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Abstract 
Omega permutations constitute the subclass of particular permutations which have gained the 
more attention in the search of optimal routing of permutations in hypercubes. The reason of 
this attention comes from the fact that they are permutations for general-purpose computing 
like the simultaneous conflict-free access to the rows or the columns of a matrix. In this paper 
we address the problem of the optimal routing of omega and inverse-omega permutations on 
hypercubes under the MIMD queueless communication model. We revisit the problem 
through a new paradigm: the so-called graphs partitioning in order to take advantage of the 
recursive structure of the hypercubes topology. We prove that omega and inverse-omega 
permutations are partitionable. That is any omega (resp. inverse-omega) permutation on 
n-dimensional hypercube can be decomposed in two independent permutations on two 
disjoint (n-1)-dimensional hypercubes. We also prove that each one of these permutations is 
also an omega (resp. inverse-omega) permutation. It follows that any omega (resp. 
inverse-omega) permutation on n-dimensional hypercube is routable in at most n steps of data 
exchanges, each step realizing the partition of the hypercube. 
 

Keywords: interconnection network, omega network, hypercube, permutations, perfect 
shuffle, maximum matching of bipartite graph, graph partitioning, parallel processing, MIMD 
queueless routing. 
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1. Introduction  
The processors interconnection network (IN) is the heart of the no remote memory access 

parallel computers in which the inter-processors communications are realized by exchanging 
messages over the processors interconnection links. The performance of such computers 
depends greatly on the performance of their processors IN. Among others performance 
criteria, the scalability of an IN for massive parallelism, its capability of messages 
deadlock-free routing on shortest paths, its capability of simulating others IN and its 
management facility are essential. In the research for IN which fulfil these criteria, 
hypercubes constitute a very attractive alternative. Indeed, the incremental construction of 
hypercubes confers to them interesting topological properties [1] which allow them to meet 
most of these essential performance criteria.  

Consequently, on one side several commercial parallel machines using them as IN have 
been built over the years [2]. They have also been used as a means of interconnecting and 
extending switching matrices in ATM cross connects [3] or proposed as a model for new 
ATM switches with low complexity and high performance [4]. Nowadays, they continue to 
be an attractive solution for multicore processor IN [5]. On the other side, several theoretical 
research works like the one in [6] have been done on different aspects of their use as IN. 
Among these theoretical researches, one of the most challenging, since at least a quarter of a 
century, is their rearrangeability under queueless routing constraint, that is their capability to 
route optimally any permutation such that each node holds only one message throughout the 
routing. 

Omega permutations constitute the subclass of particular permutations which have 
gained the most attention in the search of optimal routing of permutations in hypercubes. The 
motivation of this attention comes from the fact that they are permutations for 
general-purpose computing like the simultaneous conflict-free access to the rows or the 
columns of a matrix. In this paper we address the problem of the optimal routing of omega 
permutations. We revisit the problem through a new paradigm the so called partitioning for 
taking advantage of the recursive structure of the topology of hypercubes. 

The remainder of the paper is organised in six sections. Section II gives the problem 
formulation and some basic definitions related to hypercube, permutations and routing.  
Section III presents the related works. Section IV introduces the mathematical foundation 
used to develop the proposed routing algorithm. Section V characterizes partitionable omega 
permutations then exhibit partitions which assure to resulting permutation to be omega 
permutation and proposes a routing algorithm. Section VI shows how to deduce a routing 
algorithm for an inverse omega permutation from its related omega permutation. Section VII 
concludes the paper and presents some perspectives to improve the length of the routes and 
so reducing the exchanges steps to the minimum. 

  

2. Problem Formulation   

2.1 Definitions 

2.1.1 n-Dimensional hypercube 

A n-dimensional hypercube, nD-hypercube, is a graph H(n) = (V, E) where : 

- V is a set of 2n nodes u=0, 1, …,2n-1 denoted by their binary code (un-1un-2 …u0) where 
ui∈{0, 1}, 

- E is the set of edges {u, v} whose binary codes differ on only one bit. 
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It is well known that for n > 0, a nD-hypercube is obtained by interconnecting two 
(n-1)D-hypercubes in any one of its dimensions 0 ≤ i ≤ n-1. So any hypercube H(n) can be 
viewed as any of the n couples of (H(n)

0,i, H(n)
1,i) of (n-1)D-hypercubes  obtained by 

restricting the nodes of H(n) to Dx,i. Fig. 1 illustrates such a view in dimension 3 for a 
4D-hypercube. 

 

 
Figure 1. The 4D-hypercube viewed as the interconnection in the dimension 3 of two 3D-hypercubes 

 

2.1.2 Permutation 

A permutation on a nD-hypercube H(n) = (V, E) is a bijective map π from V onto itself 
which associates each node u=(un-1un-2 …u0)2 of H(n) with one and only one node (π(u))= 
(πn-1(u)πn-2(u)…π0(u))2. It is represented by the sequence π = (π(u); u=0, 1, …, 2n-1). 

2.1.3 Perfect shuffle 

The left (resp. right) perfect shuffle is the permutation σ which associates each node 
u=(un-1un-2 …u0) with the node σ(u)=(un-2un-3…u0un-1) (resp. (u0un-1un-2…u1)).  Table 1 
illustrates the left perfect-shuffle on the 3D-hypercube. In the sequel, except if specified, we 
consider left perfect-shuffles.  

 
Table 1. The perfect schuffle σ=(0, 2, 4, 6, 1, 3, 5, 7) on the 3D-hypercube. 

u u2 u1 u0 σ2(u) σ1(u) σ0(u) σ(u) 

0 0 0 0 0 0 0 0 

1 0 0 1 0 1 0 2 

2 0 1 0 1 0 0 4 

3 0 1 1 1 1 0 6 

4 1 0 0 0 0 1 1 

5 1 0 1 0 1 1 3 

6 1 1 0 1 0 1 5 

7 1 1 1 1 1 1 7 
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2.1.4 nD-omega network 

The nD-omega network is a dynamic multistage interconnection network of n stages 
which interconnects 2n inputs u = 0, 1, …, 2n-1to 2n outputs v = 0, 1, …, 2n-1and which is 
organized as follows: 

- each stage is constituted of 2n-1 2x2-switches and interconnects 2n inputs to 2n outputs 
numbered 0, 1, …, 2n-1, 

- each 2x2-switch is a simple exchange element which can be set either straight or crossed to 
interconnect the two inputs u and u+1 of its stage, either straightforwardly or in crossing 
them, to the two outputs u and u+1 of its stage, 

- the output u of the kth stage is connected to the input σ(u) of the (k+1)th stage. 

Fig. 2 illustrates such a network for n=3. The top 2x2-switch of the 1st (resp. 3rd) stage is set 
straight (resp. crossed). 

Figure 2. The 3D-omega interconnection network. 

 

It comes from this interconnection logic that each of the 2x2-switches can be viewed 
both as: 

- a node of the balanced binary tree rooted at a 2x2-switch of the 1st stage and whose the 
leaves are the nD-omega outputs numbered from top to down from 0 to 2n-1 by an up-down 
concatenation of the branches edges labels (0 (resp. 1) for an up (resp. a down) edge), 

a node of the balanced binary tree rooted at a 2x2-switch of the nth  stage and whose the 
leaves are the nD-omega inputs numbered from top to down ξ(0), ξ(1), …, ξ(2n-1) where ξ(u) 
= (u0u1…un-1)2 by an down-up concatenation of the branches edges labels (0 (resp. 1) for an 
up (resp. a down) edge). 

2.1.5 nD-inverse omega network 
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The nD-inverse omega network is the network obtained in inverting the nD-omega 
network such that its inputs (resp. outputs) become the outputs (resp. inputs).  

2.1.6 One pass routing 

An one pass routing of a permutation π on the inputs of a nD-omega network  consists 
in defining 2n paths each of which conveys one message from the input u to the output π(u) 
such that there are no paths which share a same stages interconnection link. 

As a result of the tree structure of its 2x2-switches, the routing in nD-omega network 
verifies the following properties: 

- the route which connects the input u to the output v is obtained in connecting, at each stage 
k, the input link of the corresponding 2x2-switches on the route to its top (resp. down) output 
link if vn-k = 0 (resp. 1). 

- for any input u and any output v, there is only one route which connects u to v. 

- not all permutations on nD-omega networks are routable in one pass. 

2.1.7 Omega permutation 

An omega permutation is a permutation on the nD-hypercube which can be routed in one 
pass on the nD-omega network. 

2.1.8 Inverse omega permutation 

An inverse omega permutation is a permutation on the nD-hypercube which can be 
routed in one pass on the inverse nD-omega network. 

 

2.2 MIMD queueless routing 

Let π be a permutation on a nD-hypercube network with bidirectional links and a set of 
2n messages of the same size each one located at one node u and destined for the node π(u). 
Routing π under Multiple Instruction Multiple Data (MIMD) queueless communication 
model [7] consists in conveying all the messages to their respective destination such that: 

- there is no restriction that all communications in a given routing step must occur in the 
same hypercube link direction, 

- in a given hypercube link only one message may be sent in a given direction per routing 
step,  

- each hypercube node may store only a single message between routing steps and then needs 
only a queue of size 1 to hold each message. 

Clearly, MIMD queueless routing a permutation on a hypercube consists in a sequence of 
global and synchronous exchanges of messages between neighbour nodes such that no more 
than one message is located at each node after each exchange step.  

Because messages have the same size, the complexity of such a routing is of the order of 
the number of required exchange steps. Therefore an optimal routing is the one with the 
minimal exchange steps. For an arbitrary permutation on a nD-hypercube it is well known, 
from e-cube routing [8], that this number is at least equal to n.  

In this paper we address the problem of optimal MIMD queueless routing of omega and 
inverse-omega permutations on nD-hypercube. 
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3. Related works  
Optimal routing of permutations on nD-hypercubes is, since a quarter of century, one of 

the most challenging open problems in the theory of IN. It has so been extensively well 
studied and, under several communication models, several routing paradigms have been 
proposed in the literature. In [9] Szimansky considers the offline routing in circuit-switched 
and packet switched commutation models under all-port MIMD communication model. 
Under the circuit-switched hypothesis he proves that, for n ≤ 3, any hypercube is 
rearrangeable that is it can route any permutation on disjoint paths. Under packet-switched 
hypothesis he shows that routing can be made in 2n-1 steps result which has been then 
improved to 2n-3 in [10] by Shen et al under the assumption that each link is used at most 
twice. Under the single port MIMD communication model, Zhang in [11] proposes a routing 
in O(n) steps on a spanning tree of the hypercube. In [12] and [13] Hwang et al consider 
online oblivious routing under buffered all port MIMD communication models and prove that 
n steps routing is possible for n ≤ 12 using local information. In [14] Vöcking proves that 
deterministic offline routing in buffered all port MIMD model can be done in n+O(√nlogn) 
steps while online oblivious randomized routing can be made in n+O(n/logn) steps.  

For the more restrictive conditions, that is single-port, queueless, and MIMD 
communication model two classes of works can be distinguished: the class of works which 
tackle the problem for arbitrary permutations and the ones which tackle it for particular 
permutations among which the omega  permutations. 

For arbitrary permutations, the personal communication of Coperman to Ramaras 
reported by Ramras in [15] and the works of Ramras [15] constitute certainly the leading 
ones. Indeed while Coperman gives the computational proof that arbitrary permutations can 
be routed in 3D-hypercube in 3 steps, Ramras proves that if an arbitrary permutation can be 
routed in r steps in rD-hypercube, then for n ≥ r arbitrary permutations on nD-hypercubes can 
be routed in 2n–r steps. Thus, it follows that arbitrary permutations on nD-hypercubes can be 
routed in 2n-3 steps; improving so the 2n-1 routing steps of Gu and Tamaki [16]. Recently, 
Laing and Krumme in [7] have introduced an approach which simplifies the problem enough 
to permit a human verification of the possibility of routing in 3 steps arbitrary permutations 
on 3D-hypercube and computer verification for the 4 steps routing in 4D-hypercube. The 
approach is based on the concept of k-separability of a permutation which is the possibility to 
partition a permutation after k steps of routing into 2k permutations on disjoints 
(n-k)D-hypercubes. For n=3 they identify three classes of 1-inseparable permutations for 
which they exhibit 3 steps routing. From experimental results based on the same paradigm 
they conjecture that in 4D-hypercube arbitrary permutations can be routed in 4 steps. 

To our knowledge, routing of omega permutations has been first, implicitly, studied by 
Schwartz. Indeed he proved in [17] that it is possible to route packings that is monotonic 
permutations on nD-hypercubes in O(n) steps with O(n) bits storage at each node. The 
resulting algorithm consists, for dimension i = 0, …, n-1 and for each node detaining a 
message which wants to cross dimension i, in sending it across this dimension. Then 
Kuszmaul [18], which noticed that naive implementation of this algorithm requires O(n2) 
routing steps, on the basis that the same result applies as well for semi-contractions from a 
personal communication of J. Rose reported by Kuszmaul in [18], reduced it to O(n) steps 
with data pipelining technique. More recently, a study of the permutation capability of a 
binary hypercube under the commonly used dimension-order routing was presented by 
Veselovsky and Batovski [19]. They explored two modes of the basic routing algorithm based 
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on non-skipping or skipping identical bits in source and destination addresses when adjusting 
a route as in algorithm proposed by Schwartz. The whole study was done computationally. It 
has been found that the skip mode in comparison with the non-skip one provides better 
permutation capability; its beneficial effect on low-dimensional hypercubes, especially 
concerned with the routing of the so called bit-permute-complement (BPC) permutations [20], 
is evident. The possibility of conflict-free routing of the most frequently used permutations 
under dimension-order routing was also tested. 

In the remainder of this paper we address the problem of devising an algorithm for 
routing optimally omega permutations in a MIMD queueless communication models on 
nD-hypercubes. Unlike the others approaches, the class of algorithms we are looking for is 
the one which exploits the incremental construction of nD-hypercubes as an interconnection 
in some well suited dimension of two (n-1)D-hypercubes. The approach is based on the 
concept of k-separability from Laing and Krumme we call partitionability. However instead 
of being computational our approach is purely analytical. We first prove that any omega 
permutation is 1-separable. As the optimal routing of arbitrary permutations is still an open 
problem, we prove that only the partition in the dimension n-1 guarantees to any omega 
permutation to yield two distinct omega permutations on disjoint (n-1)D-hypercubes. So any 
omega permutation can be optimally routed recursively by successive partitions in the 
dimension n-1 and then requires at most n exchanges steps each of which is completely 
defined by the partition process.  

 

4. Mathematical Foundations  
The partition process which is the foundation of our routing algorithm seems like to the 

computation of a perfect matching in bipartite graph. So in this section we first recall some 
basic notions and results on bipartite graphs and maximum matching of the nodes of a 
bipartite graph. Then we describe the mathematical foundation of the partition process. 

 

4.1 Definitions and notations 

4.1.1 Bipartite graphs 

A bipartite graph is a triplet G = (V1, V2, E) where: 

• V1 and V2 are disjoint set of nodes, 

• E is a set of edges {u, v}∈V1xV2 

The bipartite graph associated to the nD-hypercube is the one where: 

• V1 and V2 are two disjoint copies of the hypercube nodes 

• E is the set of edges {u, v}∈V1xV2 such that  u = v or {u, v} is an edge of the hypercube. 

4.1.2 Adjacency matrix 

The adjacency matrix of a graph is the matrix M whose rows and columns are indexed by 
the graph nodes and each component M[u,v]=1 (resp. 0)  if {u, v}∈(resp. ∉) E.  

Two matrices A and B of the same order and whose rows and columns are indexed by the 
nodes of a nD-hypercube are said identical if there is a bijection ρ (resp. ϕ) of A rows (resp. 
columns) indexes on B rows (resp. columns) such that for any u belonging to A rows indexes 
and v belonging to A columns indexes, A[u, v]= B[ρ(u), ϕ(v)]. 
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Let Dx,i be the set of the hypercube nodes u such that ui=x. We can observe that the 
adjacency matrix of the bipartite graph associated to the nD-hypercube can be viewed as the 
adjacency matrices couple (Mx,i, x=0,1) of the bipartite graphs couple ((V, Dx,i, E); x=0,1), for 
any dimension i. Table 2 illustrates, for n=4 and i=2 such a couple of adjacency matrices. 
Let's remark that M0,i and M1,i, are identical; take ρ=ϕ and for any u, ρ(u)=u⊕2i where ⊕ is 
the bitwise XOR operator. 
Table 2. Structure of The adjacency matrices of the bipartite graphs ((V, D0,2, E); x=0, 1) for the 4D-hypercube. 
The left upper corner number stands for the dimension 
 

2 0 1 2 3 8 9 10 11 

0 1 1 1  1    

1 1 1  1  1   

2 1  1 1   1  

3  1 1 1    1 

8 1    1 1 1  

9  1   1 1  1 

10   1  1  1 1 

11    1  1 1 1 

4 1        

5  1       

6   1      

7    1     

12     1    

13      1   

14       1  

15        1 
 

2 4 5 6 7 12 13 14 15

4 1 1 1  1    

5 1 1  1  1   

6 1  1 1   1  

7  1 1 1    1 

12 1    1 1 1  

13  1   1 1  1 

14   1  1  1 1 

15    1  1 1 1 

0 1        

1  1       

2   1      

3    1     

8     1    

9      1   

10       1  

11        1 
 

4.1.3 Matching of a bipartite graph 

A matching of a bipartite graph G is one-to-one mapping Γ which associates each node u 
of a subset of V1 with a node Γ(u) of V2 such that the edges {u, Γ (u)} ∈ E and are pairwise 
non adjacent. A matching Γ is said to be maximum when its cardinality, |Γ|, is maximum.  A 
matching Γ is said to be perfect when |Γ|=|V1|=|V2|. 

The computation of a maximum matching is one of the main problems in the study of 
bipartite graphs. The main results about this computation are due to C. Berge characterisation 
of maximum matching [21] and König-Hall characterization of matching which saturates a 
subset of V1 [22]. In the sequel we will use the simplest implementation of the C. Berge 
theorem due to Neiman [23] which proceeds by distinguishing one and only one "1" by row 
and by column in the adjacency matrix. 
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4.1.4 Partitionable permutations 

Given a permutation π on H(n), for x = 0, 1 and 0≤i≤n-1, 1et: 

• n_opt (=n without any contraindication) be the minimal number of routing steps of an 
arbitrary permutation on a nD-hypercube, 

• Sx,i be the set of the nodes u of H(n) such that π i(u) =x, that is π(u) ∈Dx,i=H(n)
x,i, 

• Gxi be the bipartite graph (Sx,i, Dx,i, E), 

• Nxi be the adjacency matrix of Gxi. 

A permutation π on H(n) is said to be partitionable in a dimension i of H(n) if there is a 
permutation Γ on H(n) such that: 

• Γ is routable in one step, 

• the bijection α (resp. β) which associates π(u) with Γ(u) such that Γi(u)=0 (resp. 1) is a 
permutation on H(n)

0,i (resp. H(n)
1,i) 

Examples: (0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15) is partitionable in any dimension of the 
4D-hypercube. For instance in dimension 0, the adjacency matrices of the induced bipartite 
graphs Gx,i are given in Table 3. 

 
Table 3. The adjacency matrices of the bipartite graphs induced by the permutation π = 
(0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15). The boldfaced "1" stand for the ones distinguished by the Neiman 
matching algorithm. 
 

 0 2 4 6 8 10 12 14 

0 1 1 1 0 1 0 0 0 

2 1 1 0 1 0 1 0 0 

8 1 0 0 0 1 1 1 0 

10 0 1 0 0 1 1 0 1 

1 1 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 

9 0 0 0 0 1 0 0 0 

11 0 0 0 0 0 1 0 0 

 

 1 3 5 7 9 11 13 15 

5 1 0 1 1 0 0 1 0 

7 0 1 1 1 0 0 0 1 

13 0 0 1 0 1 0 1 1 

15 0 0 0 1 0 1 1 1 

4 0 0 1 0 0 0 0 0 

6 0 0 0 1 0 0 0 0 

12 0 0 0 0 0 0 1 0 

14 0 0 0 0 0 0 0 1 

From where: 

• Γ=(4, 0, 6, 2, 5, 1, 7, 3, 12, 8, 14, 10, 13, 9, 15, 11) defined on H(4)
 is routable in one step, 

• the induced permutations α=(4, 12, 0, 8, 6, 14, 2, 10) on 3D-hypercube H(4)
00 and β=(5, 

13, 1, 9, 7, 15, 3, 11) defined on 3D-hypercube H(4)
1,0 are both routable in at most 3 steps 

as any arbitrary permutation on H(3) is routable on H(3) in at most 3 steps [15, 7]. 

On the contrary (7,14,15,13,11,10,9,12,2,6,5,4,0,3,1,8) is not partitionable. Indeed there 
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is no dimension in which the adjacency matrices of the induced bipartite graphs Gx,i both 
admit a maximum matching. It can be easily verified that in dimension i=0 (resp. 1, 2 and 3) 
column 2 (resp. 0, 3 and 7) of G0,i adjacency matrix is null. 

 

4.2 Characterization of omega and inverse-omega permutations 

The prefix (resp. suffix) of two hypercube nodes is the longest common most (resp. least) 
significant bits of their binary addresses. 

Let s(u, v) (resp. p(u, v)) the length of nodes u and v prefix (resp. suffix). 

Proposition 1: A necessary and sufficient condition for a permutation π on H(n) to be an 
omega (resp. inverse omega) permutation is that for any couple (u, v) of distinct hypercube 
nodes, s(u, v) + p(π(u), π(v)) (resp. p(u, v) + s(π(u), π(v)) < n. 

Proof: The condition is necessary. Let π be an omega permutation on the nD-hypercube and 
for any couple (u, v) of distinct omega inputs let: 

•  (resp. ) be the root of the smallest subtree whose leaves contain the inputs (resp. 
outputs) u and v (resp. π(u) and π(v)),  

• h  (resp. h ) the height of the subtree rooted in  (resp. ). 

Let's observe that  (resp. ) could not exist. In fact in such a case the corresponding 
root is out of the scope of the considered omega network and appropriately we set the height 
of the corresponding subtree to a some number, say nmax > n. On the contrary if  and  do 
exist then h  and h  are such that h  + h  = n+1 as the number of hops from u (resp. v) to π(u) 
(resp. π(v)) in the omega network is n+1.  being a node of a balanced binary tree rooted at a 
2x2-switch, say , of the nth stage, and according to its leaves labelling, s(u, v) is the length 
of the of the common edges labels from  to . Necessarily s(u, v) ≤ max(0, n-h ). Similarly, 

 being a node of a balanced binary tree rooted at a 2x2-switch of the 1st stage, say  and 
according to its leaves labelling, p(π(u), π(v)) is the length of the common edges labels from 

 to . Necessarily p(π(u), π(v)) ≤ max(0, n-h ). Thus we have s(u, v) + p(π(u), π(v)) ≤ 
max(0, n-h )+ max(0, n-h ). By hypothesis π can be routed through the nD-Omega network 
in one pass without conflicts between its routes. Therefore each one of the 2x2-switches is set 
either straight or crossed and consequently four situations can arise. 

Case 1:  and  do exist. s(u, v) + p(π(u), π(v)) ≤ n-h + n-h  = n-1< n. 

Case 2:  does exist and  does not. s(u, v) + p(π(u), π(v)) ≤ n-h < n. 

Case 3:  does not exist and  does. s(u, v) + p(π(u), π(v)) ≤ n-h < n. 

Case 4: neither  nor  does exist. s(u, v) + p(π(u), π(v)) = 0 < n. 

The condition is sufficient. Let's suppose that π is not an omega permutation. There are 
two distinct inputs u and v and a 2x2-switch, say , such that the routes which connect u to 
π(u) and v to π(v) share a same  output link. As  π is a permutation π(u) and π(v) are 
distinct and then there is a distinct 2x2-switch, say  from which the two routes diverge. 
Again let h  (resp. h ) the height of the subtree rooted in  (resp. ). By the same reasoning 
as in the proof of the necessary condition, s(u, v) = n-h  and p(π(u), π(v)) = n-h  while h  + 
h  ≤ n. Then s(u, v) + p(π(u), π(v)) = 2n – (h  + h ) ≥ n. 
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4.3 Characterization of partitionable permutations 

The partionability of a permutation on H(n) is a guaranty that it can be decomposed, after 
at most one exchange step, in two independent permutations each one on a distinct (n-1)D 
hypercube. 

In [24] Jung and Sakho prove the following characterization of arbitrary partitionable 
permutations. 

Proposition 2: A necessary and sufficient condition for a permutation on a nD-hypercube to 
be partitionable is that there is a dimension i such that for any x=0, 1, Nx,i does contain no 
null column. 

Some remarkable partitionable permutations are the ones for which Sx,i=Dx,i or 
Sx,i∩Dx,i=∅. Therefore, in the sequel we will only consider permutations such that Sx,i ⊂ Dx,i. 

 

5. Optimal routing of omega permutations 
 In this section we deal with the declination of the above characterization of partitionable 

permutations for omega permutations. In fact we show that any omega permutation is 
partitionable. Then we analyse the structure of omega permutations to show that there exists 
recursive partitioning which leads to an optimal routing algorithm. Before to do this, let's first 
characterize partitionable omega permutations. 

 

5.1 Characterization of partitionable omega permutations 

To characterize the partitionable omega permutations, let's consider the adjacency 
matrices Nx,i for x=0,1 induced in a dimension i by an omega permutation π on a 
nD-hypercube H(n). 

Lemma 1: For any dimension i, the adjacency matrices Nx,i x = 0, 1 are identical. 

Proof: It is straightforward. It comes from the fact that Mx,i x=0,1 are identical. Indeed as π is 
an omega permutation, two (n-1)-suffixed sources nodes can not have 1-prefixed destinations 
nodes. So, for any node u of  H(n), π(u)∈Dx,i for x=0,1 if and only if π(u⊕2n-1)∈Dx,i. In 
others words, u∈Sx,i if and only if u⊕2n-1∈Sx,i. For any u∈Sx,i, and v∈Dx,i, Nx,i[u, v] = Mx,i[u, 
v] = Mx,i[u⊕2i, v⊕2i] = Nx,i[u, v]. 

Proposition 3: Any omega permutation on a nD-hypercube is partitionable in any dimension. 

Proof: According to Proposition 2 we have to prove that for any dimension i, the adjacency 
matrices Nx,i x=0,1 do contain no null column. Given Lemma 1, we will consider only the 
matrix N0,i, the case of N1,i being induced from the two matrices identity. We proceed by 
absurd. Let's suppose that N0,i contains null columns and let v the index of such a column. Nx,i 
being constituted of Mx,i rows, there is a permutation of its rows and a permutation of its 
columns such that it can be put in the form of Table 4 matrix where x=0, i=n-1. 

 

Table 4. The structure of the adjacency matrix of the bipartite graph G0,i=(S0,i,D0,i,E).  
O (resp. I) stands for the null (resp. identity) matrix.  
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   D0,i 

... v … … u⊕2i … 

 

S0, i∩D0, i 
 

… 

 

A B 

 

S0, i∩D1, i 

… 

O I u 

… 

As v indexes a null column, necessarily this column belongs to the block [A, O]T. 
Furthermore we have the following: 

- πi(v)=1. As v indexes a column of [A, O]T, N0,i[u, v]=0 for u∈S0,i∩D0,i and then v∉S0,i∩D0,i 
because if this was the case, we would have N0,i[v, v]= M0,i[v, v]=1. As on the other side 
v∈D0,i, it follows that v∉S0,i. On the contrary v∈S1,i, from where π(v)∈D1,n-1 and then 
πi(v)=1. 

- πi(v⊕2n-1)=1. As v indexes a column of [A, O]T, v∉{u⊕2i : u∈S0,i∩D1,i}. Thus v≠ u⊕2i for 
any u∈S0,i∩D1,i. From where v⊕2i≠u for any u∈S0,i∩D1,i and then v⊕2i∉S0,i∩D1,i. As v∈D0,i, 
v⊕2i∈D1,i. So, at the same time, we have v⊕2i∈D1,i and v⊕2i∉S0,i∩D1,i  from where 
v⊕2i∉S0,i. Necessarily v⊕2i∈S1,i, π(v⊕2i)∈D1,i and then πi(v⊕2i)=1. 

But πi(v) = 1 and πi(v⊕2i) = 1 imply s(v, v⊕2i) + p(π(v), π(v⊕2i)) = n; this contradicts 
the fact that π is an omega permutation. 

At this level of our study, a natural question concerns the routability and, if so, in how 
many steps of the permutations resulting from a partition of an omega permutation. Let π be 
an omega permutation on a nD-hypercube H(n), Γ be the partition of π in a dimension i, α 
(resp.β) be the permutation on H(n)

0,i (resp. H(n)
1,i) induced by Γ. First of all, let's observe that 

Γ = (Γ0, Γ1) where Γ0 (resp. Γ1) is a perfect matching of the bipartite graph G0,i (resp. G1,i) 
and that it can be chosen, this will be the case in the sequel, such that Γ0 and Γ1

 are identical 
as N0,i and N1,i are identical. So we again consider only Γ0, the same reasoning applying to Γ1. 
The structure of N0,i, see Table 4, imposes Γ0=(Γ0,I, Γ0,A) where Γ0,I (resp. Γ0,A) is a perfect 
matching of the bipartite graph having I (resp. A) as adjacency matrix.  

I being the identity matrix, Γ0,I is unique. It is the set of the couples (u, v) such that I[u, 
v]=1, that is the interconnection links of the nodes u of S0,i∩D1,n-1 to the nodes u⊕2i of D0,i. 
More formally, Γ0,I associates any u∈S0,n-1 such that un-1=1, with Γ0,I(u)=u⊕2i. Unlike Γ0,I, 
Γ0,A is not necessarily unique and then any of them suits to constitute with Γ0,I a perfect 
matching of G0,i. However does any of them still suits to make α routable in n-1 steps on 
H(n)

0,i ? The response to this question remains related to the more general and open problem 
of routing arbitrary permutations on H(n) in at most n steps. To get round this difficulty, 
according to Proposition 3, an interesting alternative approach is the search of Γ0,A which 
assures α to be an omega permutation. 

Within this purpose, let y and z be two nodes of H(n)
0,i. There are two nodes u and v∈H(n) 
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such that y=Γ(u) and z=Γ(v). Then 

s(y, z)+p(α(y), α(z)) = s(Γ(u), Γ(v))+p(α(Γ(u)), α(Γ(v))) 

where Γ is such that: 

• u=(un-1un-2…ui…u0) → Γ(u)=(Γn-1(u)Γn-2(u)…Γi(u)…Γ0(u))  

• v=(vn-1vn-2…vi…v0) → Γ(v)=(Γn-1(v)Γn-2(v)…Γi(v)…Γ0(v)) 

and α is such that: 

• Γ(u)=(Γn-1(u)Γn-2(u)…Γi+1(u)0Γi-1(u)…Γ0(u))→α(Γ(u))=(πn-1(u)πn-2(u)…πi+1(u)0πi-1(u)
…π0(u)) 

• Γ(v)=(Γn-1(v)Γn-2(v)…Γi+1(v)0Γi-1(v)…Γ0(v))→α(Γ(v))=(πn-1(v)πn-2(v)…πi+1(v)0πi-1(v)
…π0(v)) 

As α(Γ(u)) and α(Γ(v))∈H(n)
0,i, 

         p(π(u), π(v)) – 1  if i = n-1 

p(α(Γ(u)), α(Γ(v))) =  

         p(π(u), π(v))  otherwise. 

Now let's consider s(Γ(u), Γ(v)). One of the following situations may happen. 

• s(Γ(u), Γ(v)) ≤ s(u, v): 

           p(π(u), π(v)) – 1 < n - 1 if i = n-1 

s(x, y)+p(α(x), α(y)) ≤ s(u, v) + 

           p(π(u), π(v)) < n  otherwise.  

 Only i = n-1 assures α to be an omega permutation. 

• s(Γ(u), Γ(v)) > s(u, v): 

           p(π(u), π(v)) – 1 < n - 1 if i = n-1 

 s(x, y)+p(α(x), α(y)) > s(u, v) + 

           p(π(u), π(v)) < n  otherwise. 

No dimension assures α to be an omega permutation. 

This analysis can be summarized in the following proposition. 

Proposition 4: If Γ is a partition in dimension n-1 of an omega permutation such that s(Γ(u), 
Γ(v)) ≤ s(u, v) for any couple of nodes (u, v) then the permutation α (resp. β) which 
associates π(u) with Γ(u) such that Γi(u)=0 (resp. 1) is an omega permutation too. 

5.2 Partition of omega permutations  

Now, we deal with the problem of the existence of a partition Γ which satisfies the 
conditions of Proposition 4 and, if so, the computation of one of its instances. Again we will 
restrict our analysis to Γ0 . It should be noticed that as Γ0,I is unique only Γ0,A is concerned. 
More formally we will discuss about the existence of Γ0,A such that: 

• s(Γ0,A(u), Γ0,A(v)) ≤ s(u, v) for any couple (u, v) of nodes of S0,n-1∩D0,n-1 , 
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• s(Γ0,A(u), Γ0,I(v)) ≤ s(u, v) for any u∈ S0,n-1∩D0,n-1 and v∈ S0,n-1∩D1,n-1.  

Within this purpose we will again refer to Table 4. Let u∈S0,n-1∩D0,n-1. As π is an omega 
permutation on H(n), for any v∈S0,n-1∩D1,n-1, v ≠ u⊕2n-1 therefore u ≠ v⊕2n-1. As u∈D0,n-1 , 
necessarily u∈D0,n-1-Γ0,I(S0,n-1∩D1,n-1). 

Inversely, let u∈ D0,n-1-Γ0,I(S0,n-1∩D1,n-1). In others words, S0,n-1∩D0,n-1 ⊆ 
D0,n-1-Γ0,I(S0,n-1∩D1,n-1). As the two sets are of a same cardinality, 
S0,n-1∩D0,n-1=D0,n-1-Γ0,I(S0,n-1∩D1,n-1). A being a block of the adjacency matrix of H(n), it 
follows that A[u, u]=M0,n-1[u, u]=1 for any u∈S0,n-1∩D0,n-1.  

Then let's consider the perfect matching Γ0,A which associates any u∈S0,n-1∩D0,n-1 with 
Γ0,A(u)=u. By construction we have: 

• for any couple (u, v) of nodes of S0,n-1∩D0,n-1, s(Γ0,A(u), Γ0,A(v)) = s(u, v), 

• for any u∈ S0,n-1∩D0,n-1 and v∈ S0,n-1∩D1,n-1, s(Γ0,A(u), Γ0,I(v))  = s(u, ΓI(v)) = s(u, 
v⊕2n-1) = s(u, v) 

from where the following theorem. 

Theorem: The perfect matching Γ of a nD-hypercube which associates any node u with 
the node u (resp. u⊕2n-1) if un-1 = (resp. ≠) πn-1(u) partitions any omega permutation on a 
nD-hypercube in two different omega permutations on two disjoint (n-1)D-hypercube. 

5.3 Optimal routing algorithm of omega permutations  

We are now ready to devise an optimal routing algorithm of omega permutations on 
nD-hypercubes. From the above study such an algorithm proceed recursively by partitioning, 
in the dimension n-1, the permutation in two different omega permutations on two disjoint 
(n-1)D-hypercubes. To do so, at each step, the messages located in the nodes which do not 
belong to the (n-1)D-hypercube of their destination move to this sub-hypercube in dimension 
n-1 while the messages, which are already located in a node of the (n-1)D-hypercube of their 
destination stay on this node. Doing so, at most n routing steps are required to route any 
omega permutation on a nD-hypercube. Then, given an omega permutation π on a 
nD-hypercube, we obtain the routing algorithm schematized in Fig. 3, 4 and 5 where Par is a 
constructor of parallel actions. 

 
Figure 3. The omega permutations routing algorithm. 

Algorithm Route 
Input:  
- n: the hypercube dimension, 
- π: an omega permutation on a nD-hypercube 
Local variables: k: an integer, routing step number 
Output: R: a nx2n matrix where R[k, u] is the next location of the outgoing message 
from u at the step k 
Begin 
 k = 0 
 For u = 0 To 2n-1 Do  
  R[k, u] = u 
 Compute_route(n, π, k) 
End. 
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Figure 4. The omega permutations routing table computation algorithm. 

Figure 5. The omega permutations partitioning algorithm. 

Algorithm Compute_route 
Input:  
- n: the hypercube dimension, 
- π: an omega permutation on a nD-hypercube 
- k: routing step number 
Local variables:  
- α, β: permutations on a (n-1)D-hypercubes 
- Γ: permutation on a nD-hypercube 
Output: R: a nx2n matrix 
Begin 
 If (u = π(u) for u = 0 To 2n-1) Then  
  Exit 
 (Γ, α, β) = Partition(n, π) 
 k = k +1 
 Par u = 0 To 2n-1 Do 
  R[k, u] = Γ[u] 
 Par 
  Compute_route (n-1, α, k) 
   Compute_route (n-1, β, k) 
End.

Algorithm Partition 
Input: n: the hypercube dimension, 
     π: an omega permutation on a nD-hypercube 
Output: Γ: omega permutations on nD-hypercubes  
   α, β: omega permutations on (n-1)D-hypercubes 
Begin 
 Par u = 0 To 2n-1 Do 

If (un-1 ≠ πn-1(u)) Then 
  Γ[u] = u⊕2n-1 
Else 
  Γ[u] = u 
  Set α:Γ[u]:Γn-1[u]=0 → π(u) 
  Set β:Γ[u]:Γn-1[u]=1 → π(u) 

End. 
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Illustration: Let's consider the omega permutation π = (2,7,4,9,6,15,14,1,8,10,11,5,12,3,0,13) 
on H(4). The partition of π in dimension 3 is realised by the perfect matching 
Γ=(0,1,2,11,4,13,14,7,8,9,10,3,12,5,6,11) induced by the boldfaced "1" of Table 5. 

 
Table 5. Perfect matching of the bipartite graphs Gx,3, x=0,1 induced by the permutation π= 
(2,7,4,9,6,15,14,1,8,10,11,5,12,3,0,13) on H(4). The boldfaced "1" are the distinguished ones by the Neiman 
algorithm while double crossed ones are the forbidden matching. 

3 15 14 13 12 11 10 9 8 

0 1 1 1  1    

1 1 1  1  1   

2 1  1 1   1  

4 1    1 1 1  

7    1  1 1 1 

11    1     

13      1   

14       1  
 

3 15 14 13 12 11 10 9 8 

15 1 1 1  1    

14 1 1  1  1   

13 1  1 1   1  

11 1    1 1 1  

8    1  1 1 1 

4    1     

2      1   

1       1  

On the 4D-hypercube this partitioning process results in the data exchanges expressed by 
the arrows in Fig. 6. 

Figure 6. The first step routing of the permutation π=(2,7,4,9,6,15,14,1,8,10,11,5,12,3,0,13). Each node is 
labelled with the couple constituted of its address and the address of the message it holds. The dotted links are 
the ones which realise the partition. 

(15,13) 

(0,2) 

 

(2,4) (3,9) 

 

  

(4,6)   (5,15)  (13,3) 

(10,11) (11,5) 

(14,0) 

(8,8) (9,10) 

(12,12) 

(6,14) 

 (1,7) 

(7,1) 
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 We can observe that the resulting permutations α and β, illustrated in Fig. 7, are also 
omega permutations. 

Permutation α                                       Permutation β 

Figure 7. The permutations resulting from the partition induced by Γ=(0,1,2,11,4,13,14,7,8,9,10,3,12,5,6,11). 

Again, we can partition α and β in dimension 2, each one in two independent omega 
permutations on two disjoint 2D-hypercubes, and so on. Table 6 shows the routes R resulting 
from the entire execution of the algorithm. 

 

Table 6. Routing paths of π. X stands for a don't care transition node for a message which has sooner than the nth 
routing step definitively attained its destination. 

Source 14 7 0 13 2 11 4 1 8 3 9 10 12 15 6 5 

 

Transition 

nodes 

6 7 0 5 2 3 4 1 8 11 9 10 12 15 14 13 

2 3 0 1 6 7 4 5 8 9 11 10 12 13 14 15 

0 1 2 3 4 5 6 7 X X 10 11 X X X X 

X X X X X X X X X X X X X X X X 

Destination 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

6. Optimal routing of inverse omega permutations 

The routing of an inverse omega permutation π, may be deduced from the routing of the 
omega permutation π-1. This can be done in two ways. The first way is obvious. Indeed, it 
suffices to compute the routing paths of π-1 and then to inverse them. For the second way, let's 
recall that an inverse omega permutation π on a nD-hypercube is characterized by the fact 
that for any couple of nodes (u, v) of the hypercube, p(u, v)+s(π(u), π(v)) < n which in turn 

(2,4) 

(12,12) 

(3,5)

(7,1) (6,0) 

(0,2) (1,7) 

(4,6)   (5,3) 

(10,11) 

(15,13) 

(11,9) 

(14,14) 

(8,8) (9,10) 

(13,15) 
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implies that for x=0,1, u and u⊕20 can not both belong to Sx,0. On this basis, all the reasoning 
carried out in the previous sections on the routing of omega permutations can be repeated 
according to dimension 0 instead of dimension n-1. It then follows that any inverse omega 
permutation can be routed on a nD-hypercube by successive partitions in dimension 0. So, 
following the omega permutations case, each step of the routing algorithm of an inverse 
omega permutation consists in moving in the dimension 0 the messages which are not yet 
located on a node of their destination sub-hypercube while the messages located on a node of 
their destination sub-hypercube stay on this node. As in the case of the omega permutations 
this routing algorithm requires at most n routing steps. 

To illustrate, let's consider π=(14,7,0,13,2,11,4,1,8,3,9,10,12,15,6,5) which is the inverse 
of the permutation (2,7,4,9,6,15,14,1,8,10,11,5,12,3,0,13). It can be easily verified that the 
routing paths of π by successive moves in dimension 0 of the suitable messages are the ones 
given in Table 7. 

 
Table 7. Routing paths of π = (14,7,0,13,2,11,4,1,8,3,9,10,12,15,6,5) 

Source 2 7 4 9 6 15 14 1 8 10 11 5 12 3 0 13 

 

Transition 

nodes 

2 7 4 9 6 15 14 1 8 11 10 5 12 3 0 13 

0 5 6 11 4 13 14 3 8 9 10 7 12 1 2 15 

X 1 2 11 X 13 6 7 X 9 10 3 X 5 6 15 

X X X 3 X 5 6 X X X X 11 X 13 14 X 

Destination 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Let's remark that the paths of the omega permutation and those of its inverse are not 
inverse the one of the other. 

 

7. Conclusion and perspectives 

This paper has addressed the problem of the optimal routing of omega and inverse omega 
permutations on nD-hypercubes. The partitioning paradigm is the framework of the proposed 
routing algorithm. It consists in decomposing recursively a permutation by perfect matching 
of the bipartite graphs induced by the permutation in two independent permutations on two 
disjoint (n-1)D-hypercubes.  

We have first proved that any omega (resp. inverse omega) permutation can be 
partitioned in any dimension of the hypercube. Then, given the absence of certainty about the 
routability of arbitrary permutation, we have proved that there are partitions which assure 
their induced permutations to be also omega (resp. inverse omega) permutations. The perfect 
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matching which induces such partitions consists for an omega (resp. inverse omega) 
permutation in matching the nodes detaining messages which are not yet in the 
sub-hypercube of their destination nodes with their neighbours in dimension n-1 (resp. 0) and 
the others nodes with themselves. Then any omega (resp. inverse omega) permutation can be 
routed in at most n steps of data exchange. At each routing step, for any node, the exchange 
decision is the result of the comparison of the most significant bit of its address with the one 
of the destination nodes of the message it detains. Clearly the proposed routing algorithm is 
self routing.  

As at each step of the routing a message which is already located in a node of the 
sub-hypercube of its destination node must stay on this node, one can hope to reduce the 
number of exchange steps to the necessary one by moving it towards suitable node. In a self 
routing perspective, this requires a self perfect matching of the host nodes of such messages 
accordingly to the theorem. In this context, our future works on routing omega permutations 
on hypercubes will concern the study of the way to perform such a matching. 

Beyond omega and inverse omega permutations there are others subclasses of 
permutations which are also results of shuffle operations on the binary addresses of the nodes 
of nD-hypercubes and which are subject to great attention. It is for instance the ones which 
define the interconnection logic of the De Bruijn graphs [25]. So we also plan to test the 
applicability of the partitioning paradigm for these classes of permutations. 
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