-edge based multicast trees also prompted us to choose a spanning

tree-based approach rather than a shortest path-tree based approach to determine the data

gathering trees for the algorithms proposed in this paper.

The broadcast solutions for MANETs are typically based on connected dominating sets

(CDS) - a subset of nodes in the network such that any node in the network is either in the

CDS or is a neighbor of a node in the CDS. The idea behind the use of a CDS is that any

broadcast message needs to be transmitted only by the nodes in the CDS within their

neighborhood in order for all the nodes to receive the message. Obviously, the smaller the

CDS Node Size (the number of nodes constituting the CDS and required to transmit in their

respective neighborhoods), the larger is the energy-efficiency. However, from prior research

(e.g., [41][42][43][44]), we observe a tradeoff between the CDS Node Size and Lifetime:

Connected dominating sets with minimum CDS Node Size (e.g., [42]) do not last long and

need to be frequently reconfigured; whereas, CDSs that are determined based on node

mobility (e.g., [44]) or link stability (e.g., [43]) as the underlying criterion tend to exist for a

longer time. The tradeoff could be minimized to a certain extent by preferring to form

minimum node size-CDS based on strong neighborhoods (i.e., prefer CDS nodes that are

predicted to have stable links with as many neighbors as possible) [41]. This is another

observation that motivated us to propose an algorithm to determine a link stability

(LET)-based data gathering tree that would be shallow (lower height to minimize the number

of intermediate nodes) and at the same time have as many stable links as possible (between

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 91

two intermediate nodes as well as between an intermediate node and a leaf node).

4. System Model, Energy Consumption Model, Terminology and Assumptions

4.1 System Model

The system model adopted for the data gathering algorithms presented in this paper can

be summarized as follows:

(i) The underlying network graph considered in the construction of the communication

topology used for data gathering is a unit disk graph [45] constructed assuming each

sensor node has a fixed transmission range, R. There exists a link between any two

nodes in a unit disk graph if and only if the physical distance between the two end

nodes of the link is less than or equal to the transmission range, R.

(ii) The data gathering algorithms operate in several rounds, and during each round, data

from the sensor nodes are collected, aggregated and forwarded to the sink through the

data gathering tree (MaxS-DG tree or LET-DG) rooted at a leader node.

(iii)The leader node of a data gathering tree remains the same as long as the tree exists

and is randomly chosen by the sink every time a new tree needs to be determined.

(iv) LET-DG Tree: The predicted link expiration time (LET) of a link u – v between two

nodes u and v, currently at (Xu, Yu) and (Xv, Yv), and moving at speed si and sj in

directions θi and θj (with respect to the positive X-axis) is computed using the formula

proposed in [9]:

22

2222)()()(
),(

ca

bcadRcacdab
vuLET

………………………... (1)

 where a = si*cosθi – sj*cosθj; b = Xi – Xj; c = si*sinθi – sj*sinθj; d = Yi – Yj

4.2 Energy Consumption Model

The energy consumption model used is a first order radio model [46] that has been also

used in several of the well-known previous work (e.g., [3][4]) in the literature. According to

this model, the energy expended by a radio to run the transmitter or receiver circuitry is Eelec

= 50 nJ/bit and amp = 100 pJ/bit/m
2
 for the transmitter amplifier. The radios are turned off

when a node wants to avoid receiving unintended transmissions.

(i) The energy lost in transmitting a k-bit message over a distance d is given by:

ETX (k, d) = Eelec* k +amp
k d

2
 (1)

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 92

(ii) The energy lost in receiving a k-bit message is given by:

ERX (k) = Eelec* k (3)

(iii)During a network-wide flooding of a control message (for example, the tree

establishment messages for LET-DG as described in Section 6), each node is assumed

to lose energy corresponding to transmission over the entire transmission range of the

node and to receive the message from each of its neighbors. In networks of high

density, the sum of the energy lost at a node due to reception of the broadcast message

from all of its neighbors is often more than the energy lost due to transmitting the

message. Though the MaxS-DG algorithm is centralized in nature, to be fair with

LET-DG, we consider the energy lost in changing from one data gathering tree to

another as equal to the energy lost in the network-wide flooding of a control message

(same as the size used in the LET-DG algorithm) as described above.

4.3 Terminology

We use the notions of static graphs and mobile graphs (adapted from [47]) to capture the

sequence of topological changes in the network and determine a stable data gathering tree

that spans over several time instants. A static graph is a snapshot of the network at any

particular time instant and is modeled as a unit disk graph [45] wherein there exists a link

between any two nodes if and only if the physical distance between the two end nodes of the

link is less than or equal to the transmission range. The weight of an edge on a static graph is

the Euclidean distance between the two end nodes of the edge. The Euclidean distance for a

link u – v between two nodes u and v, currently at (Xu, Yu) and (Xv, Yv) is given by:

22)()(vuvu YYXX .

A mobile graph G(i, j), for 1 ≤ i ≤ j ≤ T and T is the total number of rounds of the data

gathering session corresponding to the network lifetime, is defined as Gi Gi+1 … Gj,

where Gi, Gi+1, ..., Gj are the individual static graphs captured at time instants ti, ti+1, …, tj

corresponding to rounds i, i+1, ..., j. Thus, a mobile graph is a logical graph that captures the

presence or absence of edges in the individual static graphs. In this research work, we sample

the network topology periodically for every round of data gathering to obtain the sequence of

static graphs. The weight of an edge in the mobile graph G(i, j) is the geometric mean of the

weights of the edge in the individual static graphs spanning Gi, …, Gj. Since there exist an

edge in a mobile graph if and only if the edge exists in the corresponding individual static

graphs, the geometric mean of these Euclidean distances would also be within the

transmission range of the two end nodes for the entire duration spanned by the mobile graph.

Note that at any time, a mobile graph includes only live sensor nodes, nodes that have

positive available energy.

A static spanning tree is a minimum-weight spanning tree determined on a static graph.

Since we use the Euclidean distance between the constituent nodes of an edge as the link

weight, the minimum-weight spanning tree determined on a static graph will be a

minimum-distance spanning tree for which the sum of the edge weights will be the minimum.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 93

A static data gathering tree is a rooted form of its corresponding static spanning tree with the

root node being the leader node chosen for the round corresponding to the time instant

represented by the static spanning tree. A mobile spanning tree is a minimum-weight

spanning tree determined on a mobile graph whose edge weights are the geometric mean of

the corresponding edge weights in the constituent static graphs. A mobile data gathering tree

is a rooted form of its corresponding mobile spanning tree with the root node being the leader

node chosen for the round corresponding to the beginning time instant of the mobile graph.

The leader node of a mobile data gathering tree remains the same until the mobile graph gets

disconnected due to node mobility or a node failure occurs, whichever happens first.

4.4 Key Assumptions

The key assumptions behind the LET-DG algorithm are as follows:

(i) A sensor node is able to obtain its current location, velocity and direction of motion

(with respect to the positive X-axis) at any point of time and also includes the same as

a Location Update Vector (LUV) in the TREE-CONSTRUCT message broadcast to

its neighborhood at the time of constructing the data gathering trees (refer Section 6).

With the inclusion of a LUV in the TREE-CONSTRUCT message, we avoid the need

to periodically exchange beacons in the neighborhood.

(ii) For the LET-DG trees, a sensor node maintains a LET-table comprising of the

estimates of the LET values to each of its neighbor nodes based on the latest

TREE-CONSTRUCT messages received from them. A sensor code could similarly

maintain a Distance-table comprising of estimates of the Euclidean distance with the

neighbor nodes that sent it the TREE-CONSTRUCT message (assumed for use to

determine the MaxS-DG trees).

(iii)Sensor nodes are assumed to be both TDMA (Time Division Multiple Access) and

CDMA (Code Division Multiple Access)-enabled [48]. Every upstream node

broadcasts a time schedule (for data gathering) to its immediate downstream nodes; a

downstream node transmits its data to the upstream node according to this schedule.

Such a TDMA-based communication between every upstream node and its immediate

downstream child nodes can occur in parallel, with each upstream node using a

unique CDMA code.

(iv) We assume the size of the aggregated data packet to be the same as the size of the

individual data packets sent by the sensor nodes. In other words, aggregation at any

node does not result in increase in the size of the data packets transmitted from the

sensor nodes towards the sink.

A key assumption behind the MaxS-DG algorithm is that the entire sequence of network

topology changes is known beforehand at the time of running the MaxS-DG algorithm. This

is required to generate the mobile graph spanning several static graphs, each representing

snapshots of the network topology at time instants corresponding to successive rounds of data

gathering, on which a stable long-living data gathering tree will be determined. The above

assumption may not be practical for distributed systems of sensor networks. However, note

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 94

that our goal is to develop the MaxS-DG algorithm as a benchmarking algorithm that can

give us the sequence of long-living data gathering trees (over the duration of the data

gathering session) whose lifetime will be the upper bound for the data gathering trees

obtained using any other algorithm (like the LET-DG algorithm) developed for this problem

in the area of mobile sensor networks. The sequence of such stable longest-living data

gathering trees determined using the MaxS-DG algorithm will involve the minimum number

of discoveries involving network-wide flooding. Thus, the number of data gathering tree

discoveries incurred with the MaxS-DG algorithm will form the lower bound for the number

of data gathering tree discoveries incurred with any other algorithm for mobile sensor

networks.

5. Maximum Stability-based Data Gathering (MaxS-DG) Algorithm

The MaxS-DG algorithm is based on a greedy look-ahead principle and the intersection

strategy of static graphs. When a mobile data gathering tree is required at a sampling time

instant ti, the strategy is to find a mobile graph G(i, j) = Gi Gi+1 … Gj such that there

exists a spanning tree in G(i, j) and no spanning tree exists in G(i, j+1) = Gi Gi+1 … Gj

Gj+1. We find such an epoch ti, …, tj as follows: Once a mobile graph G(i, j) is constructed

with the edges assigned the weights corresponding to the geometric mean of the weights in

the constituent static graphs Gi, Gi+1, …, Gj, we run the Prim’s minimum-weight spanning

tree algorithm [8] on the mobile graph G(i, j). If G(i, j) is connected, we will be able to find a

spanning tree in it. We repeat the above procedure until we reach a mobile graph G(i, j+1) in

which no spanning tree exists and there existed a spanning tree in G(i, j). It implies that a

spanning tree basically existed in each of the static graphs Gi, Gi+1, ..., Gj and we refer to it as

the mobile spanning tree for the time instants ti, …, tj. To obtain the corresponding mobile

data gathering tree, we choose an arbitrary root node for this mobile spanning tree and run the

Breadth First Search (BFS) algorithm [8] on it starting from the root node. The direction of

the edges in the spanning tree and the parent-child relationships are set as we traverse its

vertices using BFS. The resulting mobile data gathering tree with the chosen root node (as the

leader node) is used for every round of data gathering spanning time instants ti, …, tj. We then

set i = j+1 and repeat the above procedure to find a mobile spanning tree and its

corresponding mobile data gathering tree that exists for the maximum amount of time since

tj+1. A sequence of such maximum lifetime (i.e., longest-living) mobile data gathering trees

over the timescale T corresponding to the number of rounds of a data gathering session is

referred to as the Stable Mobile Data Gathering Tree. Figure 1 presents the pseudo code of

the MaxS-DG algorithm that takes as input the sequence of static graphs spanning the entire

duration of the data gathering session.

While operating the algorithm under energy-constrained scenarios, one or more sensor

nodes may die due to exhaustion of battery charge even though the underlying spanning tree

may topologically exist. For example, if we have determined a data gathering tree spanning

across time instants ti to tj using the above approach, and we come across a time instant tk (i ≤

k ≤ j) at which a node in the tree fails, we simply restart the Max.S-DG algorithm starting

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 95

from time instant tk considering only the live sensor nodes (i.e., the sensor nodes that have

positive available energy) and determine the longest-living data gathering tree that spans all

the live sensor nodes since tk. The pseudo code of the MaxS-DG algorithm in Figure 1

handles node failures, when run under energy-constrained scenarios, through the if block

segment in statement 8. If all nodes have sufficient-energy and there are no node failures, the

algorithm does not execute statement 8.

Input: Sequence of static graphs G1, G2, … GT; Total number of rounds of the data gathering session – T

Output: Stable-Mobile-DG-Tree

Auxiliary Variables: i, j

Initialization: i =1; j=1; Stable-Mobile-DG-Tree = Φ (empty set)

Begin MaxS-DG Algorithm

1 while (i ≤ T) do

2 Find a mobile graph G(i, j) = Gi Gi+1 … Gj such that there exists at least one spanning

 tree in G(i, j) and {no spanning tree exists in G(i, j+1) or j = T}

3 Mobile-Spanning-Tree(i, j) = Prim’s Algorithm (G(i, j))

4 Root(i, j) = Choose a node randomly in G(i, j)

5 Mobile-DG-Tree(i, j) = Breadth First Search (Mobile-Spanning-Tree(i, j), Root(i, j))

6 Stable-Mobile-DG-Tree = Stable-Mobile-DG-Tree U { Mobile-DG-Tree(i, j) }

7 for each time instant tk {ti, ti+1, …, tj} do

 Use the Mobile-DG-Tree(i, j) in tk

8 if node failure occurs at tk then

 j = k – 1

 break

 end if

 end for

9 i = j + 1

10 end while

11 return Stable-Mobile-DG-Tree

End MaxS-DG Algorithm

Figure 1: Pseudo Code for the Maximum Stability-based Data Gathering Tree Algorithm

5.1 Example to Illustrate the Working of the MaxS-DG Algorithm

We run the MaxS-DG algorithm on the sequence of static graphs G1G2G3G4G5 (shown in

the first part of Figure 2), generated by sampling the network topology for every second. For

simplicity and clarity in the representation, we do not use weights for the edges. The reader

could assume that the spanning trees determined on the static graphs and mobile graphs at

different instances of execution of the MaxS-DG algorithm in Figure 2 are the

minimum-weight spanning trees on the corresponding graphs.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 96

In Figure 2, we could find a connected mobile graph spanning G1, G2 and G3; and could

not find a connected mobile graph from G1 through G4. A spanning tree exists for a graph if

and only if the graph is connected. We determine a spanning tree on G1 G2 G3 and

derive a data gathering tree rooted at an arbitrarily selected node (node 3). This stable data

gathering tree is to be used for the rounds corresponding to time instants of the static graphs

G1, G2 and G3. Similarly, we continue with the subsequent two static graphs and find a data

gathering tree (with an arbitrary root node – node 6) that exists in both G4 and G5. Thus, we

require a total of two data gathering tree discoveries for the sequence of static graphs

G1G2G3G4G5. There has to be at least a sequence of two spanning trees for the graph

sequence G1G2G3G4G5 as the intersection graph G1 G2 G3 G4 was not

connected.

Figure 2: Example to Illustrate Execution of the Maximum Stability-based Data Gathering Algorithm

5.2 Run-time Complexity Analysis of the MaxS-DG Algorithm

To expand a mobile graph G(i, j) = Gi Gi+1 … Gj to G(i, j+1), all we had to do is to

check whether each of the edges in the mobile graph G(i, j) existed at time instant tj+1. This

can be done in O(n
2
) time on a mobile graph of n nodes, as there can be at most O(n

2
) edges

on a graph of n vertices. The overall complexity of the MaxS-DG algorithm is the sum of the

time complexity to construct the mobile graphs, the time complexity to run the spanning tree

algorithm on these mobile graphs and the time complexity to transform these spanning trees

to data gathering trees using BFS.

Sufficient-energy Scenarios: When the network operates under sufficient-energy

scenarios (i.e., no node failures), for a data gathering session comprising of T rounds, we will

have to construct T mobile graphs, resulting in a time complexity of O(n
2
T) to construct the

mobile graphs. On each of these T mobile graphs, we will have to run a spanning tree

algorithm. If we use the O(n
2
*logn) Prim’s algorithm to construct a spanning tree, the

complexity to run the spanning tree algorithm on the T mobile graphs becomes O(n
2
*logn*T).

A spanning tree on n vertices has n–1 edges. The time-complexity of running BFS on a

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 97

spanning tree of n vertices with n–1 edges is O(n) [8]. To run BFS on the O(T) spanning trees,

we incur O(nT) time. Thus, the overall complexity of the MaxS-DG algorithm under

sufficient-energy scenarios is O(n
2
T) + O(n

2
Tlogn) + O(nT) = O(n

2
Tlogn).

Energy-Constrained Scenarios: There can be at most n–1 node failures (on an n node

network) that trigger the execution of statement 8 in the pseudo code of Figure 1 for the

MaxS-DG algorithm. A node failure occurring at time instant tk (i ≤ k ≤ j), while using a

mobile data gathering tree that has been determined on a mobile graph for time instants ti, …,

tj, would require us to construct a mobile graph starting from tk and the number of mobile

graphs that we have to construct and run the spanning tree algorithm increases by j–k+1. At

the worst case, if there are n–1 node failures, the number of mobile graphs that we have to

construct and run the spanning tree algorithm increases by (T – 1) + (T – 2) + (T – (n–1)) =

(n–1)T – [1 + 2 + … + (n–1)] = O(nT) + O(n
2
). Under the sufficient-energy scenarios, we had

to construct T mobile graphs and run the spanning tree algorithm on each of them. In the

energy-constrained scenarios, we will have to construct at most T + O(nT) + O(n
2
) mobile

graphs and run the spanning tree algorithm on each of them. The number of rounds of data

gathering is generally far greater than the number of nodes in the network. For example, in

our simulations, we use a value of T = 4000 rounds (4 rounds per second, for 1000 seconds)

and n = 100 nodes. Thus, since n << T, we can say that n
2
 << nT. Therefore, a total of T +

O(nT) + O(n
2
) = T + O(nT) = O(nT) mobile graphs are constructed. The time complexity to

construct these mobile graphs is O(n
2
 * nT) = O(n

3
T). We run the O(n

2
logn) Prim’s spanning

tree algorithm on the O(nT) mobile graphs, resulting in a time-complexity of O(n
3
Tlogn) to

determine the spanning trees. The time-complexity of running the O(n)-BFS algorithm on the

O(nT) spanning trees is O(n
2
T). Thus, the overall time-complexity of the MaxS-DG algorithm

under the energy-constrained scenarios is O(n
3
T) + O(n

3
Tlogn) + O(n

2
T) = O(n

3
Tlogn).

5.3 Proof of Correctness of the MaxS-DG Algorithm

In this section, we prove that the MaxS-DG algorithm does determine the sequence of

long-living stable mobile data gathering trees such that the number of tree discoveries is the

global minimum (i.e. optimum). We use the approach of Proof by Contradiction. Let m be the

number of data gathering tree discoveries incurred using the MaxS-DG algorithm on a

sequence of static graphs G1G2 … GT. Let there be another algorithm (a hypothetical

algorithm) that returns a sequence of mobile data gathering trees for the same sequence of

static graphs such that the number of tree discoveries is n < m. If such an algorithm exists,

then without loss of generality, there has to be one mobile data gathering tree, determined

using this hypothetical algorithm, existing for the entire duration of a mobile graph G(p, s);

whereas, the MaxS-DG algorithm had to have at least one data gathering tree transition in

G(p, s). However, there cannot be such a data gathering tree that spanned through the entire

mobile graph G(p, s) and was not discovered by the MaxS-DG algorithm. Because, the

MaxS-DG algorithm takes intersection of the static graphs Gp Gp+1 … Gs and runs a

spanning tree algorithm on the intersection graph G(p, s) – if at all a spanning tree existed in

G(p, s), then G(p, s) would have to be connected. If the MaxS-DG algorithm could not

determine a spanning tree/data gathering tree for the mobile graph G(p, s), it implies the

mobile graph G(p, s) is not connected. It is not possible for any algorithm, including our

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 98

hypothetical algorithm, to find a spanning tree/data gathering tree that covers all the vertices

of a disconnected graph. Thus, the hypothetical algorithm would also had to have at least one

tree transition in G(p, s). The above proof holds good for any value of static graph indices p

and s, where 1 ≤ p ≤ s ≤ T, and T is the total number of rounds corresponding to the duration

of the data gathering session. Thus, the number of data gathering tree discoveries incurred

with using the MaxS-DG algorithm is the global minimum.

Note that in the above proof, we have implicitly assumed that all the sensor nodes are

alive for the entire duration of the data gathering session. In other words, we have proved that

when operated under sufficient-energy scenarios, the MaxS-DG algorithm returns the stable

sequence of data gathering trees such that the number of tree discoveries is the global

minimum. It is not possible to theoretically prove the optimality of the MaxS-DG algorithm

under energy-constrained scenarios. One can only validate the optimality of the lifetime of

the MaxS-DG trees under energy-constrained scenarios through simulations, as we do in

Section 7, wherein we observe the MaxS-DG trees to yield a relatively longer lifetime

compared to the LET-DG trees under energy-constrained scenarios.

6. Link Expiration Time based Data Gathering (LET-DG) Algorithm

The LET-DG algorithm is a distributed implementation of the maximum spanning tree

algorithm [8] on a weighted network graph with the edge weights modeled as the predicted

link expiration time (LET) of the constituent end nodes. The objective of a maximum

spanning tree algorithm is to determine a spanning tree such that the sum of the edge weights

is the maximum. Our aim is to determine a maximum-LET spanning tree for mobile sensor

networks such that the sum of the LETs of the constituent links of the spanning tree is the

maximum. The LET-DG tree is a rooted maximum-LET spanning tree with the root being the

leader node chosen by the sink (as explained in Section 6.2).

6.1 Initializations of State Information on Data Gathering Tree Configuration

Each sensor node locally maintains its best known state information regarding the data

gathering tree-configuration, containing the following fields: estimated node weight,

upstream node id, tree level, LEADER node id, and sequence number. The LEADER node id

corresponds to the id of the root node of the data gathering tree. The sequence number field is

the latest known sequence number for a data gathering tree involving the sensor node. The

sequence number of a data gathering tree is set during the tree construction process (as

explained in Section 6.2). The upstream node id is the id of the immediate parent node for the

sensor node in the tree. If a sensor node is the LEADER node (i.e., the root), then its

upstream node id is set to NULL. The estimated node weight is the best known weight

corresponding to the position of the sensor node in the tree. The tree level field is a measure

of the distance of the sensor node from the root node of the tree. When a new data gathering

tree needs to be configured (either initially at network startup or when the last known tree is

broken), the values to the fields of the tree-configuration state information are set as follows,

indicated in parenthesis next to the field name:

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 99

 At the LEADER node: estimated node weight (+∞), upstream node id (NULL), tree

level (0), LEADER node id (self) and sequence number (the latest sequence number

informed by the sink node through the TREE-INITIATE message for the new tree to

be configured).

 At a regular sensor node (i.e., a non-LEADER node): estimated node weight (-∞),

upstream node id (NULL), tree level (+∞), LEADER node id (NULL) and sequence

number (the sequence number of the last known tree if one existed; otherwise, set to

-1).

In the simulations, the Positive Infinity (+∞) and Negative Infinity (-∞) will be

represented respectively as very large positive and very small negative values that fall outside

the range of the possible values for the link weight.

6.2 Sink: Selection of the Leader Node

Whenever a sink node fails to receive aggregated data from the leader node of the

LET-DG tree, the sink randomly chooses a new leader node from the list of available nodes

currently perceived to exist with a positive residual energy, and sends it a TREE-INITIATE

message to start constructing a tree rooted at the chosen leader node (LEADER). The sink

includes a sequence number (a monotonically increasing value maintained at the sink,

starting from 0) for the tree construction process in the TREE-INITIATE message, and the

leader node includes it in its tree construction message (see Section 6.3) to avoid replay errors

involving outdated links. If the leader node is alive (i.e., it has positive available energy), then

it responds back with a TREE-INITIATE-ACK message acknowledging that it will start the

flooding-based tree discovery. If the TREE-INITIATE-ACK message is not received within a

certain time, the sink considers the chosen sensor node to be not alive, removes it from the

list of available nodes, and sends the TREE-INITIATE message (with a higher sequence

number, to avoid any parallel tree construction occurring in the network) to another randomly

chosen sensor node from the list of available nodes. The above procedure is repeated until the

sink successfully finds a leader node that accepts to initiate the tree construction process.

6.3 Initiation of the TREE-CONSTRUCT Message

The leader node broadcasts a TREE-CONSTRUCT message containing a 6-element

Tree-Configuration tuple <sequence number, LEADER node id, sender node id, tree level,

sender’s estimated weight, upstream node id> as well as a location update vector (LUV)

comprising of the 4-element tuple <X-coordinate, Y-coordinate, Velocity, Direction of motion

- Angle with respect to the positive X-axis> to its neighbor nodes. The sequence number is the

value sent by the sink to the leader node for the specific tree construction process. If the

sender node is the LEADER, it sets the upstream node id to its own id; while the other nodes

set the upstream node id to be the id of the node that they perceive to be their best choice for

the upstream node that can connect them to the tree. In the TREE-CONSTRUCT message,

the leader node sets the sender’s estimated weight value to +∞ and the value of the tree level

field to 0.

6.4 Propagation of the TREE-CONSTRUCT Message and Tree Establishment

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 100

When a node receives the TREE-CONSTRUCT message with a higher sequence number

for the first time, it treats it as a sign of tree reconfiguration and resets, if it has not already

done so, the different fields of the local tree-configuration state information to their initial

values as listed in Section 6.2. The receiving node then calculates the weight of the link to the

neighbor node from which the message was received. A TREE-CONSTRUCT message is

accepted at a node for a weight/tree configuration update and rebroadcast (in the

neighborhood of the node) if the following conditions are met:

(i) The upstream node id is not equal to the id of the node itself.

(ii) The value of the tree level field in the message is lower than or equal to the current

tree level field value at the node.

(iii) The estimated weight at the node is lower than the sender’s estimated weight.

(iv) The estimated weight at the node is lower than the predicted expiration time of the

link (LET, calculated according to equation 1) on which the TREE-CONSTRUCT

message was received.

If all the above conditions are true, then a node receiving the TREE-CONSTRUCT

message accepts the message to update its position in the tree. Note that conditions (i) and (ii)

are included to ensure there is no looping. The receiver node selects the sender node as its

upstream node for joining/connecting to the tree, sets its estimated weight in the tree as the

minimum of the sender node’s estimated weight for the tree and LET of the link through which

the TREE-CONSTRUCT message was received, and also sets the value of its tree level local

state information to one more than the value of the tree level field in the

TREE-CONSTRUCT message. If its weight is updated, the receiver node sends a

TREE-JOIN-CHILD message to the upstream sender node indicating the decision to connect

to the tree by becoming its child node. The receiver node also decides to further broadcast the

TREE-CONSTRUCT message to its neighbors by replacing the LUV of the sender node with

its own LUV, the sender node id with its own id, the sender’s estimated weight with its

recently updated weight in the tree, the upstream node id set to the id of the node through

which it has decided to join/connect to the tree, and the tree level value in the message

incremented by one (matching to the updated value of the tree level local state information at

the node). The LEADER node id and the sequence number fields are retained as it is in the

TREE-CONSTRUCT message.

A node follows the same procedure as explained above when it receives a

TREE-CONSTRUCT message with the highest known sequence number from any other

neighbor node. In other words, a TREE-CONSTRUCT message corresponding to the latest

broadcast process (decided using the sequence number) is accepted for an update and

re-broadcast only if it can increase the estimated weight of the node to connect to the tree

without introducing any looping. The algorithm executes as the TREE-CONSTRUCT

message propagates around the sensor network reaching every sensor node. As part of this

flooding process, each sensor node is guaranteed to accept the TREE-CONSTRUCT message

for a weight/tree-configuration update at least once and broadcast the message in its

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 101

neighborhood. This is because, the initial estimated weight of a sensor node to join the tree is

–∞, and the leader node starts with a positive ∞ value and the LET values for the links are

always positive. The objective of the LET-DG algorithm is to connect each node with the

largest possible weight value in the tree – a measure of the estimated lifetime of the tree.

6.5 Propagation of the TREE-LINK-FAILURE Message

When an upstream sensor node finds out that a link to one of its downstream child nodes

is broken due to failure to receive aggregated data packets, the upstream node initiates a

TREE-LINK-FAILURE message and includes in it the sequence number that was used in the

TREE-CONSTRUCT message corresponding to the most recently used flooding process. The

TREE-LINK-FAILURE message is essentially reverse broadcast along the edges of the sub

tree proceeding towards the leader node, starting from the upstream node of the broken link.

Similarly, the downstream node detects the link failure when it fails to receive a

TDMA-schedule from its upstream node for the next round of data aggregation and initiates a

TREE-LINK-FAILURE message to inform about the tree failure to the nodes in the sub tree

rooted at it. If an intermediate node and/or leaf node does not receive the

TREE-LINK-FAILURE message, it continues to wait for the aggregated data packets from its

perceived downstream nodes or the TDMA-schedule from its upstream node until it learns

about the tree failure through the broadcast of a new TREE-CONSTRUCT message with a

sequence number greater than that of the most recently used tree.

7. Simulations

In this section, we present an exhaustive simulation study on the performance of the

MaxS-DG trees and compare them with that of the LET-DG trees under diverse conditions of

network density and mobility. The simulations are conducted in a discrete-event simulator

developed (in Java) by us exclusively for data gathering in mobile sensor networks. The

MAC (medium access control) layer is assumed to be collision-free and considered an ideal

channel without any interference. Sensor nodes are assumed to be both TDMA (Time

Division Multiple Access) and CDMA (Code Division Multiple Access)-enabled. Every

upstream node broadcasts a time schedule (for data gathering) to its immediate downstream

nodes; a downstream node transmits its data to the upstream node according to this schedule.

Such a TDMA-based communication between every upstream node and its immediate

downstream child nodes can occur in parallel, with each upstream node using a unique

CDMA code.

The network dimension is 100m x 100m. The number of nodes in the network is 100 and

initially, the nodes are uniform-randomly distributed throughout the network. The sink is

located at (50, 50), at the center of the network field. For a given simulation run, the

transmission range per sensor node is fixed and is the same across all nodes. The network

density is varied by varying the transmission range per sensor node from 20m to 50m, in

increments of 5m. For brevity, we only present results obtained for transmission ranges per

node of 25m and 30m (representative of moderate density, with connectivity of 97% and

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 102

above), and for 40m (representative of high density, with 100% connectivity).

Simulations are conducted for two kinds of energy scenarios: One scenario wherein each

node is provided with abundant supply of energy (100 J per node) and there are no node

failures due to exhaustion of battery charge; the simulations in these sufficient-energy

scenarios are conducted for 1000 seconds. The second scenario is an energy-constrained

scenario in which each node is supplied with limited initial energy (2 J per node) and the

simulations are conducted until the network of live sensor nodes gets disconnected due to the

failures of one or more nodes. The energy consumption model is as described in Section 4.2.

We conduct constant-bit rate data gathering at the rate of 4 rounds per second (one round

for every 0.25 seconds). The size of the data packet is 2000 bits; the size of the control

messages used for tree discoveries is assumed to be 400 bits. We assume that a tree discovery

(for both MaxS-DG and LET-DG trees) requires network-wide flooding of the 400-bit control

messages such that each sensor node will broadcast the message exactly once in its

neighborhood. As a result, each sensor node will lose energy to transmit the 400-bit message

over its entire transmission range and receive the message from each of its neighbor nodes. In

high density networks, the energy lost due to receipt of the redundant copies of the tree

discovery control messages dominates the energy lost at a node for tree discovery. All of

these mimic the energy loss observed for flooding-based tree discovery in ad hoc and sensor

networks.

The node mobility model used is the well-known Random Waypoint mobility model [49]

with the maximum node velocity being 3 m/s and 10 m/s representing scenarios of low and

high mobility respectively. According to this model, each node chooses a random target

location to move with a velocity uniform-randomly chosen from [0,…, vmax], and after

moving to the chosen destination location, the node continues to move by randomly choosing

another new location and a new velocity. Each node continues to move like this, independent

of the other nodes and also independent of its mobility history, until the end of the simulation.

For a given vmax value, we also vary the dynamicity of the network by conducting the

simulations with a variable number of static nodes (out of the 100 nodes) in the network. The

values for the number of static nodes used are: 0 (all nodes are mobile), 20, 50 and 80.

7.1 Performance Metrics

We generated 200 mobility profiles of the network for a total duration of 6000 seconds,

for every combination of the maximum node velocity and the number of static nodes. Every

data point in the results presented in Figures 4 through 15 is averaged over these 200 mobility

profiles. The tree lifetime and delay per round are measured for both the sufficient-energy

and energy-constrained scenarios (appropriately prefixed as ‘EC’ next to the names of the

data gathering trees). The node and network lifetimes are measured only for the

energy-constrained scenarios.

The performance metrics measured in the simulations are:

(i) Tree Lifetime – the duration for which a data gathering tree existed, averaged over the

entire simulation time period.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 103

(ii) Delay per Round – measured in terms of the number of time slots needed per round of

data aggregation at the intermediate nodes, all the way to the leader node of the data

gathering tree, averaged across all the rounds of the simulation. A brief description of

the algorithm used to compute the delay per round is given in Section 7.2 along with

an illustration in Figure 3.

(iii)Node Lifetime – measured as the time of first node failure due to exhaustion of battery

charge.

(iv) Network Lifetime – measured as the time of disconnection of the network of live

sensor nodes (i.e., the sensor nodes that have positive available battery charge), while

the network would have stayed connected if all the nodes were alive at that time

instant. So, before confirming whether an observed time instant is the network

lifetime (at which the network of live sensor nodes is noticed to be disconnected), we

test for connectivity of the underlying network if all the sensor nodes were alive.

Figure 3: Example to Illustrate the Calculation of Delay per Round of Data Gathering

7.2 Algorithm to Compute the Delay per Round of Data Gathering

The delay incurred at a node is measured in terms of the number of time slots it takes to

gather data from all of its immediate child nodes. The delay for the data gathering tree is one

plus the delay incurred at the leader node (root node). We assume that it takes one time slot

per child node to transfer data to its immediate predecessor node in the tree. However, a node

cannot transfer the aggregated data to its parent node until it receives the data from its own

child nodes. The delay calculations start from the bottom of the data gathering tree. The delay

incurred at a leaf node is 0. To calculate the delay incurred at an intermediate node u,

Delay(u), located at a particular level in the data gathering tree, we maintain a sorted list,

Child-Nodes(u), of the delay associated with each of its immediate child nodes and use a

temporary running variable Temp-Delay(u), initialized to zero, to explore the sorted list of the

delays at the child nodes. For every child node v Child-Nodes(u), Temp-Delay(u) =

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 104

Maximum [Temp-Delay(u) + 1, Delay(v) + 1)], as we assume it takes one time slot for a child

node to transfer its aggregated data to its immediate predecessor node in the tree. The delay

associated with an intermediate node u, Delay(u), is the final value of the Temp-Delay(u)

variable, after we iterate through the sorted list of the delays associated with the list

Child-Nodes(u). The above procedure is repeated at all the intermediate nodes, from levels

one less than the Height of the tree all the way to zero (i.e., the root node). We illustrate the

working of the above explained procedure for delay computation on a data gathering tree

through an example presented in Figure 3. The integer inside a circle indicates the node ID

and the integer outside a circle indicates the delay for data aggregation at the node.

7.3 Tree Lifetime

Among the three key operating parameters (maximum node velocity, number of static

nodes and transmission range per node) of the simulations, we observe the stability of the

data gathering trees to be highly influenced by the maximum node velocity (vmax) of the

nodes. When operated under sufficient-energy scenarios, for a fixed number of static nodes

and transmission range per node, we observe the lifetime incurred for both the MaxS-DG

trees and LET-DG trees to proportionally decrease with a corresponding increase in the vmax

values from 3 m/s to 10 m/s. In the energy-constrained scenarios, even though a data

gathering tree may topologically exist, the tree would require reconfiguration if one or more

nodes in the tree fail due to exhaustion of battery charge. Since a tree also needs to be

reconfigured due to node mobility, the lifetime of the data gathering trees observed for

energy-constrained scenarios is always less than or equal to that observed for

sufficient-energy scenarios. In the case of both the MaxS-DG and LET-DG trees, for a fixed

transmission range and # static nodes, we observe the largest difference between the tree

lifetimes for the sufficient-energy scenarios vis-à-vis the energy-constrained scenarios to

occur when the network is operated under low node mobility conditions (vmax = 3 m/s). This

could be attributed to the significantly longer lifetime observed for the data gathering trees at

low node mobility conditions when operated with sufficient-energy for the nodes.

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 4: Average Tree Lifetime under Sufficient Energy Scenario (Low Node Mobility: vmax = 3 m/s)

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 5: Average Tree Lifetime under Energy Constrained Scenario (Low Node Mobility: vmax = 3 m/s)

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 105

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 6: Average Tree Lifetime under Sufficient Energy Scenario (High Node Mobility: vmax = 10 m/s)

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 7: Average Tree Lifetime under Energy Constrained Scenario (High Node Mobility: vmax =10 m/s)

In low mobility scenarios (refer Figures 4 and 5), we also observe the difference in the

tree lifetimes under sufficient-energy vs. energy-constrained scenarios to increase with

increase in the transmission range per node. At higher transmission ranges, the links are more

stable as nodes of a link have relatively higher freedom to move around (compared to

operating at low and moderate transmission ranges) and still remain as neighbors. Hence, the

data gathering trees are bound to be the most stable at low node mobility and larger

transmission ranges per node. At these conditions – under sufficient-energy scenarios, we

observe the MaxS-DG trees to sustain a lifetime that is larger than that of the LET-DG trees

by a factor of about 3 to 4.5. However, under energy-constrained scenarios, the MaxS-DG

trees are only 100-125% more stable than that of the LET-DG Trees. Nevertheless, the energy

savings sustained by the MaxS-DG algorithm with respect to tree discoveries under both low

and high node mobility scenarios contributes to the nodes on a MaxS-DG tree to exist for a

relatively much longer time compared to that of the LET-DG trees, resulting in an increased

network lifetime (refer Section 7.5).

With regards to the impact of the transmission range per node, the difference in the

lifetime of the MaxS-DG trees and the LET-DG trees increases with increase in the

transmission range per node, for a given level of node mobility. For a fixed vmax value, the

lifetime of the MaxS-DG trees increases by a factor of 2 to 3 as we increase the transmission

range from 25m to 40m; whereas the lifetime of the LET-DG trees increases only at most by

a factor of 2. This could be again attributed to the optimal usage of the availability of stable

links (facilitated by the larger transmission ranges per node) by the MaxS-DG algorithm

through a centralized, look-ahead and graph intersection approach. However, as is the bane of

the distributed algorithms based on the local optimum approach, the LET-DG trees are

formed with links that are relatively less stable even when operated with higher transmission

ranges per node.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 106

With regards to the impact of the number of static nodes, we observe that for both the

sufficient-energy and energy-constrained scenarios, the lifetime of both the MaxS-DG trees

and the LET-DG trees increases by at most 50% when the number of static nodes is increased

from 0 to 80 nodes. There is not much of a significant increase (only at most about 10-15%

increase) in the lifetime of both the data gathering trees when we run the network with 20 and

50 static nodes instead of 0 nodes. This vindicates the impact of node mobility on the stability

of the data gathering trees. Even if half of the nodes in the network are operated static, we

observe the data gathering trees to have about the same vulnerability for a link failure

vis-à-vis operating the network with all mobile nodes.

7.4 Delay per Round

We observe the LET-DG trees to incur significantly lower delay per round of data

gathering compared to the MaxS-DG trees. The delay per round is not much affected by the

dynamicity of the network and is more impacted by the topological structure of the two

spanning trees. The MaxS-DG tree tends to have relatively fewer leaf nodes, and as a result

more nodes are likely to end up as intermediate nodes – leading to a much larger depth. Note

that the underlying link weight criterion used for MaxS-DG trees is the geometric Euclidean

distance between the end nodes of the link. The MaxS-DG tree is also observed to be more

unbalanced with respect to the distribution of the number of children per intermediate node as

well as the distribution of the leaf nodes at different levels. Not all leaf nodes are located at

the bottommost level of the tree. Due to all these structural complexities, the MaxS-DG trees

have been observed to incur a much larger delay per round of data gathering. On the other

hand, the LET-DG trees have been observed to be more shallow (i.e., lower depth) with more

leaf nodes and the distribution of the number of child nodes per intermediate node is

relatively more balanced. All of these factors contribute to a much lower delay per round of

data gathering.

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 8: Average Delay / Round under Sufficient Energy Scenario (Low Node Mobility: vmax = 3 m/s)

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 9: Average Delay / Round under Energy Constrained Scenario (Low Node Mobility: vmax = 3 m/s)

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 107

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 10: Average Delay / Round under Sufficient Energy Scenario (High Node Mobility: vmax = 10 m/s)

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 11: Average Delay/Round under Energy Constrained Scenario (High Node Mobility: vmax=10 m/s)

Across all the simulations, we observe the MaxS-DG trees to incur on average a 40-65%

larger delay per round of data gathering. For a given maximum node mobility, the difference

in the delay per round of data gathering between the MaxS-DG and LET-DG trees decreases

with increase in the transmission range per node. While operating the network at larger

transmission ranges per node, it is possible to obtain a slightly better distribution of the nodes

across the different levels of the MaxS-DG tree, contributing to the reduction in the delay. For

a given vmax and transmission range per node, we also observe the difference in the

magnitudes of the delay per round between the MaxS-DG and LET-DG trees to increase with

increase in the number of static nodes. This can be attributed to the reduced chances of

changes to the topological structure of the MaxS-DG tree in the presence of more static nodes

– the unbalanced distribution of the nodes at the different levels of the tree gets to continue

for a longer time – contributing to the larger delay.

We observe the energy-constrained scenarios to have only minimal impact on the delay

per round of data gathering. The two data gathering trees incur only a slightly lower delay per

round of data gathering (by a factor of 5-10%) when operated in energy-constrained scenarios

compared to the sufficient energy scenarios. The reduction in the delay per round of data

gathering in the presence of node failures could be attributed to the overall reduction in the

number of time slots needed to gather data from around the nodes in the network. The impact

of node failures and the energy-constraint on the delay per round is almost equally observed

for both the LET-DG and MaxS-DG trees.

7.5 Node Lifetime and Network Lifetime

The MaxS-DG trees incur a larger node lifetime and network lifetime compared to the

LET-DG trees. For a given transmission range per node, the difference in the node lifetime

and network lifetime increases with increase in node velocity. This could be attributed to the

unstable LET-DG trees at higher node mobility levels and the increase in the number of

network-wide flooding based tree discoveries. On the other hand, the MaxS-DG trees are

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 108

relatively much more stable than the LET-DG trees (though the absolute magnitude of the

tree lifetime is lower for both the data gathering trees at high node mobility levels) and hence

incur lower energy loss in flooding-based tree discoveries.

We observe the LET-DG trees to incur the first node failure (node lifetime) much earlier

during the simulation (compared to that incurred with the MaxS-DG trees). The node lifetime

incurred with the MaxS-DG trees is observed to be 150-250% and 175-300% larger than that

incurred with the LET-DG trees at low and high node mobility levels respectively. This could

be attributed to the relatively shallow structure of the LET-DG trees – only fewer nodes serve

as intermediate nodes of the data gathering tree and they spend more energy in gathering data

from all their children/leaf nodes and forwarding the aggregated data further upstream in the

tree. Due to the stable nature of the LET-DG trees, the intermediate nodes continue to lose

more energy compared to the other nodes (leaf nodes) in the trees – leading to premature

node failures. However, the difference in the network lifetime between the LET-DG and

MaxS-DG trees is considerably lower; the network lifetime sustained with the MaxS-DG

trees is only at most 60% larger than that incurred with the LET-DG trees (much smaller

difference in the network lifetime, compared to the difference in node lifetime as noted

above). The difference in the network lifetime between the MaxS-DG and LET-DG trees

increases primarily with increase in the node mobility; however, at low node mobility, the

network lifetime of the LET-DG trees considerably increases with increase in the

transmission range per node. At vmax = 3 m/s and 40m transmission range per node, the

network lifetime incurred with the MaxS-DG trees is only at most 15% larger than that

incurred with the LET-DG trees.

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 12: Average Node Lifetime (Low Node Mobility: vmax = 3 m/s)

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 13: Average Node Lifetime (High Node Mobility: vmax = 10 m/s)

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 109

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 14: Average Network Lifetime (Low Node Mobility: vmax = 3 m/s)

With respect to the impact of the presence of static nodes in the network, as we increase

the number of static nodes from 0 to 80, we observe the node lifetime observed with the

LET-DG trees to increase by about 15% and 30% at vmax values of 3 m/s and 10 m/s

respectively. At high node mobility, the presence of more static nodes definitely helps the

LET-DG trees to be more stable (note in Section 7.3, the lifetime of LET-DG trees at vmax =

10 m/s could be as large as double the lifetime incurred at vmax = 3 m/s), leading to a

reduction in the energy lost due to network-wide flooding-based tree discoveries. On the

other hand, the MaxS-DG trees do not sustain any significant increase in tree lifetime when

the number of static nodes is increased from 0 to 80; hence, there is no significant energy

savings (in flooding) with little increase in the MaxS-DG tree lifetime. As a result, owing to

the inherent stable nature of the MaxS-DG trees that exist for the longest possible time (there

could be an increased use of certain nodes at the cost of others), we even observe the node

lifetime incurred with the MaxS-DG trees to decrease slightly increase with increase in the

number of static nodes from 0 to 80 for a given vmax and transmission range per node.

 Transmission Range = 25 m Transmission Range = 30 m Transmission Range = 40 m

Figure 15: Average Network Lifetime (High Node Mobility: vmax = 10 m/s)

With respect the impact of the operating parameters on the absolute magnitude of the

network lifetime, we observe the network lifetime incurred with the two data gathering trees

increases with increase in the number of static nodes for a given value of vmax and

transmission range per node. The percentage increase in the network lifetime relative to the

node lifetime varies for the two data gathering trees. For a given vmax and transmission range

per node, the network lifetime incurred with the LET-DG trees is consistently about 50%

more than that of the node lifetime for all values of the number of static nodes operated. On

the other hand, with the MaxS-DG trees, the network lifetime incurred when all nodes are

mobile (i.e., 0 static nodes) is only about 10-20% more than that of the node lifetime;

however, when we operate with 80 static nodes (out of a total of 100 nodes), the network

lifetime incurred with the MaxS-DG trees increases significantly (compared to the node

lifetime) by as large as 100%.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 110

For a given level of node mobility, the network lifetime incurred for the two data

gathering trees decreases with increase in transmission range per node. This could be

attributed to the increased energy expenditure in the transmission of messages as well as

flooding-based tree discoveries. For a given transmission range per node and number of static

nodes, the network lifetime incurred for the two data gathering trees decreases with increase

in the maximum node velocity, especially for the LET-DG trees due to their relative

instability and energy loss incurred due to frequent tree discoveries. The network lifetime

incurred with the MaxS-DG trees and MST-DG trees decreases by about 15-25% and 50-60%

respectively as we increase the maximum node velocity from 3 m/s to 10 m/s for a fixed

transmission range per node and number of static nodes.

8. Conclusions and Future Work

The high-level contributions of this paper in the area of mobile sensor networks are two

fold: (1) Design and development of a centralized benchmarking algorithm to determine

maximum stability data gathering (MaxS-DG) trees whose lifetime forms upper bound for the

maximum lifetime that can be incurred with data gathering trees for mobile sensor networks;

(2) Design and development of a distributed algorithm to determine stable predicted link

expiration time-based data gathering (LET-DG) trees that can also incur lower delay per

round.

Given the entire sequence of topology changes over the duration of the data gathering

session as input, the MaxS-DG algorithm returns the sequence of longest-living stable data

gathering trees such that the number of tree discoveries is the global minimum. The run-time

complexity of the algorithm has been observed to be O(n
2
Tlogn) and O(n

3
Tlogn) when

operated under sufficient-energy and energy-constrained scenarios respectively, where n is

the number of nodes in the network and T is the duration of the data gathering session. Since

the MaxS-DG trees are spanning tree-based and a spanning tree exists in a network if and

only if the network is connected, the stability of a spanning tree or any network-wide

communication topology (like a connected dominating set) discovered by an existing or

prospective data gathering algorithm can be evaluated by comparing its lifetime with that

obtained for the MaxS-DG trees. With a polynomial-time complexity and a much broader

scope of application, as described above, the MaxS-DG algorithm has all the characteristics

to become a global standard for evaluating the stability of communication topologies for data

gathering in mobile sensor networks.

Table 1. Influence of the Operating Parameters on the Performance of the Data Gathering Trees

Performance Metric
Ranking of the Operating Parameters in the Order of Influence [1-Highest Influence]

Node Velocity Static Nodes Transmission Range per Node

Tree Lifetime 1 3 2

Delay per Round 3 2 1

Node Lifetime 1 3 2

Network Lifetime 1 2 3

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 111

One salient feature of the LET-DG algorithm is that it does not require the periodic

beacon exchange of beacons in the neighborhood of the sensor nodes. Though the algorithm

does not incur as large a lifetime as that of the benchmark values observed for the MaxS-DG

algorithm, the LET-DG algorithm is the first such distributed stability-based data gathering

algorithm for mobile sensor networks. The LET-DG trees also incur a significantly lower

delay per round of data gathering (compared to the MaxS-DG trees) – thus, implying a

stability-delay tradeoff for data gathering in mobile sensor networks. We also observe the

LET-DG trees to sustain a comparable network lifetime (that is at most 60% smaller) than

that incurred with the MaxS-DG trees whose larger network lifetime can be attributed to the

minimal use of network-wide flooding based tree discoveries (due to the optimal tree lifetime

incurred).

Table 1 ranks the three operating parameters in the decreasing order of influence on the

performance of the two data gathering trees. The nature of influence is identical for both the

data gathering trees.

As part of future work, we plan to compare the stability of the MaxS-DG trees under

several different node mobility models [50] vis-à-vis the Random waypoint model, the

mobility model used in our simulations that has been widely used in the ad hoc network

literature. Also, as stable data gathering trees are likely to be used for a longer time, the

trustworthiness of the data aggregated at the intermediate nodes needs to be validated and

maintained through proper trust-evaluation schemes. We plan to develop and integrate a

trust-evaluation model as part of stable data aggregation in mobile sensor networks.

Acknowledgment

This research was sponsored by the U. S. Air Force Office of Scientific Research

(AFOSR) through the Summer Faculty Fellowship Program for the lead author (Natarajan

Meghanathan) in June-July 2012. The research was conducted under the supervision of the

co-author (Philip Mumford) at the U. S. Air Force Research Lab (AFRL), Wright-Patterson

Air Force Base (WPAFB) Dayton, OH. The AFRL public release approval # is

88ABW-2013-2005. The views and conclusions in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied, of

the funding agency. The U. S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation herein.

References

[1] Kansal, A., Goraczko, M., and Zhao, F., “Building a Sensor Network of Mobile Phones”,

International Symposium on Information Processing in Sensor Networks, pp. 547-548,

Cambridge, MA, USA, April 25-27, 2007. http://dx.doi.org/10.1145/1236360.1236433

[2] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E.,

Balakrishnan, H., and Madden, S., “CarTel: A Distributed Mobile Sensor Computing System”,

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 112

The 4
th

 International Conference on Embedded Networked Sensor Systems, pp. 125-138,

Boulder, USA, October 31-November 3, 2006. http://dx.doi.org/10.1145/1182807.1182821

[3] Heinzelman, W., Chandrakasan, A., and Balakarishnan, H., “Energy-Efficient

Communication Protocols for Wireless Microsensor Networks”, Hawaaian International

Conference on Systems Science, pp. 1-10, Maui, HI, January 4-7, 2000.

http://dx.doi.org/10.1109/HICSS.2000.926982

[4] Lindsey, S., Raghavendra, C., Sivalingam, K. M., “Data Gathering Algorithms in Sensor

Networks using Energy Metrics”, IEEE Transactions on Parallel and Distributed Systems, Vol.

13, Issue 9, pp. 924-935, September 2002. http://dx.doi.org/10.1109/TPDS.2002.1036066

[5] Srinivasan, A., and Wu, J., “TRACK: A Novel Connected Dominating Set based Sink

Mobility Model for WSNs”, 17
th

 International Conference on Computer Communications

and Networks, pp. 1-8, St. Thomas, US Virgin Islands, August 3-7, 2008.

http://dx.doi.org/10.1109/ICCCN.2008.ECP.127

[6] Vlajic, N., and Stevanovic, D., “Sink Mobility in Wireless Sensor Networks: When

Theory meets Reality”, IEEE Sarnoff Symposium, pp. 1-8, Princeton, NJ, USA, March

30-April 1, 2009. http://dx.doi.org/10.1109/SARNOF.2009.4850301

[7] Meghanathan, N., “A Comprehensive Review and Performance Analysis of Data

Gathering Algorithms for Wireless Sensor Networks”, International Journal of

Interdisciplinary Telecommunications and Networking, Vol. 4, Issue 2, pp. 1-29, April-June

2012. http://dx.doi.org/10.4018/jitn.2012040101

[8] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., “Graph Algorithms” in

Introduction to Algorithms, 3rd ed. MIT Press, 2009, pp. 587-671.

[9] Su, W., and Gerla, M., “IPv6 Flow Handoff in Ad hoc Wireless Networks using Mobility

Prediction”, IEEE Global Telecommunications Conference, pp. 271-275, Rio de Janeiro,

Brazil, December 5-9, 1999. http://dx.doi.org/10.1109/GLOCOM.1999.831647

[10] Su, W., Lee, S-J., Gerla, M., “Mobility Prediction and Routing in Ad Hoc Wireless

Networks”, International Journal of Network Management, Vol. 11, Issue 1, pp. 3-30,

January-February, 2001. http://dx.doi.org/10.1002/nem.386

[11] Wu, W., Beng Lim, H., and Tan, K-L., “Query-driven Data Collection and Data

Forwarding in Intermittently Connected Mobile Sensor Networks”, The 7
th

 International

Workshop on Data Management for Sensor Networks, pp. 20-25, Singapore, September 13,

2010. http://dx.doi.org/10.1145/1858158.1858166

[12] Xing, G., Wang, T., Jia, W., and Li, M., “Rendezvous Design Algorithms for Wireless

Sensor Networks with a Mobile Base Station”, The 9
th

 ACM International Symposium on

Mobile Ad hoc Networking and Computing, pp. 231-240, Hong Kong SAR, China, May

27-30, 2008. http://dx.doi.org/10.1145/1374618.1374650

[13] Zhao, M., and Yang, Y., “Bounded Relay Hop Mobile Data Gathering in Wireless Sensor

Networks”, The 6
th

 IEEE International Conference on Mobile Ad hoc and Sensor Systems, pp.

373-382, October 12-15, 2009. http://dx.doi.org/10.1109/MOBHOC.2009.5336976

[14] Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., Soljacic, M., “Wireless

Power Transfer via Strongly Coupled Magnetic Resonances”, Science, Vol. 347, Issue 5834,

pp. 83-86, July 2007. http://dx.doi.org/10.1126/science.1143254

[15] Guo, S., Wang, C., and Yang, Y., “Mobile Data Gathering with Wireless Energy

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 113

Replenishment in Rechargeable Sensor Networks”, IEEE International Conference on

Computer Communications (INFOCOM), pp. 1932-1940, Turin, Italy, April 2013.

http://dx.doi.org/10.1109/INFCOM.2013.6566993

[16] Angelopoulos, C. M., Nikoletseas,S., Raptis, T. P., “Efficient Wireless Recharging in

Sensor Networks”, The 2013 IEEE International Conference on Distributed Computing in

Sensor Systems, pp. 298-300, Cambridge, MA, USA, May 20-23, 2013.

http://dx.doi.org/10.1109/DCOSS.2013.10

[17] Banerjee, T., Xie, B., Jun, J. H. and Agarwal, D. P., “LIMOC: Enhancing the Lifetime of

a Sensor Network with Mobile Clusterheads”, The Vehicular Technology Conference Fall, pp.

133-137, Baltimore, USA, October 1-3, 2007. http://dx.doi.org/10.1109/VETECF.2007.43

[18] Santhosh Kumar, G., Vinu Paul, M. V., and Jacob Poulose, K., “Mobility Metric based

LEACH-Mobile Protocol”, 16
th

 International Conference on Advanced Computing and

Communications, pp. 248-253, Chennai, India, December 14-17, 2008.

http://dx.doi.org/10.1109/ADCOM.2008.4760456

[19] Deng, S., Li, J., Shen, L., “Mobility-based Clustering Protocol for Wireless Sensor

Networks with Mobile Nodes”, IET Wireless Sensor Systems, Vol. 1, Issue 1, pp. 39-47,

March 2011. http://dx.doi.org/10.1049/iet-wss.2010.0084

[20] Sarma, H. K. D., Kar, A., and Mall, R., “Energy Efficient and Reliable Routing for

Mobile Wireless Sensor Networks”, 6
th

 IEEE International Conference on Distributed

Computing in Sensor Systems Workshops, pp. 1-6, Santa Barbara, CA, USA, June 21-23,

2010. http://dx.doi.org/10.1109/DCOSSW.2010.5593277

[21] Li, P., and Jian-bo, X., “ECDGA: An Energy-Efficient Cluster-Based Data Gathering

Algorithm for Mobile Wireless Sensor Networks”, International Conference on

Computational Intelligence and Software Engineering, pp. 1-4, Wuhan, China, December

11-13, 2009. http://dx.doi.org/10.1109/CISE.2009.5366773

[22] Liu, C-M., Lee, C-H., and Wang, L-C., “Distributed Clustering Algorithms for Data

Gathering in Wireless Mobile Sensor Networks”, Journal of Parallel and Distributed

Computing, Vol. 67, Issue 11, pp. 1187-1200, November 2007.

http://dx.doi.org/10.1016/j.jpdc.2007.06.010

[23] Macuha, M., Tariq, M., and Sato, T., “Data Collection Method for Mobile Sensor

Networks based on the Theory of Thermal Fields,” Sensors, Vol. 11, Issue 7, pp. 7188-7203,

July 2011. http://dx.doi.org/10.3390/s110707188

[24] Singh, M., Sethi, M., Lal, N., Poonia, S., “A Tree Based Routing Protocol for Mobile

Sensor Networks (MSNs)”, International Journal on Computer Science and Engineering, Vol.

2, Issue 1S, pp. 55-60, 2010.

[25] Meghanathan, N., “A Simulation-based Performance Analysis of Multicast Routing in

Mobile Ad hoc Networks”, International Journal of Information Processing and Management,

Vol. 1, Issue 1, pp. 4-14, July 2010. http://dx.doi.org/10.4156/ijipm.vol1.issue1.1

[26] Meghanathan, N., and Farago, A., “On the Stability of Paths, Steiner Trees and

Connected Dominating Sets in Mobile Ad Hoc Networks”, Ad hoc Networks, Vol. 6, Issue 5,

pp. 744-769, July 2008. http://dx.doi.org/10.1016/j.adhoc.2007.06.005

[27] Meghanathan, N., “Performance Comparison of Minimum Hop and Minimum Edge

Based Multicast Routing Under Different Mobility Models for Mobile Ad Hoc

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 114

Networks,” International Journal of Wireless and Mobile Networks, Vol. 3, Issue 3, pp. 1-14,

June 2011. http://dx.doi.org/10.5121/ijwmn.2011.3301

[28] Meghanathan, N., “Routing Protocols to Determine Stable Paths and Trees using the

Inverse of Predicted Link Expiration times for Mobile Ad hoc Networks”, International

Journal of Mobile Network Design and Innovation, Vol. 4, Issue 4, pp. 214-234, December

2012. http://dx.doi.org/10.1504/IJMNDI.2012.054463

[29] Meghanathan, N., “A Link Distance Ratio based Stable Multicast Routing Protocol for

Mobile Ad hoc Networks”, Springer-Verlag Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering Series, LNICST 84, pp.

253-262, January 2012. http://dx.doi.org/10.1007/978-3-642-27299-8_27

[30] Meghanathan, N., “Node Stability Index: A Stability Metric and an Algorithm to

Determine Long-Living Connected Dominating Sets for Mobile Ad hoc

Networks”, International Journal of Interdisciplinary Telecommunications and Networking,

Vol. 4, Issue 1, pp. 31-46, January-March 2012. http://dx.doi.org/10.4018/jitn.2012010102

[31] Meghanathan, N., and Thompson, J. A., “On the Different Forms of Spanning

Tree-based Broadcast Topologies for Mobile Ad hoc Networks”, International Journal of

Combinatorial Optimization Problems and Informatics, Vol. 4, Issue 1, pp. 3-11,

January-April 2013.

[32] Toh, C-K., “Associativity-Based Routing for Ad hoc Mobile Networks,” IEEE Personal

Communications, Vol. 4, Issue 2, pp. 103-109, March 1997.

http://dx.doi.org/10.1023/A:1008812928561

[33] Agarwal, S., Ahuja, A., Singh, J. P. and Shorey, R., “Route-Life Time Assessment Based

Routing Protocol for Mobile Ad hoc Networks”, The IEEE International Conference on

Communications, vol. 3, pp. 1697-1701, New Orleans, LA, USA, June 18-22, 2000.

http://dx.doi.org/10.1109/ICC.2000.853783

[34] Meghanathan, N., “Exploring the Performance Tradeoffs among Stability-Oriented

Routing Protocols for Mobile Ad hoc Networks”, Network Protocols and Algorithms -

Special Issue on Data Dissemination for Large scale Complex Critical Infrastructures, Vol. 2,

Issue 3, pp. 18-36, November 2010. http://dx.doi.org/10.5296/npa.v2i3.436

[35] Lee, S-J., and Gerla, M., “On-demand Multicast Routing Protocol”, IEEE International

Wireless Communications and Networking Conference, vol. 3, pp. 1298-1302, New Orleans,

USA, September 21-24, 1999. http://dx.doi.org/10.1109/WCNC.1999.796947

[36] Ozaki, T., Kim, J-B., and Suda, T., “Bandwidth-Efficient Multicast Routing for Multihop,

Ad hoc Wireless Networks”, IEEE International Conference on Computer Communications,

vol. 2, pp. 1182-1192, Anchorage, AK, USA, April 22-26, 2001.

http://dx.doi.org/10.1109/INFCOM.2001.916313

[37] Royer, E., and Perkins, C. E., “Multicast Operation of the Ad-hoc On-demand Distance

Vector Routing Protocol”, 5th ACM/IEEE Annual Conference on Mobile Computing and

Networking, pp. 207-218, Seattle, WA, USA, August 15-20,

1999. http://dx.doi.org/10.1145/313451.313538

[38] Meghanathan, N., Vavilala, S. R., “Impact of Route Selection Metrics on the

Performance of On-Demand Mesh-based Multicast Ad hoc Routing Protocols”, Journal of

Computer and Information Science, Vol. 3, Issue 2, pp. 3-18, May 2010.

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 115

[39] Sims, J., Meghanathan, N., “Construction and Evaluation of Meshes based on Shortest

Path Tree vs. Steiner Tree for Multicast Routing in Mobile Ad hoc Networks”, International

Journal of Theoretical and Applied Information Technology, Vol. 19, Issue 2, pp. 134-142,

September 2010.

[40] Meghanathan, N., “Performance Comparison Study of Multicast Routing Protocols for

Mobile Ad hoc Networks under Default Flooding and Density and Mobility Aware

Energy-Efficient (DMEF) Broadcast Strategies,” Informatica - An International Journal of

Computing and Informatics, Vol. 35, Issue 2, pp. 165-184, June 2011.

[41] Meghanathan, N., and Terrell, M., “An Algorithm to Determine Stable Connected

Dominating Sets for Mobile Ad hoc Networks using Strong Neighborhoods”, International

Journal of Combinatorial Optimization Problems and Informatics (IJCOPI), Vol. 3, Issue 2,

pp. 79-92, May - August 2012.

[42] Meghanathan, N., “A Simulation-based Performance Comparison of the Minimum Node

Size and Stability-based Connected Dominating Sets for Mobile Ad hoc

Networks”, International Journal of Computers and Network Communications, Vol. 4, Issue 2,

pp. 169-184, March 2012. http://dx.doi.org/10.5121/ijcnc.2012.4211

[43] Meghanathan, N., “Node Stability Index: A Stability Metric and an Algorithm to

Determine Long-Living Connected Dominating Sets for Mobile Ad hoc

Networks”, International Journal of Interdisciplinary Telecommunications and Networking,

Vol. 4, Issue 1, pp. 31-46, January-March 2012. http://dx.doi.org/10.4018/jitn.2012010102

[44] Meghanathan, N., “Use of Minimum Node Velocity Based Stable Connected

Dominating Sets for Mobile Ad hoc Networks”, International Journal of Computer

Applications: Special Issue on Recent Advancements in Mobile Ad hoc Networks, Vol. 2, pp.

89-96, September 2010. http://dx.doi.org/10.5120/1016-52

[45] Kuhn, F., Moscibroda, T., and Wattenhofer, R., “Unit Disk Graph Approximation”,

Workshop on the Foundations of Mobile Computing (DIALM-POMC), pp. 17-23,

Philadelphia, PA, USA, October 1, 2004. http://dx.doi.org/10.1145/1022630.1022634

[46] Rappaport, T. S. “Mobile Radio Propagation: Large-Scale Path Loss”, in Wireless

Communications: Principles and Practice, 2nd ed., Prentice Hall, January 2002.

[47] Farago, A., Syrotiuk, V. R., “MERIT: A Scalable Approach for Protocol Assessment”,

Mobile Networks and Applications, Vol. 8, Issue 5, pp. 567-577, October 2003.

http://dx.doi.org/10.1023/A:1025193929081

[48] Viterbi, A. J., “Coding and Interleaving”, in CDMA: Principles of Spread Spectrum

Communication, 1st ed., Prentice Hall, April 1995.

[49] Bettstetter, C., Hartenstein, H., Perez-Costa, X., “Stochastic Properties of the

Random-Way Point Mobility Model”, Wireless Networks, Vol. 10, Issue 5, pp. 555-567,

September 2004. http://dx.doi.org/10.1023/B:WINE.0000036458.88990.e5

[50] Camp, T., Boleng, J., Davies, V., “A Survey of Mobility Models for Ad Hoc Network

Research”, Wireless Communication and Mobile Computing, Vol. 2, Issue 5, pp. 483-502,

September 2002. http://dx.doi.org/10.1002/wcm.72

 Network Protocols and Algorithms

ISSN 1943-3581

2013, Vol. 5, No. 4

www.macrothink.org/npa 116

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

