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Abstract 

Due to the dynamic nature of the network topology in a mobile sensor network, a data 

gathering tree is likely to frequently break, necessitating the need for stable data gathering 

trees that can withstand node mobility for a reasonable amount of time. In this pursuit, we 

propose two algorithms: (1) a centralized algorithm that can return the sequence of 

longest-living stable data gathering trees such that the number of tree transitions (changes) is 

the global minimum; (2) a distributed algorithm that is based on the idea of finding a 

maximum spanning tree on a network graph whose edge weights are the predicted link 

expiration times (LET). While the centralized maximum stability-based data gathering 

(MaxS-DG) algorithm can be used to derive benchmarks for the optimal number of tree 

transitions (and thence the sequence of longest living stable data gathering trees) over the 

duration of a data gathering session, the distributed LET-based DG algorithm can be run 

across the sensor nodes in a network to find stable data gathering trees that have a longer 

lifetime bounded above by the MaxS-DG trees. In the simulations, we evaluate the tree 
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lifetime, delay per round, node and network lifetime incurred with the MaxS-DG and 

LET-DG trees and observe a stability-delay tradeoff.   

Keywords: Stability, Data Gathering Tree, Tree Lifetime, Link Expiration Time, Minimum 

Distance Spanning Trees, Simulations, Mobile Sensor Networks 

 

1. Introduction  

A wireless sensor network is a network of several smart sensor nodes that can gather data 

about the ambient environment as well as intelligently process them before propagating to a 

control center called the sink, which is typically located far away from the field being 

monitored and used to remotely administer the sensor network. Even though widely used for 

data gathering in several real-time applications, wireless sensor networks are mostly deployed 

for static environments, wherein the mobility of the sensor nodes, the users and the monitored 

phenomenon are all totally ignored. A wireless mobile sensor network (WMSN) is the next 

logical evolutionary step for sensor networks in which mobility needs to be handled in all its 

forms. With the widespread growth of embedded systems and ubiquitous computing 

technologies, a mobile sensor network could be envisioned as a homogeneous or 

heterogeneous network of sensor-equipped computers, mobile phones and vehicles, generally 

referred to as nodes (having one or more sensors like a camera sensor, microphone, GPS 

sensor, etc) [1]. The nodes of a WMSN often move in an arbitrary fashion, independent of 

each other. Some of the applications [2] of WMSNs could be traffic monitoring, route 

planning, civil infrastructure monitoring (say, attaching vibration sensors to cars and 

monitoring the conditions of roads/pot holes), geo-imaging and etc. WMSNs can be used to 

monitor and collect data over a much larger geographical area with less number of sensor 

nodes compared to static sensor networks. With mobility, the entire area could be covered 

with fewer sensors/nodes over a period of time. 

Like their static counterparts, the mobile sensor nodes are likely to be constrained with 

limited battery charge, memory and processing capability as well as operate under a limited 

transmission range. Two sensor nodes that are outside the transmission range of each other 

cannot communicate directly. The bandwidth of a WMSN is also expected to be as 

constrained as that of a static sensor network. Due to all of the above resource and operating 

constraints, it will not be a viable solution to require every sensor node to directly transmit 

their data to the sink over a longer distance. Also, if several signals are transmitted at the 

same time over a longer distance, it could lead to lot of interference and collisions. Thus, 

there is a need for employing energy-efficient data gathering algorithms that can effectively 

combine the data collected at these sensor nodes and send only the aggregated data (that is a 

representative of the entire network) to the sink.  

Over the past few years, the sensor network research community has proposed a number 

of data gathering algorithms to effectively combine the data collected at these sensor nodes 

through a properly constructed communication topology and send only the aggregated data 

(that is a representative of the entire network) to the sink. However, a majority of these data 
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gathering algorithms are meant for static sensor networks (i.e., static sensor nodes) with 

either a static (e.g., [3][4]) or mobile (e.g., [5][6]) sink. Tree-based data gathering is 

considered to be the most energy-efficient [7] in terms of the number of link transmissions; 

however, almost all of the tree-based data gathering algorithms have been proposed for static 

sensor networks without taking the mobility of the sensor nodes into consideration. In the 

presence of node mobility, the network topology changes dynamically with time – leading to 

frequent tree reconfigurations. Thus, mobility brings in an extra dimension of constraint to a 

WMSN and we need algorithms that can determine stable long-living data gathering trees 

that do not require frequent reconfigurations. Our contributions in this paper are two fold:  

 First, we propose a centralized algorithm that can be used to find a sequence of 

longest-living stable data gathering trees for mobile sensor networks such that the 

number of tree discoveries is the global minimum. We present a simple but powerful 

polynomial-time greedy algorithm, referred to as the Maximum Stability Data 

Gathering (MaxS-DG) algorithm, to determine the sequence of longest-living stable 

data gathering trees. Given the complete knowledge of the future topology changes, 

the MaxS-DG algorithm operates based on the following greedy principle: Whenever 

a data gathering tree is required at time instant t, choose the longest-living data 

gathering tree from t. The above strategy is repeated over the duration of the data 

gathering session. The sequence of such longest-living data gathering trees is called 

the Stable-Mobile-DG-Tree. The worst-case run-time complexity of the MaxS-DG 

tree algorithm is O(n
2
Tlogn) and O(n

3
Tlogn) when operated under sufficient-energy 

and energy-constrained scenarios respectively, where n is the number of nodes in the 

network and T is the total number of rounds of data gathering; O(n
2
logn) is the 

worst-case run-time complexity of the minimum-weight spanning tree algorithm (we 

use Prim’s algorithm [8]) used to determine the underlying spanning trees from which 

the data gathering trees are derived. 

 Second, we propose a distributed spanning tree-data gathering algorithm for mobile 

sensor networks, based on the notion of link expiration time (LET) [9] that is 

predicted according to a model used for the highly successful Flow-Oriented Routing 

Protocol (FORP) [10], a stable unicast routing protocol for mobile ad hoc networks. 

The LET-data gathering tree (LET-DG tree) is a rooted directed spanning tree 

determined in a distributed fashion on a network graph comprising of links whose 

weights are the predicted expiration time. The LET-DG tree has been observed to 

yield long-living stable trees that exist for a longer time. 

As observed in the simulation studies of this paper, the drawback of using stable trees is 

that they tend to overuse certain nodes (especially the intermediate nodes of the data 

gathering tree) and lead to their premature failure. As sensor networks are often deployed 

with higher density, one or more node failures do not immediately bring the network to a halt. 

The live sensor nodes (the nodes that still have a positive available energy) maintain the 

coverage and connectivity of the underlying network for a longer time. 

The rest of the paper is organized as follows: Section 2 presents related work on data 
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gathering in mobile sensor networks. Section 3 reviews solutions proposed in the literature 

for Mobile Ad hoc Networks (MANETs) to discover stable communication topologies and 

also highlights the lessons learnt from our performance comparison studies (in earlier 

research) on these MANET protocols, all of which form the basis of the research conducted 

for this paper. Section 4 presents the system model, including the models for the link 

expiration time and energy consumption, as well as defines the various terms used and states 

the assumptions. Section 5 presents the MaxS-DG algorithm, analyzes its run-time 

complexity for both sufficient-energy and energy-constrained scenarios, and provides a 

formal proof of correctness of the algorithm. We also present an example to illustrate the 

working of the MaxS-DG algorithm. Section 6 describes the proposed algorithm to determine 

the LET-DG trees in a distributed fashion. Section 7 presents an exhaustive simulation study 

evaluating the performance of the MaxS-DG and LET-DG trees under diverse conditions of 

network dynamicity (node mobility and number of static nodes), network density 

(transmission range) and energy level at the nodes (sufficient-energy and energy-constrained 

scenarios). The performance metrics evaluated are the tree lifetime, delay per round, node 

lifetime and network lifetime. We compare the performance of the MaxS-DG trees with that 

of the LET-DG trees. Section 8 presents the conclusions along with a summary of the 

simulation results. For the rest of the paper, the terms ‘node’ and ‘vertex’, ‘edge’ and ‘link’, 

‘data aggregation’ and ‘data gathering’ will be used interchangeably. They mean the same. 

 

2. Related Work on Data Gathering in Wireless Mobile Sensor Networks  

The research on mobile sensor networks started with the deployment of mobile sink 

nodes on a network of static sensor nodes. A common approach of data gathering in such 

environments is to employ a mobile data collecting agent (e.g., [11][12][13]) that goes around 

the network in the shortest possible path towards the location from which the desired data is 

perceived to originate. The mobile-agent based algorithms do not gather data from all the 

sensor nodes in a round; data is gathered only from the nodes in the vicinity of the 

anchor-points (the stops made by a mobile agent at any particular data gathering round). The 

focus of these algorithms is thus to choose the anchor-points in such a way that data can be 

gathered from all the sensor nodes within a certain time threshold and simultaneously 

maximize the network lifetime and utility (usefulness of the information gathered) as much as 

possible. Due to the work of Kurs et al [14] in the area of wireless energy transfer, 

researchers have recently started to envision "rechargeable sensor networks" [15] and have 

proposed models for joint wireless energy replenishment [16] and anchor-point based mobile 

data gathering [15]. However, the sensor nodes in such rechargeable sensor networks are still 

considered static. Our proposed LET-DG distributed data gathering algorithm can be very 

well adapted to a rechargeable network of mobile sensor nodes. 

Very few topology-based data gathering algorithms have been proposed for mobile sensor 

networks where the sensor nodes actually move. Among these, most of the work on data 

gathering algorithms for WMSNs is focused around the use of clusters wherein researchers 

have tried to extend the classical LEACH (Low Energy Adaptive Clustering Hierarchy) [3] 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 4 

www.macrothink.org/npa 88 

algorithm for dynamically changing network topologies. Variants of LEACH for WMSNs 

that have been proposed in the literature include those that take into consideration the 

available energy level [17] and the mobility-level [18] of the nodes to decide on the choice of 

cluster heads; stability of the links between a regular node and its cluster head [19]; as well as 

set up a panel of cluster heads to facilitate cluster reconfiguration in the presence of node 

mobility [20]. In another related work [21], the authors assume the network to comprise of a 

mix of static and mobile nodes: A cluster is evolved within the neighborhood of every static 

node, with the static node as the cluster head; a mobile node chooses the closest static node as 

its cluster head. The static nodes directly forward the aggregated data to a leader node that 

does one more level of aggregation before forwarding the data to the sink node. The problem 

with this approach is that the static sensor nodes need to be provided with surplus of energy 

compared to the mobile sensor nodes to sustain their lifetime throughout the duration of the 

network. Also, if sufficient static nodes are not deployed, a mobile sensor node may have to 

transmit over a longer distance to reach out to the closest static node; in this case, the mobile 

node will also soon run out of energy. In [22], the authors propose a distributed cluster-head 

based algorithm in which cluster-heads are elected based on node IDs (0 to C-1, C to 2C-1 …, 

to operate with C clusters at a time) or node locations (nodes that are closest to certain 

landmarks with in a WMSN serve as the cluster-heads). In [23], the authors investigate the 

use of a directed acyclic graph as the underlying communication topology of a sensor 

network field, modeled according to the theory of thermal fields, to form propagation paths 

such that the temperature of the nodes on the path increases as data progresses towards the 

sink, which is considered to be the warmest. 

Tree-based data gathering is considered to be the most energy-efficient [7] in terms of the 

number of link transmissions; however, almost all of the tree-based data gathering algorithms 

have been proposed for static sensor networks without taking the mobility of the sensor nodes 

into consideration. In the presence of node mobility, the network topology changes 

dynamically with time – leading to frequent tree reconfigurations. Thus, mobility brings in an 

extra dimension of constraint to a WMSN and we need algorithms that can determine stable 

long-living data gathering trees that do not require frequent reconfigurations. The only 

tree-based data gathering algorithm we have come across for WMSNs is a shortest path 

tree-based algorithm [24] wherein each sensor node is constrained to have at most a certain 

number of child nodes. Based on the results from the literature (e.g., [25][26][27]) of mobile 

ad hoc networks (MANETs), minimum hop shortest paths and trees in mobile network 

topologies are quite unstable and need to be frequently reconfigured. We could not find any 

other related work on tree-based data gathering for wireless mobile sensor networks.  

Both MANETs and WMSNs exhibit mobility of nodes in an arbitrary fashion and are 

constrained by the limited transmission range of the nodes and network bandwidth. However, 

one should note that there are some subtle differences between MANETs and WMSNs. The 

network density in WMSNs is much larger than that seen in MANETs and the sensor nodes 

operate with relatively very little battery charge. MANET protocols typically try to extend the 

time of first node failure, as every node (could be a PDA, laptop, etc) is considered important. 

WMSNs typically focus on prolonging the network lifetime (the time at which the network 
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gets disconnected due to the failure of one or more sensor nodes). The MANET literature has 

several solutions to determine stable topologies for unicast, multicast and broadcast 

communication (e.g., [28][29][30]). However, the MANET communication protocols focus 

on optimizing the paths from a source node to one or more receiver nodes, depending on the 

nature of the communication. On the other hand, data gathering algorithms for WMSNs focus 

on collecting data from all of the sensor nodes and forwarding the aggregated data towards a 

root node. Hence, though both MANETs and WMSNs have dynamically changing 

communication topologies, it is not possible to directly employ any existing MANET 

communication algorithms for data gathering in WMSNs. 

As a precursor to the proposed LET-DG algorithm, one of the authors of this paper had 

recently studied the different forms of spanning tree-based topologies (minimum 

distance-based, predicted LET-based and minimum velocity-based topologies) [31] that could 

be used for efficient broadcasting in MANETs. All the three broadcast topologies were 

determined in a centralized fashion with the complete knowledge of topology changes under 

idealized settings for medium access, bandwidth and energy-availability. The LET-based 

broadcast topology (LET-BT) was observed to be relatively more stable; while the minimum 

distance and minimum velocity-based broadcast topologies were observed to respectively 

yield a higher energy-efficiency and lower end-to-end delay. However, as noted above, 

MANET solutions cannot be directly extended and/or applied for WMSNs. Moreover, in a 

graph theoretic context, LET-BT spanning trees are not rooted and not directed; whereas, we 

need a data gathering tree (a rooted and directed spanning tree) in the context of WMSNs.  

In this paper, we have proposed the LET-DG algorithm as a distributed data gathering 

algorithm for WMSNs and compared its performance with that of the MaxS-DG algorithm, a 

benchmarking algorithm based on the idea of graph intersections. The lifetime of the 

LET-DG trees is bounded above by that of the MaxS-DG trees. The protocol development 

and simulation framework presented in this paper can become a model for developing a 

benchmarking algorithm to obtain theoretical bounds on a performance metric for a 

topology-control problem (in this research, our focus is to arrive at the theoretically possible 

maximum lifetime of the data gathering trees such that the number of tree discoveries is the 

global minimum) and develop a distributed algorithm for the same problem as well as 

conduct a comparative performance evaluation of the distributed algorithm vis-a-vis the 

centralized algorithm under identical operating conditions. The proposed MaxS-DG 

algorithm can be used to validate the claims on the stability of data gathering trees 

determined using any distributed algorithm for WMSNs (like the LET-DG algorithm).  

 

3. Review on MANET Solutions for Stable Communication Topologies  

The MANET literature has several protocols and algorithms proposed for determining 

sequence of stable communication topologies for unicast (paths), multicast (trees) and 

broadcast (connected dominating sets) communication. The unicast solutions focus on 

determining a sequence of stable paths between two particular nodes (source-destination 

nodes) using some form of link stability metric (like the number of beacons exchanged in the 



 Network Protocols and Algorithms 

ISSN 1943-3581 

2013, Vol. 5, No. 4 

www.macrothink.org/npa 90 

past between the end nodes of the link [32], predicted link expiration time [9], rate of change 

of signal strength for the messages transmitted on the link [33], etc). In an earlier work [34], 

it was observed that routes determined through unicast routing protocols that model link 

stability based on future predictions (like the LET [9]) are more stable than those determined 

through protocols based on the past history (like the protocols in [33] and [32]). The 

relatively better performance of the LET-based Flow Oriented Routing Protocol (FORP) [10] 

in a MANET context is a motivation for the authors to use the LET as the underlying link 

stability metric for the distributed data gathering algorithm proposed in this paper.  

The multicast solutions (e.g., [35][36][37]) proposed for MANETs focus on determining a 

sequence of stable trees or meshes connecting a source node to one or more receiver nodes 

forming the multicast group. In prior works (e.g., [38][39]), multicast trees (e.g., [36][37]) 

were observed to be more energy-efficient and bandwidth-efficient; whereas, the multicast 

meshes (e.g., [35]) are observed to be more stable (robust to link failures) at the cost of 

energy and bandwidth efficiency. The MANET multicast tree protocols are designed to be 

either minimum-hop based (e.g., [37]) or minimum-edge based (e.g., [36]). The 

minimum-hop based protocols connect the source on a minimum hop path to each of the 

receivers; whereas, the minimum-edge based protocols aim at connecting the source to all of 

the receivers through as minimum links as possible. The minimum-hop based multicast trees 

contain more links than the minimum-edge based trees. The general trend observed in the 

simulation studies (e.g., [27][40]) comparing the performance of the minimum-edge based 

and minimum-hop based multicast trees is that larger the number of links on the tree, the 

lower the stability as well as higher the energy consumption. The relatively better 

performance of minimum-edge based multicast trees also prompted us to choose a spanning 

tree-based approach rather than a shortest path-tree based approach to determine the data 

gathering trees for the algorithms proposed in this paper.  

The broadcast solutions for MANETs are typically based on connected dominating sets 

(CDS) - a subset of nodes in the network such that any node in the network is either in the 

CDS or is a neighbor of a node in the CDS. The idea behind the use of a CDS is that any 

broadcast message needs to be transmitted only by the nodes in the CDS within their 

neighborhood in order for all the nodes to receive the message. Obviously, the smaller the 

CDS Node Size (the number of nodes constituting the CDS and required to transmit in their 

respective neighborhoods), the larger is the energy-efficiency. However, from prior research 

(e.g., [41][42][43][44]), we observe  a tradeoff between the CDS Node Size and Lifetime: 

Connected dominating sets with minimum CDS Node Size (e.g., [42]) do not last long and 

need to be frequently reconfigured; whereas, CDSs that are determined based on node 

mobility (e.g., [44]) or link stability (e.g., [43]) as the underlying criterion tend to exist for a 

longer time. The tradeoff could be minimized to a certain extent by preferring to form 

minimum node size-CDS based on strong neighborhoods (i.e., prefer CDS nodes that are 

predicted to have stable links with as many neighbors as possible) [41]. This is another 

observation that motivated us to propose an algorithm to determine a link stability 

(LET)-based data gathering tree that would be shallow (lower height to minimize the number 

of intermediate nodes) and at the same time have as many stable links as possible (between 
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two intermediate nodes as well as between an intermediate node and a leaf node).   

 

4. System Model, Energy Consumption Model, Terminology and Assumptions  

4.1  System Model 

The system model adopted for the data gathering algorithms presented in this paper can 

be summarized as follows: 

(i) The underlying network graph considered in the construction of the communication 

topology used for data gathering is a unit disk graph [45] constructed assuming each 

sensor node has a fixed transmission range, R. There exists a link between any two 

nodes in a unit disk graph if and only if the physical distance between the two end 

nodes of the link is less than or equal to the transmission range, R.  

(ii) The data gathering algorithms operate in several rounds, and during each round, data 

from the sensor nodes are collected, aggregated and forwarded to the sink through the 

data gathering tree (MaxS-DG tree or LET-DG) rooted at a leader node.  

(iii)The leader node of a data gathering tree remains the same as long as the tree exists 

and is randomly chosen by the sink every time a new tree needs to be determined. 

(iv) LET-DG Tree: The predicted link expiration time (LET) of a link u – v between two 

nodes u and v, currently at (Xu, Yu) and (Xv, Yv), and moving at speed si and sj in 

directions θi and θj (with respect to the positive X-axis) is computed using the formula 

proposed in [9]: 

                     

22

2222 )()()(
),(

ca

bcadRcacdab
vuLET






………………………... (1) 

      where a = si*cosθi – sj*cosθj; b = Xi – Xj; c = si*sinθi – sj*sinθj; d = Yi – Yj 

 

4.2  Energy Consumption Model 

The energy consumption model used is a first order radio model [46] that has been also 

used in several of the well-known previous work (e.g., [3][4]) in the literature. According to 

this model, the energy expended by a radio to run the transmitter or receiver circuitry is Eelec 

= 50 nJ/bit and amp = 100 pJ/bit/m
2
 for the transmitter amplifier. The radios are turned off 

when a node wants to avoid receiving unintended transmissions.  

(i) The energy lost in transmitting a k-bit message over a distance d is given by:  

ETX (k, d) = Eelec* k +amp
*k* d

2
  (1) 
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(ii) The energy lost in receiving a k-bit message is given by:  

ERX (k) = Eelec* k   (3) 

(iii)During a network-wide flooding of a control message (for example, the tree 

establishment messages for LET-DG as described in Section 6), each node is assumed 

to lose energy corresponding to transmission over the entire transmission range of the 

node and to receive the message from each of its neighbors. In networks of high 

density, the sum of the energy lost at a node due to reception of the broadcast message 

from all of its neighbors is often more than the energy lost due to transmitting the 

message. Though the MaxS-DG algorithm is centralized in nature, to be fair with 

LET-DG, we consider the energy lost in changing from one data gathering tree to 

another as equal to the energy lost in the network-wide flooding of a control message 

(same as the size used in the LET-DG algorithm) as described above. 

4.3  Terminology 

We use the notions of static graphs and mobile graphs (adapted from [47]) to capture the 

sequence of topological changes in the network and determine a stable data gathering tree 

that spans over several time instants. A static graph is a snapshot of the network at any 

particular time instant and is modeled as a unit disk graph [45] wherein there exists a link 

between any two nodes if and only if the physical distance between the two end nodes of the 

link is less than or equal to the transmission range. The weight of an edge on a static graph is 

the Euclidean distance between the two end nodes of the edge. The Euclidean distance for a 

link u – v between two nodes u and v, currently at (Xu, Yu) and (Xv, Yv) is given by: 

22 )()( vuvu YYXX  . 

A mobile graph G(i, j), for 1 ≤ i ≤ j ≤ T and T is the total number of rounds of the data 

gathering session corresponding to the network lifetime, is defined as Gi Gi+1 … Gj, 

where Gi, Gi+1, ..., Gj are the individual static graphs captured at time instants ti, ti+1, …, tj 

corresponding to rounds i, i+1, ..., j. Thus, a mobile graph is a logical graph that captures the 

presence or absence of edges in the individual static graphs. In this research work, we sample 

the network topology periodically for every round of data gathering to obtain the sequence of 

static graphs. The weight of an edge in the mobile graph G(i, j) is the geometric mean of the 

weights of the edge in the individual static graphs spanning Gi, …, Gj. Since there exist an 

edge in a mobile graph if and only if the edge exists in the corresponding individual static 

graphs, the geometric mean of these Euclidean distances would also be within the 

transmission range of the two end nodes for the entire duration spanned by the mobile graph. 

Note that at any time, a mobile graph includes only live sensor nodes, nodes that have 

positive available energy. 

A static spanning tree is a minimum-weight spanning tree determined on a static graph. 

Since we use the Euclidean distance between the constituent nodes of an edge as the link 

weight, the minimum-weight spanning tree determined on a static graph will be a 

minimum-distance spanning tree for which the sum of the edge weights will be the minimum. 
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A static data gathering tree is a rooted form of its corresponding static spanning tree with the 

root node being the leader node chosen for the round corresponding to the time instant 

represented by the static spanning tree. A mobile spanning tree is a minimum-weight 

spanning tree determined on a mobile graph whose edge weights are the geometric mean of 

the corresponding edge weights in the constituent static graphs. A mobile data gathering tree 

is a rooted form of its corresponding mobile spanning tree with the root node being the leader 

node chosen for the round corresponding to the beginning time instant of the mobile graph. 

The leader node of a mobile data gathering tree remains the same until the mobile graph gets 

disconnected due to node mobility or a node failure occurs, whichever happens first.  

4.4  Key Assumptions 

The key assumptions behind the LET-DG algorithm are as follows: 

(i) A sensor node is able to obtain its current location, velocity and direction of motion 

(with respect to the positive X-axis) at any point of time and also includes the same as 

a Location Update Vector (LUV) in the TREE-CONSTRUCT message broadcast to 

its neighborhood at the time of constructing the data gathering trees (refer Section 6). 

With the inclusion of a LUV in the TREE-CONSTRUCT message, we avoid the need 

to periodically exchange beacons in the neighborhood. 

(ii) For the LET-DG trees, a sensor node maintains a LET-table comprising of the 

estimates of the LET values to each of its neighbor nodes based on the latest 

TREE-CONSTRUCT messages received from them. A sensor code could similarly 

maintain a Distance-table comprising of estimates of the Euclidean distance with the 

neighbor nodes that sent it the TREE-CONSTRUCT message (assumed for use to 

determine the MaxS-DG trees). 

(iii)Sensor nodes are assumed to be both TDMA (Time Division Multiple Access) and 

CDMA (Code Division Multiple Access)-enabled [48]. Every upstream node 

broadcasts a time schedule (for data gathering) to its immediate downstream nodes; a 

downstream node transmits its data to the upstream node according to this schedule. 

Such a TDMA-based communication between every upstream node and its immediate 

downstream child nodes can occur in parallel, with each upstream node using a 

unique CDMA code. 

(iv) We assume the size of the aggregated data packet to be the same as the size of the 

individual data packets sent by the sensor nodes. In other words, aggregation at any 

node does not result in increase in the size of the data packets transmitted from the 

sensor nodes towards the sink.  

A key assumption behind the MaxS-DG algorithm is that the entire sequence of network 

topology changes is known beforehand at the time of running the MaxS-DG algorithm. This 

is required to generate the mobile graph spanning several static graphs, each representing 

snapshots of the network topology at time instants corresponding to successive rounds of data 

gathering, on which a stable long-living data gathering tree will be determined. The above 

assumption may not be practical for distributed systems of sensor networks. However, note 
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that our goal is to develop the MaxS-DG algorithm as a benchmarking algorithm that can 

give us the sequence of long-living data gathering trees (over the duration of the data 

gathering session) whose lifetime will be the upper bound for the data gathering trees 

obtained using any other algorithm (like the LET-DG algorithm) developed for this problem 

in the area of mobile sensor networks. The sequence of such stable longest-living data 

gathering trees determined using the MaxS-DG algorithm will involve the minimum number 

of discoveries involving network-wide flooding. Thus, the number of data gathering tree 

discoveries incurred with the MaxS-DG algorithm will form the lower bound for the number 

of data gathering tree discoveries incurred with any other algorithm for mobile sensor 

networks.  

 

5. Maximum Stability-based Data Gathering (MaxS-DG) Algorithm  

The MaxS-DG algorithm is based on a greedy look-ahead principle and the intersection 

strategy of static graphs. When a mobile data gathering tree is required at a sampling time 

instant ti, the strategy is to find a mobile graph G(i, j) = Gi Gi+1 … Gj such that there 

exists a spanning tree in G(i, j) and no spanning tree exists in G(i, j+1) = Gi Gi+1 … Gj 

Gj+1. We find such an epoch ti, …, tj as follows: Once a mobile graph G(i, j) is constructed 

with the edges assigned the weights corresponding to the geometric mean of the weights in 

the constituent static graphs Gi, Gi+1, …, Gj, we run the Prim’s minimum-weight spanning 

tree algorithm [8] on the mobile graph G(i, j). If G(i, j) is connected, we will be able to find a 

spanning tree in it. We repeat the above procedure until we reach a mobile graph G(i, j+1) in 

which no spanning tree exists and there existed a spanning tree in G(i, j). It implies that a 

spanning tree basically existed in each of the static graphs Gi, Gi+1, ..., Gj and we refer to it as 

the mobile spanning tree for the time instants ti, …, tj. To obtain the corresponding mobile 

data gathering tree, we choose an arbitrary root node for this mobile spanning tree and run the 

Breadth First Search (BFS) algorithm [8] on it starting from the root node. The direction of 

the edges in the spanning tree and the parent-child relationships are set as we traverse its 

vertices using BFS. The resulting mobile data gathering tree with the chosen root node (as the 

leader node) is used for every round of data gathering spanning time instants ti, …, tj. We then 

set i = j+1 and repeat the above procedure to find a mobile spanning tree and its 

corresponding mobile data gathering tree that exists for the maximum amount of time since 

tj+1. A sequence of such maximum lifetime (i.e., longest-living) mobile data gathering trees 

over the timescale T corresponding to the number of rounds of a data gathering session is 

referred to as the Stable Mobile Data Gathering Tree. Figure 1 presents the pseudo code of 

the MaxS-DG algorithm that takes as input the sequence of static graphs spanning the entire 

duration of the data gathering session.  

While operating the algorithm under energy-constrained scenarios, one or more sensor 

nodes may die due to exhaustion of battery charge even though the underlying spanning tree 

may topologically exist. For example, if we have determined a data gathering tree spanning 

across time instants ti to tj using the above approach, and we come across a time instant tk (i ≤ 

k ≤ j) at which a node in the tree fails, we simply restart the Max.S-DG algorithm starting 
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from time instant tk considering only the live sensor nodes (i.e., the sensor nodes that have 

positive available energy) and determine the longest-living data gathering tree that spans all 

the live sensor nodes since tk. The pseudo code of the MaxS-DG algorithm in Figure 1 

handles node failures, when run under energy-constrained scenarios, through the if block 

segment in statement 8. If all nodes have sufficient-energy and there are no node failures, the 

algorithm does not execute statement 8.    

 

------------------------------------------------------------------------------------------------------------------------------- 

Input: Sequence of static graphs G1, G2, … GT; Total number of rounds of the data gathering session – T 

Output: Stable-Mobile-DG-Tree  

Auxiliary Variables: i, j 

Initialization: i =1; j=1; Stable-Mobile-DG-Tree = Φ (empty set) 

Begin MaxS-DG Algorithm 

1    while (i ≤ T) do 

2      Find a mobile graph G(i, j) = Gi   Gi+1   …    Gj such that there exists at least one spanning  

            tree in G(i, j) and {no spanning tree exists in G(i, j+1) or j = T} 

3      Mobile-Spanning-Tree(i, j) = Prim’s Algorithm ( G(i, j) ) 

4      Root(i, j) = Choose a node randomly in G(i, j) 

5      Mobile-DG-Tree(i, j) = Breadth First Search ( Mobile-Spanning-Tree(i, j), Root(i, j) ) 

6      Stable-Mobile-DG-Tree = Stable-Mobile-DG-Tree U { Mobile-DG-Tree(i, j) } 

7      for each time instant tk {ti, ti+1, …, tj} do 

                    Use the Mobile-DG-Tree(i, j) in tk   

8                   if node failure occurs at tk then 

                          j = k – 1 

                          break 

                     end if  

         end for 

9        i = j + 1      

10   end while 

11   return Stable-Mobile-DG-Tree 

End MaxS-DG Algorithm 

------------------------------------------------------------------------------------------------------------------------------- 

Figure 1: Pseudo Code for the Maximum Stability-based Data Gathering Tree Algorithm 

 

5.1  Example to Illustrate the Working of the MaxS-DG Algorithm 

We run the MaxS-DG algorithm on the sequence of static graphs G1G2G3G4G5 (shown in 

the first part of Figure 2), generated by sampling the network topology for every second. For 

simplicity and clarity in the representation, we do not use weights for the edges. The reader 

could assume that the spanning trees determined on the static graphs and mobile graphs at 

different instances of execution of the MaxS-DG algorithm in Figure 2 are the 

minimum-weight spanning trees on the corresponding graphs.  
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In Figure 2, we could find a connected mobile graph spanning G1, G2 and G3; and could 

not find a connected mobile graph from G1 through G4. A spanning tree exists for a graph if 

and only if the graph is connected. We determine a spanning tree on G1   G2   G3 and 

derive a data gathering tree rooted at an arbitrarily selected node (node 3). This stable data 

gathering tree is to be used for the rounds corresponding to time instants of the static graphs 

G1, G2 and G3. Similarly, we continue with the subsequent two static graphs and find a data 

gathering tree (with an arbitrary root node – node 6) that exists in both G4 and G5. Thus, we 

require a total of two data gathering tree discoveries for the sequence of static graphs 

G1G2G3G4G5. There has to be at least a sequence of two spanning trees for the graph 

sequence G1G2G3G4G5 as the intersection graph G1   G2   G3   G4 was not 

connected. 

 

 

Figure 2: Example to Illustrate Execution of the Maximum Stability-based Data Gathering Algorithm 

 

5.2  Run-time Complexity Analysis of the MaxS-DG Algorithm 

To expand a mobile graph G(i, j) = Gi Gi+1 … Gj to G(i, j+1), all we had to do is to 

check whether each of the edges in the mobile graph G(i, j) existed at time instant tj+1. This 

can be done in O(n
2
) time on a mobile graph of n nodes, as there can be at most O(n

2
) edges 

on a graph of n vertices. The overall complexity of the MaxS-DG algorithm is the sum of the 

time complexity to construct the mobile graphs, the time complexity to run the spanning tree 

algorithm on these mobile graphs and the time complexity to transform these spanning trees 

to data gathering trees using BFS. 

Sufficient-energy Scenarios: When the network operates under sufficient-energy 

scenarios (i.e., no node failures), for a data gathering session comprising of T rounds, we will 

have to construct T mobile graphs, resulting in a time complexity of O(n
2
T) to construct the 

mobile graphs. On each of these T mobile graphs, we will have to run a spanning tree 

algorithm. If we use the O(n
2
*logn) Prim’s algorithm to construct a spanning tree, the 

complexity to run the spanning tree algorithm on the T mobile graphs becomes O(n
2
*logn*T). 

A spanning tree on n vertices has n–1 edges. The time-complexity of running BFS on a 
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spanning tree of n vertices with n–1 edges is O(n) [8]. To run BFS on the O(T) spanning trees, 

we incur O(nT) time. Thus, the overall complexity of the MaxS-DG algorithm under 

sufficient-energy scenarios is O(n
2
T) + O(n

2
Tlogn) + O(nT) = O(n

2
Tlogn). 

Energy-Constrained Scenarios: There can be at most n–1 node failures (on an n node 

network) that trigger the execution of statement 8 in the pseudo code of Figure 1 for the 

MaxS-DG algorithm. A node failure occurring at time instant tk (i ≤ k ≤ j), while using a 

mobile data gathering tree that has been determined on a mobile graph for time instants ti, …, 

tj, would require us to construct a mobile graph starting from tk and the number of mobile 

graphs that we have to construct and run the spanning tree algorithm increases by j–k+1. At 

the worst case, if there are n–1 node failures, the number of mobile graphs that we have to 

construct and run the spanning tree algorithm increases by (T – 1) + (T – 2) + (T – (n–1) ) = 

(n–1)T – [1 + 2 + … + (n–1)] = O(nT) + O(n
2
). Under the sufficient-energy scenarios, we had 

to construct T mobile graphs and run the spanning tree algorithm on each of them. In the 

energy-constrained scenarios, we will have to construct at most T + O(nT) + O(n
2
) mobile 

graphs and run the spanning tree algorithm on each of them. The number of rounds of data 

gathering is generally far greater than the number of nodes in the network. For example, in 

our simulations, we use a value of T = 4000 rounds (4 rounds per second, for 1000 seconds) 

and n = 100 nodes. Thus, since n << T, we can say that n
2
 << nT. Therefore, a total of T + 

O(nT) + O(n
2
) = T + O(nT) = O(nT) mobile graphs are constructed. The time complexity to 

construct these mobile graphs is O(n
2
 * nT) = O(n

3
T). We run the O(n

2
logn) Prim’s spanning 

tree algorithm on the O(nT) mobile graphs, resulting in a time-complexity of O(n
3
Tlogn) to 

determine the spanning trees. The time-complexity of running the O(n)-BFS algorithm on the 

O(nT) spanning trees is O(n
2
T). Thus, the overall time-complexity of the MaxS-DG algorithm 

under the energy-constrained scenarios is O(n
3
T) + O(n

3
Tlogn) + O(n

2
T) = O(n

3
Tlogn). 

5.3  Proof of Correctness of the MaxS-DG Algorithm 

In this section, we prove that the MaxS-DG algorithm does determine the sequence of 

long-living stable mobile data gathering trees such that the number of tree discoveries is the 

global minimum (i.e. optimum). We use the approach of Proof by Contradiction. Let m be the 

number of data gathering tree discoveries incurred using the MaxS-DG algorithm on a 

sequence of static graphs G1G2 … GT. Let there be another algorithm (a hypothetical 

algorithm) that returns a sequence of mobile data gathering trees for the same sequence of 

static graphs such that the number of tree discoveries is n < m. If such an algorithm exists, 

then without loss of generality, there has to be one mobile data gathering tree, determined 

using this hypothetical algorithm, existing for the entire duration of a mobile graph G(p, s); 

whereas, the MaxS-DG algorithm had to have at least one data gathering tree transition in 

G(p, s). However, there cannot be such a data gathering tree that spanned through the entire 

mobile graph G(p, s) and was not discovered by the MaxS-DG algorithm. Because, the 

MaxS-DG algorithm takes intersection of the static graphs Gp Gp+1 … Gs and runs a 

spanning tree algorithm on the intersection graph G(p, s) – if at all a spanning tree existed in 

G(p, s), then G(p, s) would have to be connected. If the MaxS-DG algorithm could not 

determine a spanning tree/data gathering tree for the mobile graph G(p, s), it implies the 

mobile graph G(p, s) is not connected. It is not possible for any algorithm, including our 
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hypothetical algorithm, to find a spanning tree/data gathering tree that covers all the vertices 

of a disconnected graph. Thus, the hypothetical algorithm would also had to have at least one 

tree transition in G(p, s). The above proof holds good for any value of static graph indices p 

and s, where 1 ≤ p ≤ s ≤ T, and T is the total number of rounds corresponding to the duration 

of the data gathering session. Thus, the number of data gathering tree discoveries incurred 

with using the MaxS-DG algorithm is the global minimum.  

Note that in the above proof, we have implicitly assumed that all the sensor nodes are 

alive for the entire duration of the data gathering session. In other words, we have proved that 

when operated under sufficient-energy scenarios, the MaxS-DG algorithm returns the stable 

sequence of data gathering trees such that the number of tree discoveries is the global 

minimum. It is not possible to theoretically prove the optimality of the MaxS-DG algorithm 

under energy-constrained scenarios. One can only validate the optimality of the lifetime of 

the MaxS-DG trees under energy-constrained scenarios through simulations, as we do in 

Section 7, wherein we observe the MaxS-DG trees to yield a relatively longer lifetime 

compared to the LET-DG trees under energy-constrained scenarios.  

 

6. Link Expiration Time based Data Gathering (LET-DG) Algorithm  

The LET-DG algorithm is a distributed implementation of the maximum spanning tree 

algorithm [8] on a weighted network graph with the edge weights modeled as the predicted 

link expiration time (LET) of the constituent end nodes. The objective of a maximum 

spanning tree algorithm is to determine a spanning tree such that the sum of the edge weights 

is the maximum. Our aim is to determine a maximum-LET spanning tree for mobile sensor 

networks such that the sum of the LETs of the constituent links of the spanning tree is the 

maximum. The LET-DG tree is a rooted maximum-LET spanning tree with the root being the 

leader node chosen by the sink (as explained in Section 6.2). 

6.1  Initializations of State Information on Data Gathering Tree Configuration 

Each sensor node locally maintains its best known state information regarding the data 

gathering tree-configuration, containing the following fields: estimated node weight, 

upstream node id, tree level, LEADER node id, and sequence number. The LEADER node id 

corresponds to the id of the root node of the data gathering tree. The sequence number field is 

the latest known sequence number for a data gathering tree involving the sensor node. The 

sequence number of a data gathering tree is set during the tree construction process (as 

explained in Section 6.2). The upstream node id is the id of the immediate parent node for the 

sensor node in the tree. If a sensor node is the LEADER node (i.e., the root), then its 

upstream node id is set to NULL. The estimated node weight is the best known weight 

corresponding to the position of the sensor node in the tree. The tree level field is a measure 

of the distance of the sensor node from the root node of the tree. When a new data gathering 

tree needs to be configured (either initially at network startup or when the last known tree is 

broken), the values to the fields of the tree-configuration state information are set as follows, 

indicated in parenthesis next to the field name: 
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 At the LEADER node: estimated node weight (+∞), upstream node id (NULL), tree 

level (0), LEADER node id (self) and sequence number (the latest sequence number 

informed by the sink node through the TREE-INITIATE message for the new tree to 

be configured).  

 At a regular sensor node (i.e., a non-LEADER node): estimated node weight (-∞), 

upstream node id (NULL), tree level (+∞), LEADER node id (NULL) and sequence 

number (the sequence number of the last known tree if one existed; otherwise, set to 

-1).  

In the simulations, the Positive Infinity (+∞) and Negative Infinity (-∞) will be 

represented respectively as very large positive and very small negative values that fall outside 

the range of the possible values for the link weight. 

6.2  Sink: Selection of the Leader Node 

Whenever a sink node fails to receive aggregated data from the leader node of the 

LET-DG tree, the sink randomly chooses a new leader node from the list of available nodes 

currently perceived to exist with a positive residual energy, and sends it a TREE-INITIATE 

message to start constructing a tree rooted at the chosen leader node (LEADER). The sink 

includes a sequence number (a monotonically increasing value maintained at the sink, 

starting from 0) for the tree construction process in the TREE-INITIATE message, and the 

leader node includes it in its tree construction message (see Section 6.3) to avoid replay errors 

involving outdated links. If the leader node is alive (i.e., it has positive available energy), then 

it responds back with a TREE-INITIATE-ACK message acknowledging that it will start the 

flooding-based tree discovery. If the TREE-INITIATE-ACK message is not received within a 

certain time, the sink considers the chosen sensor node to be not alive, removes it from the 

list of available nodes, and sends the TREE-INITIATE message (with a higher sequence 

number, to avoid any parallel tree construction occurring in the network) to another randomly 

chosen sensor node from the list of available nodes. The above procedure is repeated until the 

sink successfully finds a leader node that accepts to initiate the tree construction process. 

6.3  Initiation of the TREE-CONSTRUCT Message 

The leader node broadcasts a TREE-CONSTRUCT message containing a 6-element 

Tree-Configuration tuple <sequence number, LEADER node id, sender node id, tree level, 

sender’s estimated weight, upstream node id> as well as a location update vector (LUV) 

comprising of the 4-element tuple <X-coordinate, Y-coordinate, Velocity, Direction of motion 

- Angle with respect to the positive X-axis> to its neighbor nodes. The sequence number is the 

value sent by the sink to the leader node for the specific tree construction process. If the 

sender node is the LEADER, it sets the upstream node id to its own id; while the other nodes 

set the upstream node id to be the id of the node that they perceive to be their best choice for 

the upstream node that can connect them to the tree. In the TREE-CONSTRUCT message, 

the leader node sets the sender’s estimated weight value to +∞ and the value of the tree level 

field to 0. 

6.4  Propagation of the TREE-CONSTRUCT Message and Tree Establishment 
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When a node receives the TREE-CONSTRUCT message with a higher sequence number 

for the first time, it treats it as a sign of tree reconfiguration and resets, if it has not already 

done so, the different fields of the local tree-configuration state information to their initial 

values as listed in Section 6.2. The receiving node then calculates the weight of the link to the 

neighbor node from which the message was received. A TREE-CONSTRUCT message is 

accepted at a node for a weight/tree configuration update and rebroadcast (in the 

neighborhood of the node) if the following conditions are met:  

(i) The upstream node id is not equal to the id of the node itself.  

(ii) The value of the tree level field in the message is lower than or equal to the current 

tree level field value at the node.  

(iii) The estimated weight at the node is lower than the sender’s estimated weight. 

(iv) The estimated weight at the node is lower than the predicted expiration time of the 

link (LET, calculated according to equation 1) on which the TREE-CONSTRUCT 

message was received. 

If all the above conditions are true, then a node receiving the TREE-CONSTRUCT 

message accepts the message to update its position in the tree. Note that conditions (i) and (ii) 

are included to ensure there is no looping. The receiver node selects the sender node as its 

upstream node for joining/connecting to the tree, sets its estimated weight in the tree as the 

minimum of the sender node’s estimated weight for the tree and LET of the link through which 

the TREE-CONSTRUCT message was received, and also sets the value of its tree level local 

state information to one more than the value of the tree level field in the 

TREE-CONSTRUCT message. If its weight is updated, the receiver node sends a 

TREE-JOIN-CHILD message to the upstream sender node indicating the decision to connect 

to the tree by becoming its child node. The receiver node also decides to further broadcast the 

TREE-CONSTRUCT message to its neighbors by replacing the LUV of the sender node with 

its own LUV, the sender node id with its own id, the sender’s estimated weight with its 

recently updated weight in the tree, the upstream node id set to the id of the node through 

which it has decided to join/connect to the tree, and the tree level value in the message 

incremented by one (matching to the updated value of the tree level local state information at 

the node). The LEADER node id and the sequence number fields are retained as it is in the 

TREE-CONSTRUCT message. 

A node follows the same procedure as explained above when it receives a 

TREE-CONSTRUCT message with the highest known sequence number from any other 

neighbor node. In other words, a TREE-CONSTRUCT message corresponding to the latest 

broadcast process (decided using the sequence number) is accepted for an update and 

re-broadcast only if it can increase the estimated weight of the node to connect to the tree 

without introducing any looping. The algorithm executes as the TREE-CONSTRUCT 

message propagates around the sensor network reaching every sensor node. As part of this 

flooding process, each sensor node is guaranteed to accept the TREE-CONSTRUCT message 

for a weight/tree-configuration update at least once and broadcast the message in its 
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neighborhood. This is because, the initial estimated weight of a sensor node to join the tree is 

–∞, and the leader node starts with a positive ∞ value and the LET values for the links are 

always positive. The objective of the LET-DG algorithm is to connect each node with the 

largest possible weight value in the tree – a measure of the estimated lifetime of the tree. 

6.5  Propagation of the TREE-LINK-FAILURE Message 

When an upstream sensor node finds out that a link to one of its downstream child nodes 

is broken due to failure to receive aggregated data packets, the upstream node initiates a 

TREE-LINK-FAILURE message and includes in it the sequence number that was used in the 

TREE-CONSTRUCT message corresponding to the most recently used flooding process. The 

TREE-LINK-FAILURE message is essentially reverse broadcast along the edges of the sub 

tree proceeding towards the leader node, starting from the upstream node of the broken link. 

Similarly, the downstream node detects the link failure when it fails to receive a 

TDMA-schedule from its upstream node for the next round of data aggregation and initiates a 

TREE-LINK-FAILURE message to inform about the tree failure to the nodes in the sub tree 

rooted at it. If an intermediate node and/or leaf node does not receive the 

TREE-LINK-FAILURE message, it continues to wait for the aggregated data packets from its 

perceived downstream nodes or the TDMA-schedule from its upstream node until it learns 

about the tree failure through the broadcast of a new TREE-CONSTRUCT message with a 

sequence number greater than that of the most recently used tree. 

 

7. Simulations  

In this section, we present an exhaustive simulation study on the performance of the 

MaxS-DG trees and compare them with that of the LET-DG trees under diverse conditions of 

network density and mobility. The simulations are conducted in a discrete-event simulator 

developed (in Java) by us exclusively for data gathering in mobile sensor networks. The 

MAC (medium access control) layer is assumed to be collision-free and considered an ideal 

channel without any interference. Sensor nodes are assumed to be both TDMA (Time 

Division Multiple Access) and CDMA (Code Division Multiple Access)-enabled. Every 

upstream node broadcasts a time schedule (for data gathering) to its immediate downstream 

nodes; a downstream node transmits its data to the upstream node according to this schedule. 

Such a TDMA-based communication between every upstream node and its immediate 

downstream child nodes can occur in parallel, with each upstream node using a unique 

CDMA code.  

The network dimension is 100m x 100m. The number of nodes in the network is 100 and 

initially, the nodes are uniform-randomly distributed throughout the network. The sink is 

located at (50, 50), at the center of the network field. For a given simulation run, the 

transmission range per sensor node is fixed and is the same across all nodes. The network 

density is varied by varying the transmission range per sensor node from 20m to 50m, in 

increments of 5m. For brevity, we only present results obtained for transmission ranges per 

node of 25m and 30m (representative of moderate density, with connectivity of 97% and 
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above), and  for 40m (representative of high density, with 100% connectivity). 

Simulations are conducted for two kinds of energy scenarios: One scenario wherein each 

node is provided with abundant supply of energy (100 J per node) and there are no node 

failures due to exhaustion of battery charge; the simulations in these sufficient-energy 

scenarios are conducted for 1000 seconds. The second scenario is an energy-constrained 

scenario in which each node is supplied with limited initial energy (2 J per node) and the 

simulations are conducted until the network of live sensor nodes gets disconnected due to the 

failures of one or more nodes. The energy consumption model is as described in Section 4.2. 

We conduct constant-bit rate data gathering at the rate of 4 rounds per second (one round 

for every 0.25 seconds). The size of the data packet is 2000 bits; the size of the control 

messages used for tree discoveries is assumed to be 400 bits. We assume that a tree discovery 

(for both MaxS-DG and LET-DG trees) requires network-wide flooding of the 400-bit control 

messages such that each sensor node will broadcast the message exactly once in its 

neighborhood. As a result, each sensor node will lose energy to transmit the 400-bit message 

over its entire transmission range and receive the message from each of its neighbor nodes. In 

high density networks, the energy lost due to receipt of the redundant copies of the tree 

discovery control messages dominates the energy lost at a node for tree discovery. All of 

these mimic the energy loss observed for flooding-based tree discovery in ad hoc and sensor 

networks. 

The node mobility model used is the well-known Random Waypoint mobility model [49] 

with the maximum node velocity being 3 m/s and 10 m/s representing scenarios of low and 

high mobility respectively. According to this model, each node chooses a random target 

location to move with a velocity uniform-randomly chosen from [0,…, vmax], and after 

moving to the chosen destination location, the node continues to move by randomly choosing 

another new location and a new velocity. Each node continues to move like this, independent 

of the other nodes and also independent of its mobility history, until the end of the simulation. 

For a given vmax value, we also vary the dynamicity of the network by conducting the 

simulations with a variable number of static nodes (out of the 100 nodes) in the network. The 

values for the number of static nodes used are: 0 (all nodes are mobile), 20, 50 and 80.  

7.1  Performance Metrics 

We generated 200 mobility profiles of the network for a total duration of 6000 seconds, 

for every combination of the maximum node velocity and the number of static nodes. Every 

data point in the results presented in Figures 4 through 15 is averaged over these 200 mobility 

profiles. The tree lifetime and delay per round are measured for both the sufficient-energy 

and energy-constrained scenarios (appropriately prefixed as ‘EC’ next to the names of the 

data gathering trees). The node and network lifetimes are measured only for the 

energy-constrained scenarios.  

The performance metrics measured in the simulations are:  

(i) Tree Lifetime – the duration for which a data gathering tree existed, averaged over the 

entire simulation time period. 
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(ii) Delay per Round – measured in terms of the number of time slots needed per round of 

data aggregation at the intermediate nodes, all the way to the leader node of the data 

gathering tree, averaged across all the rounds of the simulation. A brief description of 

the algorithm used to compute the delay per round is given in Section 7.2 along with 

an illustration in Figure 3. 

(iii)Node Lifetime – measured as the time of first node failure due to exhaustion of battery 

charge. 

(iv) Network Lifetime – measured as the time of disconnection of the network of live 

sensor nodes (i.e., the sensor nodes that have positive available battery charge), while 

the network would have stayed connected if all the nodes were alive at that time 

instant. So, before confirming whether an observed time instant is the network 

lifetime (at which the network of live sensor nodes is noticed to be disconnected), we 

test for connectivity of the underlying network if all the sensor nodes were alive.   

 

Figure 3: Example to Illustrate the Calculation of Delay per Round of Data Gathering 

 

7.2  Algorithm to Compute the Delay per Round of Data Gathering 

The delay incurred at a node is measured in terms of the number of time slots it takes to 

gather data from all of its immediate child nodes. The delay for the data gathering tree is one 

plus the delay incurred at the leader node (root node). We assume that it takes one time slot 

per child node to transfer data to its immediate predecessor node in the tree. However, a node 

cannot transfer the aggregated data to its parent node until it receives the data from its own 

child nodes. The delay calculations start from the bottom of the data gathering tree. The delay 

incurred at a leaf node is 0. To calculate the delay incurred at an intermediate node u, 

Delay(u), located at a particular level in the data gathering tree, we maintain a sorted list, 

Child-Nodes(u), of the delay associated with each of its immediate child nodes and use a 

temporary running variable Temp-Delay(u), initialized to zero, to explore the sorted list of the 

delays at the child nodes. For every child node v Child-Nodes(u), Temp-Delay(u) = 
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Maximum [Temp-Delay(u) + 1, Delay(v) + 1)], as we assume it takes one time slot for a child 

node to transfer its aggregated data to its immediate predecessor node in the tree. The delay 

associated with an intermediate node u, Delay(u), is the final value of the Temp-Delay(u) 

variable, after we iterate through the sorted list of the delays associated with the list 

Child-Nodes(u). The above procedure is repeated at all the intermediate nodes, from levels 

one less than the Height of the tree all the way to zero (i.e., the root node). We illustrate the 

working of the above explained procedure for delay computation on a data gathering tree 

through an example presented in Figure 3. The integer inside a circle indicates the node ID 

and the integer outside a circle indicates the delay for data aggregation at the node. 

7.3  Tree Lifetime 

Among the three key operating parameters (maximum node velocity, number of static 

nodes and transmission range per node) of the simulations, we observe the stability of the 

data gathering trees to be highly influenced by the maximum node velocity (vmax) of the 

nodes. When operated under sufficient-energy scenarios, for a fixed number of static nodes 

and transmission range per node, we observe the lifetime incurred for both the MaxS-DG 

trees and LET-DG trees to proportionally decrease with a corresponding increase in the vmax 

values from 3 m/s to 10 m/s. In the energy-constrained scenarios, even though a data 

gathering tree may topologically exist, the tree would require reconfiguration if one or more 

nodes in the tree fail due to exhaustion of battery charge. Since a tree also needs to be 

reconfigured due to node mobility, the lifetime of the data gathering trees observed for 

energy-constrained scenarios is always less than or equal to that observed for 

sufficient-energy scenarios. In the case of both the MaxS-DG and LET-DG trees, for a fixed 

transmission range and # static nodes, we observe the largest difference between the tree 

lifetimes for the sufficient-energy scenarios vis-à-vis the energy-constrained scenarios to 

occur when the network is operated under low node mobility conditions (vmax = 3 m/s). This 

could be attributed to the significantly longer lifetime observed for the data gathering trees at 

low node mobility conditions when operated with sufficient-energy for the nodes.  

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 4: Average Tree Lifetime under Sufficient Energy Scenario (Low Node Mobility: vmax = 3 m/s) 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 5: Average Tree Lifetime under Energy Constrained Scenario (Low Node Mobility: vmax = 3 m/s) 
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    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 6: Average Tree Lifetime under Sufficient Energy Scenario (High Node Mobility: vmax = 10 m/s) 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 7: Average Tree Lifetime under Energy Constrained Scenario (High Node Mobility: vmax =10 m/s) 

 

In low mobility scenarios (refer Figures 4 and 5), we also observe the difference in the 

tree lifetimes under sufficient-energy vs. energy-constrained scenarios to increase with 

increase in the transmission range per node. At higher transmission ranges, the links are more 

stable as nodes of a link have relatively higher freedom to move around (compared to 

operating at low and moderate transmission ranges) and still remain as neighbors. Hence, the 

data gathering trees are bound to be the most stable at low node mobility and larger 

transmission ranges per node. At these conditions – under sufficient-energy scenarios, we 

observe the MaxS-DG trees to sustain a lifetime that is larger than that of the LET-DG trees 

by a factor of about 3 to 4.5. However, under energy-constrained scenarios, the MaxS-DG 

trees are only 100-125% more stable than that of the LET-DG Trees. Nevertheless, the energy 

savings sustained by the MaxS-DG algorithm with respect to tree discoveries under both low 

and high node mobility scenarios contributes to the nodes on a MaxS-DG tree to exist for a 

relatively much longer time compared to that of the LET-DG trees, resulting in an increased 

network lifetime (refer Section 7.5). 

With regards to the impact of the transmission range per node, the difference in the 

lifetime of the MaxS-DG trees and the LET-DG trees increases with increase in the 

transmission range per node, for a given level of node mobility. For a fixed vmax value, the 

lifetime of the MaxS-DG trees increases by a factor of 2 to 3 as we increase the transmission 

range from 25m to 40m; whereas the lifetime of the LET-DG trees increases only at most by 

a factor of 2. This could be again attributed to the optimal usage of the availability of stable 

links (facilitated by the larger transmission ranges per node) by the MaxS-DG algorithm 

through a centralized, look-ahead and graph intersection approach. However, as is the bane of 

the distributed algorithms based on the local optimum approach, the LET-DG trees are 

formed with links that are relatively less stable even when operated with higher transmission 

ranges per node. 
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With regards to the impact of the number of static nodes, we observe that for both the 

sufficient-energy and energy-constrained scenarios, the lifetime of both the MaxS-DG trees 

and the LET-DG trees increases by at most 50% when the number of static nodes is increased 

from 0 to 80 nodes. There is not much of a significant increase (only at most about 10-15% 

increase) in the lifetime of both the data gathering trees when we run the network with 20 and 

50 static nodes instead of 0 nodes. This vindicates the impact of node mobility on the stability 

of the data gathering trees. Even if half of the nodes in the network are operated static, we 

observe the data gathering trees to have about the same vulnerability for a link failure 

vis-à-vis operating the network with all mobile nodes. 

7.4  Delay per Round 

We observe the LET-DG trees to incur significantly lower delay per round of data 

gathering compared to the MaxS-DG trees. The delay per round is not much affected by the 

dynamicity of the network and is more impacted by the topological structure of the two 

spanning trees. The MaxS-DG tree tends to have relatively fewer leaf nodes, and as a result 

more nodes are likely to end up as intermediate nodes – leading to a much larger depth. Note 

that the underlying link weight criterion used for MaxS-DG trees is the geometric Euclidean 

distance between the end nodes of the link. The MaxS-DG tree is also observed to be more 

unbalanced with respect to the distribution of the number of children per intermediate node as 

well as the distribution of the leaf nodes at different levels. Not all leaf nodes are located at 

the bottommost level of the tree. Due to all these structural complexities, the MaxS-DG trees 

have been observed to incur a much larger delay per round of data gathering. On the other 

hand, the LET-DG trees have been observed to be more shallow (i.e., lower depth) with more 

leaf nodes and the distribution of the number of child nodes per intermediate node is 

relatively more balanced. All of these factors contribute to a much lower delay per round of 

data gathering. 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 8: Average Delay / Round under Sufficient Energy Scenario (Low Node Mobility: vmax = 3 m/s) 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 9: Average Delay / Round under Energy Constrained Scenario (Low Node Mobility: vmax = 3 m/s) 
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    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 10: Average Delay / Round under Sufficient Energy Scenario (High Node Mobility: vmax = 10 m/s) 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 11: Average Delay/Round under Energy Constrained Scenario (High Node Mobility: vmax=10 m/s) 

Across all the simulations, we observe the MaxS-DG trees to incur on average a 40-65% 

larger delay per round of data gathering. For a given maximum node mobility, the difference 

in the delay per round of data gathering between the MaxS-DG and LET-DG trees decreases 

with increase in the transmission range per node. While operating the network at larger 

transmission ranges per node, it is possible to obtain a slightly better distribution of the nodes 

across the different levels of the MaxS-DG tree, contributing to the reduction in the delay. For 

a given vmax and transmission range per node, we also observe the difference in the 

magnitudes of the delay per round between the MaxS-DG and LET-DG trees to increase with 

increase in the number of static nodes. This can be attributed to the reduced chances of 

changes to the topological structure of the MaxS-DG tree in the presence of more static nodes 

– the unbalanced distribution of the nodes at the different levels of the tree gets to continue 

for a longer time – contributing to the larger delay. 

We observe the energy-constrained scenarios to have only minimal impact on the delay 

per round of data gathering. The two data gathering trees incur only a slightly lower delay per 

round of data gathering (by a factor of 5-10%) when operated in energy-constrained scenarios 

compared to the sufficient energy scenarios. The reduction in the delay per round of data 

gathering in the presence of node failures could be attributed to the overall reduction in the 

number of time slots needed to gather data from around the nodes in the network. The impact 

of node failures and the energy-constraint on the delay per round is almost equally observed 

for both the LET-DG and MaxS-DG trees. 

7.5  Node Lifetime and Network Lifetime 

The MaxS-DG trees incur a larger node lifetime and network lifetime compared to the 

LET-DG trees. For a given transmission range per node, the difference in the node lifetime 

and network lifetime increases with increase in node velocity. This could be attributed to the 

unstable LET-DG trees at higher node mobility levels and the increase in the number of 

network-wide flooding based tree discoveries. On the other hand, the MaxS-DG trees are 
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relatively much more stable than the LET-DG trees (though the absolute magnitude of the 

tree lifetime is lower for both the data gathering trees at high node mobility levels) and hence 

incur lower energy loss in flooding-based tree discoveries. 

We observe the LET-DG trees to incur the first node failure (node lifetime) much earlier 

during the simulation (compared to that incurred with the MaxS-DG trees). The node lifetime 

incurred with the MaxS-DG trees is observed to be 150-250% and 175-300% larger than that 

incurred with the LET-DG trees at low and high node mobility levels respectively. This could 

be attributed to the relatively shallow structure of the LET-DG trees – only fewer nodes serve 

as intermediate nodes of the data gathering tree and they spend more energy in gathering data 

from all their children/leaf nodes and forwarding the aggregated data further upstream in the 

tree. Due to the stable nature of the LET-DG trees, the intermediate nodes continue to lose 

more energy compared to the other nodes (leaf nodes) in the trees – leading to premature 

node failures. However, the difference in the network lifetime between the LET-DG and 

MaxS-DG trees is considerably lower; the network lifetime sustained with the MaxS-DG 

trees is only at most 60% larger than that incurred with the LET-DG trees (much smaller 

difference in the network lifetime, compared to the difference in node lifetime as noted 

above). The difference in the network lifetime between the MaxS-DG and LET-DG trees 

increases primarily with increase in the node mobility; however, at low node mobility, the 

network lifetime of the LET-DG trees considerably increases with increase in the 

transmission range per node. At vmax = 3 m/s and 40m transmission range per node, the 

network lifetime incurred with the MaxS-DG trees is only at most 15% larger than that 

incurred with the LET-DG trees. 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 12: Average Node Lifetime (Low Node Mobility: vmax = 3 m/s) 

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 13: Average Node Lifetime (High Node Mobility: vmax = 10 m/s) 
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    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 14: Average Network Lifetime (Low Node Mobility: vmax = 3 m/s) 

With respect to the impact of the presence of static nodes in the network, as we increase 

the number of static nodes from 0 to 80, we observe the node lifetime observed with the 

LET-DG trees to increase by about 15% and 30% at vmax values of 3 m/s and 10 m/s 

respectively. At high node mobility, the presence of more static nodes definitely helps the 

LET-DG trees to be more stable (note in Section 7.3, the lifetime of LET-DG trees at vmax = 

10 m/s could be as large as double the lifetime incurred at vmax = 3 m/s), leading to a 

reduction in the energy lost due to network-wide flooding-based tree discoveries. On the 

other hand, the MaxS-DG trees do not sustain any significant increase in tree lifetime when 

the number of static nodes is increased from 0 to 80; hence, there is no significant energy 

savings (in flooding) with little increase in the MaxS-DG tree lifetime. As a result, owing to 

the inherent stable nature of the MaxS-DG trees that exist for the longest possible time (there 

could be an increased use of certain nodes at the cost of others), we even observe the node 

lifetime incurred with the MaxS-DG trees to decrease slightly increase with increase in the 

number of static nodes from 0 to 80 for a given vmax and transmission range per node.  

 

   

    Transmission Range = 25 m        Transmission Range = 30 m       Transmission Range = 40 m 

Figure 15: Average Network Lifetime (High Node Mobility: vmax = 10 m/s) 

With respect the impact of the operating parameters on the absolute magnitude of the 

network lifetime, we observe the network lifetime incurred with the two data gathering trees 

increases with increase in the number of static nodes for a given value of vmax and 

transmission range per node. The percentage increase in the network lifetime relative to the 

node lifetime varies for the two data gathering trees. For a given vmax and transmission range 

per node, the network lifetime incurred with the LET-DG trees is consistently about 50% 

more than that of the node lifetime for all values of the number of static nodes operated. On 

the other hand, with the MaxS-DG trees, the network lifetime incurred when all nodes are 

mobile (i.e., 0 static nodes) is only about 10-20% more than that of the node lifetime; 

however, when we operate with 80 static nodes (out of a total of 100 nodes), the network 

lifetime incurred with the MaxS-DG trees increases significantly (compared to the node 

lifetime) by as large as 100%.   
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For a given level of node mobility, the network lifetime incurred for the two data 

gathering trees decreases with increase in transmission range per node. This could be 

attributed to the increased energy expenditure in the transmission of messages as well as 

flooding-based tree discoveries. For a given transmission range per node and number of static 

nodes, the network lifetime incurred for the two data gathering trees decreases with increase 

in the maximum node velocity, especially for the LET-DG trees due to their relative 

instability and energy loss incurred due to frequent tree discoveries. The network lifetime 

incurred with the MaxS-DG trees and MST-DG trees decreases by about 15-25% and 50-60% 

respectively as we increase the maximum node velocity from 3 m/s to 10 m/s for a fixed 

transmission range per node and number of static nodes.  

 

8. Conclusions and Future Work  

The high-level contributions of this paper in the area of mobile sensor networks are two 

fold: (1) Design and development of a centralized benchmarking algorithm to determine 

maximum stability data gathering (MaxS-DG) trees whose lifetime forms upper bound for the 

maximum lifetime that can be incurred with data gathering trees for mobile sensor networks; 

(2) Design and development of a distributed algorithm to determine stable predicted link 

expiration time-based data gathering (LET-DG) trees that can also incur lower delay per 

round.  

Given the entire sequence of topology changes over the duration of the data gathering 

session as input, the MaxS-DG algorithm returns the sequence of longest-living stable data 

gathering trees such that the number of tree discoveries is the global minimum. The run-time 

complexity of the algorithm has been observed to be O(n
2
Tlogn) and O(n

3
Tlogn) when 

operated under sufficient-energy and energy-constrained scenarios respectively, where n is 

the number of nodes in the network and T is the duration of the data gathering session. Since 

the MaxS-DG trees are spanning tree-based and a spanning tree exists in a network if and 

only if the network is connected, the stability of a spanning tree or any network-wide 

communication topology (like a connected dominating set) discovered by an existing or 

prospective data gathering algorithm can be evaluated by comparing its lifetime with that 

obtained for the MaxS-DG trees. With a polynomial-time complexity and a much broader 

scope of application, as described above, the MaxS-DG algorithm has all the characteristics 

to become a global standard for evaluating the stability of communication topologies for data 

gathering in mobile sensor networks.  

 

Table 1. Influence of the Operating Parameters on the Performance of the Data Gathering Trees 

Performance Metric 
Ranking of the Operating Parameters in the Order of Influence [1-Highest Influence] 

Node Velocity Static Nodes Transmission Range per Node 

Tree Lifetime 1 3 2 

Delay per Round 3 2 1 

Node Lifetime 1 3 2 

Network Lifetime 1 2 3 
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One salient feature of the LET-DG algorithm is that it does not require the periodic 

beacon exchange of beacons in the neighborhood of the sensor nodes. Though the algorithm 

does not incur as large a lifetime as that of the benchmark values observed for the MaxS-DG 

algorithm, the LET-DG algorithm is the first such distributed stability-based data gathering 

algorithm for mobile sensor networks. The LET-DG trees also incur a significantly lower 

delay per round of data gathering (compared to the MaxS-DG trees) – thus, implying a 

stability-delay tradeoff for data gathering in mobile sensor networks. We also observe the 

LET-DG trees to sustain a comparable network lifetime (that is at most 60% smaller) than 

that incurred with the MaxS-DG trees whose larger network lifetime can be attributed to the 

minimal use of network-wide flooding based tree discoveries (due to the optimal tree lifetime 

incurred).  

Table 1 ranks the three operating parameters in the decreasing order of influence on the 

performance of the two data gathering trees. The nature of influence is identical for both the 

data gathering trees. 

As part of future work, we plan to compare the stability of the MaxS-DG trees under 

several different node mobility models [50] vis-à-vis the Random waypoint model, the 

mobility model used in our simulations that has been widely used in the ad hoc network 

literature. Also, as stable data gathering trees are likely to be used for a longer time, the 

trustworthiness of the data aggregated at the intermediate nodes needs to be validated and 

maintained through proper trust-evaluation schemes. We plan to develop and integrate a 

trust-evaluation model as part of stable data aggregation in mobile sensor networks.  
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