
 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

100 www.macrothink.org/npa

Data distribution technologies in wide area systems:
lessons learned from SWIM-SUIT project

G. Carrozza, D.Di Crescenzo, A. Napolitano, A.Strano

SESM S.c.a.r.l.

Via Circumvallazione Esterna di Napoli 80014

Tel:+39 081 8180356 E-mail: {gcarozza; ddicrescenzo; anapolitano; astrano}@sesm.it

Received: September 27, 2010 Accepted: October 5, 2010 DOI: 10.5296/npa.v2i3.473

Abstract

To face the increasing air traffic demand, intended to dramatically grow in the next years, Europe and US
are going to develop new and modernized Air Traffic Management (ATM) systems, based on novel and
integrated concepts and technologies. Hence, global interoperability that is an essential goal when planning
the development of ATM air/ground applications and systems, becomes paramount. To date, the
management of different types of air traffic information, referring to service and subsystem specific
requirements, makes the current systems not suitable and insufficient for integrating and sharing of
relevant information. SWIM is the new information infrastructure, which will connect all ATM
stakeholders, to allow seamless information interchange for improved decision-making. Stemming from
the experience gained from SELEX-SI1 during the development and test phases of a pilot European
research initiative, this paper describes the architecture of a prototype implemented to investigate the
technological feasibility and applicability of the SWIM principles. It provides a practical technical report
aiming to highlight the achieved results and to share the great know how coming from this experience with
researchers and practitioners in this field.

Keywords: Air Traffic Management, Critical systems, Data Distribution Service, Large scale
systems.

1SELEX-Sistemi Integrati, FINMECCANICA group, is one of the European leaders in field of ATM. http://www.selex-si.com

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

101 www.macrothink.org/npa

1. Introduction

Air Traffic Management (ATM) domain is currently moving towards global
interoperability and longing for a Single European Sky [1], aiming at increasing the overall
ATM efficiency by setting up common rules and standards. This will let at European airspace
to be no longer constrained within national borders [2]. To achieve this ambitious goal,
several stakeholders, i.e.,, airports, airlines, military air defense, Area Control Centers (ACC)
and Air Navigation Service Providers (ANSP), must be allowed to easily share information
on a really large scale.

SWIM (System Wide Information Management) [3] is the world recognized initiative
(both in Europe and USA respectively within the context of SESAR [4] and FAA [5]
programmers) aiming to realize a middleware capable of enabling this seamless information
sharing. It is meant to be the software infrastructure able to provide the one-for-all
information model for data exchange and interoperability, as well as common interfaces to
access specific services, between both similar administrative organizations, such as European
Organization for the Safety of Air Navigation (EUROCONTROL) and different organizations
and administrative domains, such as Federal Aviation Administration (FAA) and the same
EUROCONTROL. To this aim, it is going to define a common dictionary in terms of data
and services as well (e.g., flight and surveillance data domains use the results of the ICOG2
[6] project as baseline, and ASTERIX CAT 62 standard for surveillance information
respectively [7]).

Moreover, it has in mind to use Commercial Off-The-Shelf (COTS) hardware and
software to support a Service-Oriented Architecture (SOA) aiming to facilitate systems
dynamic composition and to increase common situational awareness. Indeed, COTS’s, or
more generally OTS, are hardware or software components ready-made on the market, which
on the one hand allow to reduce costs and time to market into the development of system of
systems, but on the other hand give rise to manifold problems that have to be faced.

This COTS integration stands for an ambitious mission and poses several research and
technological challenges to be take into account during the development of such a complex
infrastructure. First, the envisioned system is a clear example of large scale software systems
to be used in Large scale Complex Critical Infrastructures (LCCI) [8], hence great attention
has to be paid to non functional requirements, like reliability, availability and security, as well
as to safety and maintainability. Second, in the ATM scenario, systems to get interconnected
are likely to be even spread across different countries and to be made up of interacting
subsystems coming from several vendors. On the one hand, this imposes the definition of
widely accepted standards. On the other, since these systems are expected to be alive for
decades and updated asynchronously, it obliges toward a “design for change” approach [9]
thanks to which changes into technologies and programming techniques do not impact on the
software business logic and application. Third, existing systems of all the involved
stakeholders, actually, represent very different baselines in terms of technology, capacity,
deployment and size. Hence, integration challenges also rise with respect to these legacy
solutions.

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

102 www.macrothink.org/npa

Thanks to their flexibility, transparency and location independence, Service Oriented
Architecture (SOA) has been widely used so far to address similar challenges. However, the
tricky task of data distribution and information sharing among remote instances of LCCI
distributed systems requires loose coupling, as well as the ability of setting up specific
requirements of Quality-of-Service (QoS). To do that, technologies supporting the
publish/subscribe interaction pattern, like Java Messaging Service (JMS) [10] and Data
Distribution Service (DDS) [11], are gaining more and more credit in the last recent years
[12]. Both allow realizing a networking middleware for distributing heterogeneous data in
real-time among several nodes and according with specific services requirements. Nodes,
which produce information (publishers), create "topics" (e.g., temperature, location, pressure)
and successively publish them. The middleware takes care of delivering the sample to all
subscribers that declare an interest in that topic; asynchronous communication can be realized.
This feature makes these middleware’s attractive for ATM applications, in which the loose
coupling constrain is a must. In this context, the aforementioned implementations of this
middleware are actually the best representation of two philosophy, that is, commercial (DDS)
and open-source (JMS) implementations that in this paper would be compared when they are
exploited into LCCI systems.

Stemming from the above considerations and industrial experience gained by SELEX-SI
in the context of the SWIM-SUIT FP6 European project [13], this paper focused the attention
on illustrating the pilot initiative, which aims to investigate the technological solutions that
could enable the development of SWIM through the realization of a SWIM prototype, namely
SWIM-BOX. The main objective of this work is to give feedback on the usage of DDS and
JMS to implement data distribution systems, and on providing hints to the providers on how
to aid developers and systems integrators working on the these systems.

This experience raised plenty of insights both on methodological validation and
verification approach, as well as on its design and implementation by means of different
technologies.

2. Background

2.1 Data Distribution Service (DDS)

Data-Distribution Service (DDS) [11][14] is a specification defining the data-centric
communication standard for a wide variety of computing environments, ranging from small
networked embedded systems up to large-scale information backbones for publish-subscribe
data distribution systems. The purpose of the specification is to provide a common
application-level interface that clearly defines the data-distribution service. This specification
describes the service using UML, thus providing a platform-independent model that can then
be mapped into several real platforms and programming languages. The DDS attempts to
unify the common practice of several existing implementations [15]. DDS provides a scalable,
platform-independent, and location-independent middleware infrastructure to connect
producers and consumers, supporting many QoS properties, such as asynchronous,
loosely-coupled, time-sensitive and reliable data distribution at multiple layers (e.g.,
middleware, operating system, and network). At the core of DDS is the Data-Centric

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

103 www.macrothink.org/npa

Publish-Subscribe (DCPS) [12] model, which defines standard interfaces enabling
applications running on heterogeneous platforms to write/read samples to/from a global data
space in a net-centric system.

The sample can be imagined as some data values, such as the temperature in a certain
place, that have to be published periodically. Those values describe a single logical data
object, an “instance” in DDS terms, whose state changes over time. DDS needs to understand
what that state is and under what circumstances it should be published. To do that, the
middleware allows describing the own data types using XML, IDL, or a programmatic API;
application stores its state using those types and allowing to the middleware to publish the
state. In this way, the state of instance is held within the middleware, which provides also
state maintenance or management facilities.

Applications can use the middleware to share information with other applications by
declaring their intent to publish data sample, which is labeled with one or more topics.
Similarly, applications can use the middleware functionalities to access topics of interest by
declaring their intent to become subscribers. The underlying DCPS middleware propagates
data samples written by publishers into the global data space, where it is disseminated to
interested subscribers. The DCPS model decouples the information declaration access intent
from the information access, thereby enabling the DDS middleware to support and optimize
QoS-enabled communication. The DDS does not address the protocol used by the
implementation to exchange messages over transports such as TCP/UDP/IP, so different
implementations of DDS will not interoperate with each other unless vendor-specific
“bridges” are provided. With the increasing adoption of DDS in large distributed systems, it
has been defined a “wire protocol” standard, namely DDSI (DDS Interoperability), that
allows DDS implementations from multiple vendors to interoperate. DDSI is capable of
taking advantage of the QoS settings configurable by DDS to optimize its use of the
underlying transport capabilities. DDSI is described in terms of a Platform Independent
Model (PIM) and a set of Platform-Specific Models (PSM). The PIM contains four modules:
Structure, Messages, Behavior, and Discovery. The Structure module defines the
communication endpoints. The Messages module defines the set of messages that those
endpoints can exchange. The Behavior module defines sets of legal interactions (message
exchanges) and how they affect the state of the communication endpoints. In other words, the
Structure module defines the protocol “actors,” the Messages module the set of “grammatical
symbols,” and the Behavior module the legal grammar and semantics of the different
conversations. The Discovery module defines how entities are automatically discovered and
configured. In the PIM, the messages are defined in terms of their semantic content. This PIM
can then be mapped to various PSMs such as plain UDP or CORBA-events.

The entities involved into DDS architecture (sketched in Figure 1) are described:
• Domain: DDS applications send and receive data within a domain, which

provides a virtual communication environment for participants having the same
domain id;

• Domain participant, i.e., an entity that represents a DDS application’s
participation in a domain;

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

104 www.macrothink.org/npa

• Data writer and publisher: Applications use data writers to publish data values
to the global data space of a domain. A publisher is created by a domain
participant and used as a factory to create and manage a group of data writers
that publish their data in the same logical partition;

• Subscriber and data reader: Applications use data readers to receive data. A
subscriber is created by a domain participant and used as a factory to create and
manage data readers;

• Topic: A topic connects a data writer with a data reader, i.e.,, communication
does not occur unless the topic published by a data writer matches a topic
subscribed by a data reader.

2.2 Java Message Service (JMS)

Differently from DDS specification, which is data-centric developed with real-time
applications in mind and compliant to multiple platforms, other kinds of conventional pub/sub
middleware (such as the CORBA Event Service and the Java Message Service) have nowadays
been developing with enterprise messaging in mind (i.e., as message-centric).
The data-centric model used by DDS can be seen as an extension of the message-centric
model. In contrast to middleware based on data-centric, a messaging middleware provides no
facilities for state maintenance or management. Instead, the system maintains that state
externally to the middleware, and when it changes, it sends messages about those state changes.
The recipients of those messages then decide if and how to update their own state. Because
only the application-level logic “above” the middleware has access to its state and knows when

Figure 2 General DDS architecture

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

105 www.macrothink.org/npa

and how to update it, there’s no need for the middleware to understand the contents of
messages. Messaging middleware implementations therefore typically don’t support
content-aware message handling and provide more limited control over delivery contracts than
do data distribution middleware implementations.

Java Message Service (JMS) is a middleware allowing the exchange of messages among
distributed Java applications. JMS provides a standard and common methods to create, send,
and receive messages by a message oriented middleware. The JMS architecture (Figure 3)is
realized from four elements: JMS clients, the JMS provider, Administered objects, and JMS
messages:

• JMS clients are applications that encapsulate business logic. JMS clients are
written in Java and use the JMS API to send and receive messages. JMS clients
can also communicate with non-JMS clients, or Java or non-Java client
applications using the native client API instead of the JMS API to send and
receive messages.

• JMS Provider is the message server that a vendor provides to implement the JMS
API in addition to other messaging services and functionality necessary in an
enterprise messaging system. The messaging server provides the necessary
infrastructure services to deliver the JMS messages from one JMS client to
another JMS client. These services support message routing and providing
message persistence.

• Administered Objects encapsulate provider-specific configuration information
and are created and customized by the provider's administrator using the
provider's tool and later used by clients. Administered objects can be seen as a
preconfigured JMS objects created by an administrator that the clients use for

Figure 3 General JMS architecture

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

106 www.macrothink.org/npa

providing messaging services. There are two kinds of administered objects:
destination objects and connectionFactory objects. The former is the object that
a client uses to specify the destination of a message; in other words, stands for a
virtual address. The latter object is the object that a client uses to create a
connection with the JMS provider. Destination and connectionFactory objects
are placed by an administrator in a java naming and directory interface (JNDI)
namespace, such as an lightweight directory access protocol (LDAP) directory.
The clients use a standard JNDI lookup method to locate these administered
objects in a distributed environment.

• JMS Message defines the message header and the acknowledge method used for
all messages exchanged among JMS clients.

3. Developing SWIM: SWIM-BOX prototype

The overall system is a grid of SWIM nodes, physically deployed at stakeholders’
premises and referred as “legacy” node, which are the actual users of the SWIM common
infrastructure. These nodes are allowed to access the SWIM bus through a SWIM-BOX
component (see Figure 3). Only SWIM-BOX instances can directly exchange data and
invoke services over the net, acting as mediators between legacy nodes and the SWIM-BUS.
It is very likely that existing legacy systems are not aware of the SWIM service semantics.
Indeed, they could be either built according to different technologies or using different data
models, that are not compliant to ICOG. This is the reason why a further software level,
named Adapter, has been introduced. On the one hand, this provides technology
independence, which is one of the SWIM-BOX fundamental requirements. On the other, it

Figure 3. SWIM network architecture

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

107 www.macrothink.org/npa

guarantees that all the nodes involved into the network comply with the IGOC standard data
model.

High-level architecture from the endpoint perspective is shown in Figure 4, in which the
role of adapter nodes is evidenced.

The design and the implementation of the SWIM-BOX have been really challenging,
especially from a technological and methodological perspective. For this reason, this work fo-
cuses the attention only on the functional aspects of this component to better evidence the
lessons learned, as well as the open issues related to its realization. This means that a
thorough description of implementation details is out of the scope of this paper.

Figure 4 shows the SWIM-BOX two layered architecture made up of (i) the Core layer
providing a set of basic and common facilities (e.g., security, data distribution, and registry);
and (ii),the Domain Specific (DS) layer, in charge of providing domain-related services (e.g.,
Flight Data Description (FDD), or surveillance subscription, incoming flight notifications).
Data sharing and storage is responsibility of the Shared DataStore (SDS), which filters the
client needs of sharing data among SWIM-BOX remote instances. This way, clients are
provided with data consistency facility, being unaware of data physical location. SDS, in fact,
provides a transparently distributed and transactional storage mechanism allowing them to
access and use shared data. The primary duty of this service is to store the data that are not
frequently updated, since they need of high availability and automatically synchronized
replicas among several distributed SWIM-BOX instances. The SDS has been developed
through JBoss Cache [15] implementation, providing a distributed transactional tree cache
that can be persistently configured for storing data among a grid of nodes. Indeed, security
mechanisms rely on the Security manager component (SEC), which provides support for
secure message exchange over the SWIM-SUIT network by implementing authentication,
authorization and message confidentiality mechanisms, according to W3C XML Security
specifications [17]. SEC provides i) central self-signed certificate management, through a
pre-configured key-store containing private keys and certificates associated to all
SWIM-BOX instances, and ii) an access control repository, storing user accounts, roles and
rules, to enforce authorization policies on client interactions. The Security Manager
authorization model takes care of:

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

108 www.macrothink.org/npa

• managing access constraints at service level;
• allowing access to signed and encrypted messages, or portions of them, only to

authorized users. Clients are not required to enforce any specific security task (e.g.,
data encryption), since these are completely managed by SEC, apart from managing
certificates for https communication with the local SWIM-BOX instance.

The Publish Subscribe Service (Pub/Sub) component is in charge of distributing the data
provided from domain level components by means of the publish/subscribe pattern. In order
to assure technology transparency, Pub/Sub actually provides an abstraction layer able to
easily substitute the underlying technology without impacting the uppermost domain level
components. This has been achieved through the definition of an interface (in order to limit
the impact on the performances) that issues the basic operations needed to subscribe and
publish data over the SWIM bus. Subscriptions can be requested according to push and pull
paradigms. The former let the subscriber be not blocked waiting for incoming data
(asynchronous, push-style). The latter, instead, provides a cache (i.e., pull-point) from which
it is possible to retrieve data periodically. Filtering criteria are also provided in this case, both
at subscription and at execution time, to select only needed data.
SWIM-BOX prototype exposes two different interface levels, as shown in Figure 5. The first
one, stands between the specific domain components and the adapters (i.e.,, at the legacy side)
whereas the second one allows interconnecting two SWIM-BOX instances and to let them
communicate among each other. Since the envisaged ATM systems are expected to be long
lasting, an abstraction layer isolating the actual data distribution middleware technology has
been realized, thanks to which the system is currently able to accomplish its tasks (e.g., the
data distribution task) transparently, both at the Adapters/Legacy Systems and domain level
components sides.

Flight Data Domain

Ownership Mng

Surveillance Data Domain

Data Transf. Mng

Data Transf. Mng

Aeronautical Data Domain

Data Transf. Mng

S
W

IM
 C

or
e

M
id

dl
ew

ar
e P

ub
/S

ub
 T

ec
hn

. 2
P

ub
/S

ub
 T

ec
hn

. 1
R

eq
/R

ep
lT

ec
hn

P
u
b
/S

u
b
 T

e
ch

.
In

d
e
p
.
L
a
y
e
r

T
e
ch

.
In

d
e
p

L
a
y
e
r

Authenticat
ion Mng.

Authorizati
on Mng.

Figure 5 SWIM-BOX architecture

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

109 www.macrothink.org/npa

4. Addressed problems

One of the major issues to face in this highly distributed “system of systems”
environment is the complexity of the collaborative model induced from the nature of the
system itself. The SWIM concept, indeed, primarily aims to pursue interoperability and
information sharing among heterogeneous systems and stakeholders exhibiting different
requirements and needs, both technical and operational. This nature forces the SWIM
providers either to look for standardization, as a primary enabler for interoperability, or to
interact with a number of stakeholders having their own background and skills. Since SWIM
will be the communication infrastructure on which these heterogeneous systems will be
required to interact, it should be able to gain a wider view on the system, assuring the
interaction with each stakeholder (e.g., in order to gather requirements). From the
stakeholder perspective, instead, such an overall view is not required at all: knowing the ATM
business processes in which it is directly involved is more than enough.

From a technical perspective, non functional requirements (such as design for change,
scalability, modularity) have been addressed by means of ad hoc design solutions and
technological aids. First, the prototype has been designed according to a modular architecture
in order to ease the introduction of specialized data domain components, relying on JavaEE
EJB3 technology [18]. This allows the components to expose interfaces and services using
their own standard and/or technologies. Even though all the components make use of Web
Services to expose their interfaces, several standards have been used (e.g., Web Service
Notification) to test different solutions. This approach is effective since it allows using
different deployment schemas in charge of increasing flexibility and scalability. As an
instance, with respect to Figure 3, several deployment options may be provided on a legacy
node, depending on the working environment and application workload. One could be
“all-in-one” solution, in which all data domains components are deployed on a single server
and within a single Application server instance, another, completely distributed solution, with
each data domain component deployed on a single server and running on a different
Application Server instance. Moreover, since the system is expected to operate for a long
time, it has been designed to be able to adapt to technological transformations that are likely
to occur. The abstraction layer, named Publish/Subscribe Service (Pub/Sub), has been
exploited to pursue this goal; it allows providing high degree of robustness to data
distribution technology mutations, as well as to support technological diversity over different
data domains. Additionally, the Pub/Sub service is aimed to wrap the presence of the
different COTS data distribution middleware at lower layer. This is done by providing the
data domain components with a single interface which does not depend on the technologies
and/or implementations used to perform data distribution. In particular, in the context of
SWIM-SUIT, DDS and JMS have been selected to perform data distribution according to the
outcome of a formal selection process based on weighted criteria, which have been defined to
take into account specific domain requirements.

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

110 www.macrothink.org/npa

5. Lessons learned

This section aims to discuss pros and cons of both DDS and JMS technologies, when they are
exploited into large-critical systems. Differently from [19] it doesn't aim to provide a
performance and technical comparison, rather it wants to highlight what could be done in
order to better support developers and system integrators in the task of tuning wide systems
for data distribution purposes. Moreover, due to the lack of proper studies for the
performance assessment of these systems, the achieved outcomes, in terms of defined metrics,
can be taken into account as the starting baseline for the future comparisons.

Actually, DDS provides advanced support to Quality of Service (QoS) and exhibits
greater performance benefits. Open source implementation of DDS are just few if compared
to JMS. This means that DDS-based solutions are more likely to require expensive license
fees and, not less important, they can exploit feedback from a narrow users community. At
time of SWIM-BOX prototype implementation only two full OMG standard alternatives,
compliant to DDS, were available[20][21].
Conversely, JMS benefits of a broad developers community, which makes newbie
programmers initiation easier. Nonetheless, using JMS in advanced configurations settings
remains a not trivial task (e.g., we had to use JMS in a clustered configuration) due to the
lack of detailed documentation and community experience. On the other hand, DDS is
somehow more difficult to start with, since less resources are available on the Internet, but
the technology acquisition is rather quick once you have got some familiarity with APIs. The
trickiest issues related to DDS arise when different QoS configuration, among the plenty of
policies that it is able to provide, must be used.
This is particularly serious when the tuning of wide and complex systems is required. Indeed,
when testing the DDS implementation of the Pub/Sub component we experienced a very
different behavior over LAN and WAN environments. It is worth noting that this behavior is
addressed to DDS complexity into finding the right configuration parameters, because
providing more adjustments then JMS, slight variations of them can affect DDS more
seriously than JMS.

Stemming from these considerations and due to the nature of the SWIM-BOX prototype,
an intensive experimental tests campaign has been carried out with two main technical goals:
performance assessment and scalability evaluation.

The former aims to provide the first actual results to be utilized as benchmarking from
other frameworks that will come onward. In fact, the proposed overall architecture does not
exist yet; legacy nodes exchange data and information through point-to-point
communications, as we have already mentioned. To do that, some parameters, such as
Operational Throughput (referred as OT), and Packets Loss(referred as PL), have been
measured.

The latter takes into consideration the flexibility of SWIM-BOX infrastructure, fitting to
new needs (for instance, in case of new actors interested in the subscription of the same data
or information). In fact, the underlying purpose is to understand what happen, in terms of
aforementioned metrics, if several nodes request, at the same time, the same resources located

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

111 www.macrothink.org/npa

on the same SWIM-BOX instance. Is the SWIM-BOX instance capable of managing
different operating scenarios?

5.A Experimental testbed
All the measurements have been performed on real test-bed, sketched in Figure 6. It

involves different SWIM-BOXs all interconnected through a software VPN built on the top
of Internet. No direct data packet exchange is allowed, but all the information are routed to
VPN server that than forwards to the proper VPN nodes. On the one hand, such a network
organization is very likely to impact on the quality and stability of achieved results. On the
other, it allows getting a “worst case” estimation of the overall picture, i.e, a single
centralized VPN server is connected to the LAN and several/heterogeneous links, provided
from several stakeholders, are exploited. Indeed, data gathered in such a scenario suffers
network load variability influence, as well as packet loss and network delay. Hence,
significant improvement in terms of performance can be expected by using a dedicated
network with guaranteed level of QoS. Furthermore, according to Figure 4, each SWIM-BOX
instance involves a Legacy System (LS), Adapter (A), SWIM-BOX (SB), and VPN client
(VC).
As for the Pub/Sub layer, two different types of COTS have been adopted:

• Jboss Messaging (as a JMS COTS and referred in the following as JMS). It has been
used in a clustered configuration relying on Jgroups. JMS broker (JBM post office
service) utilizes Jgroups UDP multicast messages to exchange synchronisation

Figure 6 Experimental testbed

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

112 www.macrothink.org/npa

messages (ControlChannelConfig) and TCP to actually distribute data
(DataChannelConfig) across the brokers;

• a commercial DDS, with a suitable configuration in terms of QoS.
5.B Performance assessment

Several tests have been carried out to assess the SWIM-BOX performance. For each test, six
measurements have been made and the results in terms of average (i.e.,, μ) and standard
deviation (i.e., σ) are provided. For the sake of readability and to make result interpretation

Figure 7 Operational Throughput (OT) due to DDS middleware. The bold line stands for average values,
whereas dashed lines defines the standard deviation range.

Figure 8 Operational Throughput (OT) due to JMS middleware. The bold line stands for average values,
whereas dashed lines defines the standard deviation range.

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

113 www.macrothink.org/npa

easier, only some representative results are reported here. More details can be found into
SWIM SUIT deliverables [21]. In particular, in Figure 7 and 8 the OP, respectively for DDS
and JMS middleware, are depicted, whereas in Figure 9 the PL versus number of operations
is drawn. The continuous lines stand for the average value of each metrics, whereas the
dashed lines delimit the standard deviation band.
It’s worth noting that the OT average versus the number of operation is almost similar for
both the middleware; only slight variations have been observed for number of operations
above 400. Further, standard deviation analysis allows claiming that the obtained
measurements are i) repeatable in each scenario, due to the obtained σ narrow band, and
ii) comparable between the middleware, because the σ bands values are one another
overlapped.
On the contrary, different performances have been measured in terms of PL. Indeed, the
experienced PL in presence of JMS is higher than DDS. The DDS PL is never above the 20
packets lost, whereas values around 130 packets lost are achieved for JMS.

5.C Scalability evaluation
Scalability tests aimed to evaluate the behavior of SWIM-BOX prototype in presence of
multiple connections to the same SWIM BOX instance. In fact, this is the most likely in
actual scenario: several actors are allowed and expected to require the same data information
to the same provider (i.e., SWIM-BOX instance Figure 10 shows the OT average values
versus the number of receivers (i.e., actors invoking the same SWIM-BOX instance) for both
JMS and DDS. Some considerations can be drawn:

• JMS and DDS provide the same OT performance; DDS is slightly above of JMS;
• the operational throughput decreases for number of receivers above of five, for both

middleware. Above this value, the OT seems to asymptotically reach 300 kbit/s;
• maximum OT is obtained for number of receiver equal to 5 and it value is nearly

360 kbit/s;
Also the packet loss has also been measured, but no relevant behavior has been noticed. In
fact, the PL values are never been higher than zero for both the middleware. That is, both

Figure 9 Packets loss (PL) versus number of operations due to a) DDS and b) JMS middleware. In both, bold line stands
for average values, whereas dashed lines defines the standard deviation range

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

114 www.macrothink.org/npa

DDS and JMS assure a high reliability in term of data packets delivery.

6. Conclusions and ongoing activities

This paper dealt with the experience of implementing a prototypal version of a large scale
software system to be used for information sharing in LCCIs. Focusing on the task of data
distribution, it highlighted the need for further support tools in charge of making the
development and integration tasks easier. In particular, with respect to DDS, the need for a
fine tuning tool emerged, able to allow to exploit all the benefits that the technology is
potentially able to provide. Otherwise, such benefits would go unexploited, due to the large
number of configuration parameters that have to be tuned manually and that make this task
difficult and unfriendly. Conducted experiments highlighted that JMS and DDS exhibit
different characteristics and performance levels that make them usable in different scenarios,
thus allowing to cover a good variety of real network configurations, where number of nodes,
load, and geographical distribution of the hosts may change.
The next step aims to exploit and get the most of the broad Open Source community that is
currently growing around DDS implementations and technology also in order to assess the
interoperability among different implementations of DDS standard. Hence, a new Open
Source DDS implementation [23] is going to be integrated into the SWIM-BOX prototype for
both measuring its performance and evidencing the presence of interoperability issues.

References

[1] EuroControl Website.

Figure 10 Operational Throughput (OT) versus number of receivers. The continuous and dashed lines stand
respectively for JMS and DDS OP average.

 Network Protocols and Algorithms

ISSN 1943-3581

2010, Vol. 2, No. 3

115 www.macrothink.org/npa

http://www.eurocontrol.int/ses/public/subsite_homepage/homepage.html.
[2] EuroControl. Milestone Deliverable D1 “Air Transport framework: The current Situation.

SESAR Library,” www.eurocontrol.int/sesar/, 2006.
[3] Swim project home page: http://www.swim.gov.
[4] Sesar programme homepage: http://www.sesar-ju.eu.
[5] Federal aviation administration: http://www.faa.gov.
[6] ICOG IOP Interface Specification Final Report. 07-May-2008.

[7] ASTERIXCat62 Ed.1.9, http: //www.eurocontrol.int/asterix/gallery/content/public/

documents/cat062p9ed19.pdf.
[8] S. Bologna, C. Balducelli, G. Dipoppa, and G. Vicoli, “Dependability and Survivability of

Large Complex Critical Infrastructures. Computer Safety, Reliability, and Security,”
Lecture Notes in Computer Science, Pp. 342-353, Sept. 2003.

[9] R.M. Dijkman, D.A.C. Quartel, L. Ferreira Pires, and J. Sinderen, “A Design-for-Change
Approach: developing distributed applications from enterprise models,” CTIT technical
reports series, n. 11, 2002.

[10] Sun Microsystems: Java Message Service, v1.1 SUN Specification, 2002.
[11] Object Management Group. Data Distribution Service (DDS) for Real-Time Systems,

v1.2. OMG Document, 2007.
[12] P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec, ”The Many Faces of

Publish/Subscribe,” ACM Computing Surveys (CSUR), Vol. 35, Issue 2, Pp 114–131,
Jan. 2003.

[13] The swim suit project: http://www.swim-suit.aero/swimsuit/.
[14] G. P. Castellote, “OMG data distribution service: architectural overview,”, Proc. of

Military Communications Conference, Pp. 242-247, 13-16, Oct. 2003.
[15] Gerardo Pardo-Castellote, Stan Schneider, Mark Hamilton, NDDS: The Real-Time

Publish-Subscribe Network, Real-Time Innovations, Inc. White Paper, 1999.
[16] Jboss cache project homepage: http://jboss.org/jbosscache/.
[17] W3c xml security working group homepage: http://www.w3.org/2008/xmlsec/.
[18] I. Gorton, A. Liu, “Evaluating the performance of EJB components,” IEEE Internet

Computing, n. 4, Pp. 18-23, May 2003.
[19] Rick Warren RTI. From the tactical edge to the enterprise. Integrating DDS and JMS.
[20] http://www.rti.com/products/dds.
[21] http://www.opensplice.com.
[22] http://www.swim-suit.aero/swimsuit/projdoc.php.
[23] OpenSlice DDS Open Source by Prismtech. http://www.opensplice.com/.

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

