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Abstract

The Stream Control Transmission Protocol (SCTP) is a relatively new transport
protocol. It has several underlying mechanisms that are similar to the Transmission
Control Protocol (TCP), as well as several improvements that are important in certain
classes of applications. The timeout scheme of SCTP, however, is almost identical to that
used in TCP. With the dynamics of today’s Internet, that timeout scheme may be too
passive. This paper presents an algorithm which dynamically adjusts the overall context
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of the retransmission timeout process without changing the fundamental retransmission
mechanisms. This approach manages the impact of fast retransmissions and timeouts
to significantly improve the throughput of SCTP applications. The algorithm has been
implemented and tested in real network environments. Experimental results show that the
algorithm avoids spurious retransmissions and provides better throughput by intelligently
managing RTO (retransmission timeout) boundaries and allowing conventional timeout
schemes to participate more actively in the retransmission process.

Keywords: SCTP, TCP, RTT, RTO, Jacobson algorithm

1 Introduction

As a relatively new transport layer protocol, SCTP provides some salient features
which are absent from UDP and TCP: message bundling; multi-streaming; multi-homing;
built-in reachability checking; and state cookie support [1–3]. As a connection oriented
protocol, the timeout mechanism in SCTP is critical to its performance. The foundation
of SCTP’s timeout algorithm is the well known Jacobson algorithm [4–6] which has long
been an important cornerstone of TCP. Jacobson’s algorithm is simple, effective, and well-
supported by fundamental theory. Performance issues related to Jacobson’s algorithm
and other retransmission procedures have been noted and addressed in several alternative
approaches [7–9].

Unfortunately, in many cases we note that Jacobson is prevented from functioning
effectively due to implementation of the minimum value for RTO (“RTOmin”) which is
defined as 1 second for SCTP [2]. With low RTT (round trip time) values characteris-
tic of modern networks, optimum RTO values such as those produced by Jacobson are
typically much lower than RTOmin. Thus, although Jacobson’s algorithm is always used
to compute the optimum retransmission timeout, the RTO value that is actually used is
RTOmin. Unfortunately, simply lowering the static value of RTOmin can cause problems
with spurious retransmissions as network conditions change. What is needed is a dynamic
approach rather than a simple, fixed threshold.

This paper presents a bounding approach for RTOmin that extends the classic Ja-
cobson’s algorithm and replaces the static value of RTOmin with a dynamic threshold.
The new algorithm takes into account important factors – fast retransmission, timeout,
and history of timeout – that impact transmission performance of SCTP. The algorithm
has been implemented as a Linux kernel module and tested in multiple real network
environments. We show that, when coupled with Jacobson’s algorithm, the new RTO
approach intelligently manages the retransmission process, dynamically adapts to current
network conditions, and significantly improves the throughput of SCTP applications as
measured by goodput. Since the algorithm focuses on optimizing the RTOmin boundary
rather than the optimal RTO estimate, it also maintains stability without causing unnec-
essary fast retransmissions. The concept is validated by network testing which shows that
the dynamic algorithm intelligently balances between fast retransmissions and timeouts,
enhancing throughput while maintaining network stability.

The classical timeout scheme used in TCP and subsequently in SCTP is simple and
effective and has played important roles of stabilizing Internet [1, 2, 4–6]. But with ever
changing and evolving dynamics of today’s Internet, newer and more actively managed
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timeout schemes are needed. Our approach is based on the belief that there must be
a fine balance that can be exploited to both avoid unwanted characteristics and benefit
from more proactively managed retransmission behavior. Our algorithm can be easily
integrated into current SCTP implementations. It can provide desired performance en-
hancement with no need of change to the established network structure.

The rest of this paper is organized as follows: Section 2 briefly reviews related work
and contrasts our research with previous approaches. Section 3 examines several critical
aspects of the existing timeout/retransmission algorithm used in SCTP. In Section 4 we
introduce and discuss a test suite that was created for effective and efficient testing of
new network parameters and algorithms. The test suite provides three real-time network
environments which can be tailored to test different aspects of transport layer protocols.
In Section 5 a modified SCTP RTOmin algorithm that manually modifies the RTOmin
values is introduced. We observe from the experimental results of the manual RTOmin
algorithm that there are opportunities selecting an optimal or locally optimal RTOmin
value for any specific network environment. Section 6 introduces our dynamic RTOmin
algorithm and its implementation in Linux kernel. The proposed algorithm dynamically
adjusts RTOmin values in SCTP stack based on the ratio of fast retransmissions and
timeouts. We argue that this ratio allows the proposed algorithm to differentiate con-
gestion and network loss and hence intelligently manage change of network dynamics.
Section 7 describes the approaches used for testing the dynamic RTOmin algorithm, as
well as the performance of the algorithm in real network environments. Section 8 provides
concluding remarks and ideas for future work.

2 Related work

Significant effort has been devoted to the study of the performance and possible
enhancement of retransmission mechanisms in IP transport protocols, such as mobile ad-
hoc networks (MANET) [10]. Here, we discuss a limited set of work specifically related
to the dynamic RTOmin algorithm.

One general approach to managing retransmissions lies in discriminating between
thick and thin streams and applying separate retransmission rules depending on the clas-
sification [11]. A thick stream attempts to fully saturate available bandwidth to maximize
goodput while a thin stream is characterized by small, widely spaced packets that require
little bandwidth, but are often time critical. Most enhancements in [11] are highly inva-
sive, modifying fast retransmit and timeout behaviors and firing the fast retransmission
mechanism after a single SACK (selective acknowledgment) that reports missing chunks.
Other work [12] proposes similar mechanisms. In contrast, the dynamic RTOmin algo-
rithm makes a subtle but important change to the (previously static) value of RTOmin,
allowing intelligent management of stream context without invasive modifications. Thus,
the new algorithm is applicable to all types of streams and has beneficial outcomes re-
gardless of the way the application may be using the protocol.

Some approaches advocate lowering the value of retransmission timers to improve
transmission performance [13, 14]. This has the undesirable side-effect of uncontrolled,
spurious retransmissions, too many selective acknowledgments, and and conflicts with
other mechanisms. In contrast, the dynamic RTOmin algorithm provides evidence in
favor of lower bounds but only in select environments which are automatically detected.
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Our approach is based on the belief that intelligent management of retransmission can
avoid unwanted characteristics while benefiting from more aggressive retransmission be-
havior.

The work in [15] replaces well-known retransmission mechanisms in an attempt to bet-
ter suit the application. In contrast, our work leverages existing algorithms and balances
their activities intelligently. Rather than requiring invasive modifications or replacement
of established processes, the dynamic RTOmin algorithm can be seamlessly integrated
into current SCTP implementations. It can provide desired performance enhancement
with minimal change to the established network structure.

In [16] the authors argued and showed through experiments that RTOmin can be
dynamically adjusted to affect SCTP’s throughput. The paper showed that there are
opportunities to adjust RTOmin values to provide globally or locally optimal goodput.
However that work is one step of short of how to integrate RTOmin adjustment into
current SCTP’s timeout mechanism. More about this will be discussed later in this
paper.

In an interesting paper [17] Chowdbury and Jony shows that an SCTP node in NS2
cannot be truly multi-homed. Hence, NS2 still lacks of full implementation of SCTP
features.

More recently Najm and et al. proposed to use SCTP to relieve congestion control
problem in LTE-A [18].

3 Retransmission mechanisms

This section briefly describes three core concepts of SCTP retransmission mechanisms
– fast retransmissions, timeouts, and selective/delayed acknowledgments. Details of these
schemes can be found in the references [1–3,10,19].

Selective Acknowledgements (SACK) were initially introduced in [5] as a TCP option
to handle multiple dropped packets within a window. This approach was later refined in
[20] and adopted by SCTP. SACKs and selectively repeated retransmissions can be useful
when an aggressive sender retransmits packets after multiple drops within a window.
As in TCP, SCTP also employs Delayed Acknowledgments (DACK). An SCTP receiver
typically waits to ACK an individual chunk in the hope of piggybacking several ACKs
with a subsequent reverse-path data chunk. In most Linux kernel implementations, the
DACK/SACK delay is around 200 ms.

Fast retransmissions provide congestion avoidance and lost data corrections by se-
lectively retransmitting SCTP chunks. If four acknowledgments report the same missing
chunks, those chunks are re-sent in the next available packet. Unfortunately, fast re-
transmission is invoked only after multiple indications of the same missing chunks, not
after a time threshold is crossed. As a result, fast retransmission mechanisms do not dis-
tinguish between network loss/corruption and congestion, responding identically in both
cases [10, 21].

Timeout mechanisms, including Jacobson’s algorithm, are focused primarily on link
failure detection, as well as congestion mitigation. We have previously discussed the the-
oretical basis for Jacobson [9]. Unfortunately, in practical implementations the optimum
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RTO value computed by Jacobson is typically discarded. If the Jacobson calculation is
outside of the window bounded below by RTOmin (1000 msec) and above by RTOmax
(60 sec), the optimal RTO value is replaced with the bounding value. With low RTT
values characteristic of modern networks, optimum RTO values are typically lower than
the RTOmin boundary. Thus, although Jacobson’s algorithm is always used to compute
the optimum retransmission timeout, the RTO value that is actually used is the static
RTOmin boundary of 1000 msec.

In summary, the standard value of RTOmin (1000 msec) causes the timeout mech-
anism to remain dormant in modern, fast networks until the entire link is down. In
other words, the Jacobson algorithm is largely prevented from affecting the timeout pro-
cess due to RTOmin. This leaves the fast retransmission and DACK/SACK mechanisms
responsible for detecting network congestion as well as quickly recovering lost packets.

4 Test Environments

In this section we briefly introduce a suite of test environments that we created and
used to validate the proposed research. The test suite consists of three real-time network
environments [22]. Although all three environments were designed to support our research
on SCTP, they can be readily modified to test other TCP/IP protocols such as TCP and
UDP.

Typically research work like the one we are presenting is first verified with simulations.
It’s well known that simulations have several inherent limitations. We evaluated the
performance of the dynamic RTOmin algorithm against the current “static algorithm”
in a variety of real network environments. A driving factor for emphasizing real network
performance comes from the observation that approximately 50% of SCTP research is
done in simulation with limited use of real world scenarios [23], and the fact that NS2
simulations of SCTP may be lacking in several areas [17].

In all three environments implemented in this research work, a server host will wait
for incoming connections which would be initiated by a client host. The SCTP protocol
stacks of server hosts were not modified. Server hosts simply run logging software in
order to capture performance statistical parameters of interests. Client hosts run Debian
Linux as we found that Debian Linux is the only available Linux dialect that allows
dynamic module loading/unloading. The client hosts would dynamically swap between
unmodified and modified SCTP Kernel modules according to our control script. This
set up was chosen over dedicating one client host executing modified SCTP protocol
stack and another host running un-modified SCTP protocol stack since it reduces the
likelihood of configuration and hardware discrepancy between client hosts. In addition to
controlling swapping of SCTP protocol modules, the control script also controls various
aspects of an experiment run such as size of data blocks to be transferred, SCTP chunk
size, data loss rate, and etc. The control script controls network condition parameters
such as loss and delay by manipulating the client NICs using the Network Emulator [24]
linux package. The statistics of experimental runs of our new algorithms is compared
with the existing Linux implementation of SCTP [25].
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Figure 1: LAN Internet testing environment

4.1 Live-Internet Environment

The live-Internet environment, as shown in Figure 1, was used to test SCTP per-
formance in medium latency networks with sporadic deviations. It can employ multiple
clients. As shown in the figure there are two client hosts (black and green) which are
Asus EEPCs running 32 bit Debian with linux kernel version 2.6.32. These two client
hosts are connected to a router that has Internet service provided by a local ISP (Internet
service provider) with a maximum downlink speed of 30 Mbps and a maximum upload
speed of 5 Mbps. The clients communicate with two server hosts located within the
Texas State University campus running 32 bit CentOS 6. To facilitate implementation
and make uniform comparison both the server and client hosts run the same version of
Linux version. The average RTT of this configuration was observed to be about 150 ms
during the first phase of tests and 55 ms during the second phase.

4.2 LAN Local Environment

The LAN local environment was designed to capture behaviors of SCTP in low la-
tency, high throughput scenarios. As illustrated in Figure 2 the environments consists of
the two client hosts (named black and green) communicating with a server host (named
white) located within the same LAN. As with the live-Internet environment the server
is passive and waits for connection actions initiated by client hosts. The server logs rel-
evant parameters while the clients would initialize connections, swap between modified
and unmodified kernel modules and log relevant parameters of interest.

4.3 Virtualized Local Environment

The last testing environment, virtualized-local environment, is of particular interests.
Typical TCP/IP protocols, including SCTP, were designed when virtual machines and
networks were not proposed/popular yet. Given the increasing popularity and importance
of virtual machines and networks, understanding behavior of TCP/IP protocols under
virtual machines and networks is of special importance. Our virtualized-local environ-
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Figure 2: LAN local testing environment

ment provides a viable tool to test SCTP in virtual machine and network environments.
The environment consists of completely virtualized network traffic as shown in Figure
3. This environment is ideal to test SCTP in a network with very low latency and high
throughput such as inter-datacenter and intra-datacenter communications. Currently the
environment consists of 3 virtual hosts, all running 64 bit Debian, Kernel version 2.6.32,
within Texas State University’s JCK datacenter. The client host (named pronto) commu-
nicates with server host (named quick) through a virtual bridge within the routing host
(named fast). This configuration provides almost absolute control over network traffic
and has an average RTT of 0-1 ms. As in previous two environments the SCTP kernel
module will be dynamically swapped between unmodified and modified states within the
client.

Figure 3: Virtualized local environment

5 Manually Optimized RTOmin

When packet loss is a rare event, timeout mechanism is rarely invoked. Then RTOmin
values are not critically important. When packet loss increases, intuitively the likelihood
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of timeout should increase as well. However with the fast retransmission mechanism
in place the whole picture of interactions of timeout/retransmission/fast retransmission
becomes less clear and intuitive.

The work in [16] tried to clarify relationship between RTOmin values, timeout, re-
transmissions, and fast retransmissions. To quantify the impact of lowered RTOmin
values on fast retransmissions and SACKs, the authors there defined the notions of spu-
rious retransmission boundary and SACK interference boundary. Various RTOmin values
were tested and performance statistics were collected from the extensive testing.
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Figure 4: Live Internet RTOmin vs Timeouts per MB

Figure 4 shows the effect of RTOmin and packet loss on the number of timeout events
in the live Internet test environment. It can be seen that the number of timeouts is fairly
stable when RTOmin values are in the range of 250ms to 700ms. But below that range
the number of timeouts begins to steadily increase. Similar results have been observed
under the other two test environments.

Figure 5 illustrates the relationship between fast retransmissions and RTOmin values
under live Internet test environment as well. Here the relationship is in the opposite
direction than with timeouts. The higher the RTOmin the more fast retransmission
events. Again similar phenomena are obtained under the other two test environments.

Based on these results and observations we hypothesize that there should be an op-
timization opportunity for SCTP performance by selecting an optimal or locally optimal
RTOmin value for a specific network environment. This hypothesis is supported by Fig-
ures 6 (live Internet environment) and 7 (LAN local environment). In both graphs we
can see that there are local maxima in goodput at a particular RTOmin. In Figure 6 we
see three distinct peaks at 70ms, 550ms and 1000ms for a 0% loss connection that result
in a 50% increase in throughput vs other RTOmin values. We also notice the same trend
in Figure 7 where the main peaks in goodput are at 150ms and 1100ms. These peaks
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Figure 5: Live Internet RTOmin vs Fast Retransmissions per MB

are less pronounced as the packet loss increases but we can see the downward trend in
goodput as the RTOmin increases. This less aggressive RTOmin begins to stifle almost
all timeout events with a heavy bias towards fast retransmissions which begins lowering
the goodput. With this knowledge of these particular network environments we set out
to manually optimize the RTOmin for the live internet environment. Figures 8 and 9
show the result of manually selecting RTOmin values for a specific network environment.

Figure 6 and Figure 8 are results obtained from exactly the same test scenario with
the same 50B chunk size. Although there is no improvement at low packet loss the
manually optimized RTOmin shows higher goodput at high loss. In fact, we see the
two traces begin to diverge significantly as packet loss increases. In Figure 9 the tests
were conducted at 1452B chunks to see if the manually selected RTOmin at 50B chunks
could benefit transfers at other chunk sizes. We see a similar trend of no improvement
at low loss levels with greater improvement diverging from the SCTP standard RTOmin
at higher packet loss. As discussed in [16] we believe this improvement is due to the
fact that RTOmin plays a balancing role between timeout events and fast retransmission
events. We can conclude that even with manually selected RTOmin values there are
clearly observed signs of improvement in goodput of SCTP. This leads us to investigate
and propose a dynamic and fully automatic way of harnessing RTOmin’s balancing role.

6 The Dynamic RTOMin Algorithm

As was discussed in previous section RTOmin values affect both fast retransmissions
and timeouts in opposite ways. In order to utilize this fact practically, we need an algo-
rithm that can dynamically adjust RTOmin values to at least locally optimize goodput.
We are also assured that RTOmin values can be significantly smaller than the standard
1000ms minimum RTO value and SCTP employing those smaller values may only incur
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Figure 6: RTOmin vs Goodput (KB/s)
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Figure 7: LAN Local Env. RTOmin vs Goodput (KB/s)

an insignificant number of timeouts or fast retransmissions. In most applications paying
such a very small price is justified to gain goodput significantly.

The number of fast retransmissions and the timeout values both reflect network dy-
namics. The ratio of fast retransmission events to timeout events is of particular interest.
Intuitively, when this ratio increases, there are fewer timeouts than fast retransmissions
relatively. That in turn implies that the network environment is relatively stable and
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Figure 8: Throughput comparision of manual optimization vs static algorithm: 50 byte chunk
size

Figure 9: Throughput comparision of manual optimization vs static algorithm: 1452 byte chunk
size
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Figure 10: Dynamic RTOmin algorithm based on fast retransmission/timeout ratio

fewer packet losses occur. On the other hand, when this ratio decreases, timeouts tend to
dominate fast retransmissions, which implies that the network environment is relatively
unstable and more packet losses may creep up. This, combined with the fact that the
RTOmin value directly affects which of the two mechanisms will trigger first, provides
the core idea of our dynamic RTOmin algorithm, the main idea of which is illustrated in
Figure 10.

The algorithm is implemented by modifying the SCTP stack within the Linux kernel
that can run in all three test environments discussed in Section 4. In the following we
briefly describe several main aspects of our implementation.

1. New Linux kernel variables

(a) frt_count - A persistent value that is incremented whenever a fast retrans-
mission event occurs. Its initial value is 1 and is reset at the beginning of a
new association.

(b) to_count - A persistent value that is incremented whenever a timeout event
occurs. its initial value is 1 and is reset at the beginning of a new association.

(c) old_ratio - A persistent value that keeps track of the current association’s
fast retransmission/timeout ratio. This value is updated at every new RTT
measurement.

2. Fast retransmission/timeout ratio calculation and smoothing -

newratio = newratio − (oldratio/2) + (newratio/2) (1)

At every RTT measurement a ratio of the current number of fast retransmission
events and timeout events is taken which is then smoothed using a similar formula
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Listing 1: Ratio Algorithm Case Statement
1//New adaptive RTOmin algorithm using FRT/TO Ratio
2__s32 frt_to_ratio;
3__s32 ratio_diff;
4

5frt_to_ratio = (tp->asoc->ed_frt_count / tp->asoc->ed_to_count);
6frt_to_ratio = tp->asoc->ed_alg_ratio -
7(tp->asoc->ed_alg_ratio >> 1) + (frt_to_ratio >> 1);
8ratio_diff = frt_to_ratio - tp->asoc->ed_alg_ratio;
9

10if( frt_to_ratio > tp->asoc->ed_alg_ratio )
11{
12tp->asoc->rto_min += (tp->srtt >> 2) * ratio_diff;
13}
14else if( tp->asoc->rto_min > rtt &&
15frt_to_ratio < tp->asoc->ed_alg_ratio )
16{
17tp->asoc->rto_min += (tp->srtt >> 2) * ratio_diff;
18}
19else if( frt_to_ratio <= msecs_to_jiffies(1) )
20{
21tp->asoc->rto_min += (tp->srtt >> 2);
22}
23

24tp->asoc->ed_alg_ratio = frt_to_ratio;

to the SRTT measurement. The formula used is shown in Equation 1 and uses a
low divisor value to provide a short interval running average.

3. Ratio Difference Calculation - The difference between the previous “old_ratio”
and the “new_ratio” is calculated in order to determine whether the ratio has
decreased or increased. This value is stored in a variable called “ratio_diff” which
is used in subsequent stages.

4. Case Statement - Depending on which direction the ratio has moved appropriate
changes are made to the RTOmin value. Code snippet 1 shows the code responsible
for changing the RTOmin boundary. Lines 5 shows the computation of the new
ratio, lines 6-7 show the smoothing of with the currently used ratio and line 8
calculates the difference between the new ratio and the old ratio that is used in
the case statement when modifying RTOmin. Lines 10-22 are dedicated to a case
statement outlined below:

(a) If new_ratio > old_ratio Implies that we need to continue favoring fast
retransmissions over timeouts hence we increase RTOmin by (SRTT / 4) *
ratio_diff which ensures we increase proportionately by the amount the ratio
has increased.

(b) If new_ratio < old_ratio Implies that we have encountered link loss which,
due to its unlikely nature, means that the timeout mechanism might be the
favorable alternative. Thus, we reduce RTOmin by (SRTT/4) * ratio_diff
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(c) If new_ratio < 4 If the new_ratio is too low then we assume we are at
the beginning of an SCTP transfer and we jumpstart the Ratio Algorithm by
increasing RTOmin by (SRTT / 4) in order to begin increasing the number of
fast retransmissions over timeouts.

Intuitively, by jointly considering fast retransmission events and timeout events, con-
gestion and network loss can be differentiated and intelligently managed. This is the
basis of the dynamic RTOmin algorithm.

In current SCTP implementations and modern networks, the fast retransmission
mechanism is much more likely to respond before a timeout occurs. In a low loss network,
timeout events are rare and the likelihood of a timeout increases with packet loss, which
is uncommon. Figures 11 and 12 describe this phenomenon very clearly. Figure 11 shows
experimental measurements of timeout events (TO) over a variety of network conditions,
including increasing packet loss. Figure 12 examines fast retransmissions (FRT) over
the same conditions. In the figures, TO and FRT measurements are normalized by
throughput for each set of test iterations, and smoothed to show the general trend. The
performance of the conventional “static RTOmin algorithm” (a fixed 1000 msec threshold)
is shown with a dashed line. The performance of our modified approach, or the “dynamic
RTOmin algorithm” is shown with a solid line. The dynamic RTOmin algorithm is
described in detail in later sections.

It is important to understand the relationship between FRT and TO. In examining
the performance of the “static RTOmin” approach in Figures 11 and 12 (dashed line), the
inversely related trends of TO and FRT are very apparent. For example, around packet
loss ratios of 0.5%, FRT events are frequent (around 60 FRT/MB), and TO events are
infrequent (around 2 TO/MB). As packet loss increases, the rate of TO increases (10
TO/MB), while FRT events are fewer (10 FRT/MB). These trends match conventional
wisdom, and validate the operation of the well-known retransmission mechanisms de-
scribed previously. In a “fast, clean” link, packet loss is sparse and fast retransmissions
are more likely than timeouts. As packet loss increases and network conditions proceed
towards link failure, timeouts become more prevalent and fast retransmissions diminish.

Figure 13 takes a look at the relationship between FRT and TO from another angle.
It illustrates the FRT/TO ratio for both the static and dynamic RTOmin algorithm. Once
again the static algorithm trends towards the dynamic algorithm at very high losses but
we see that under 3% packet loss the ratio is as high as 500. This is a disproportionate
amount of FRT that should not be happening for best goodput. In comparison the
dynamic RTOmin algorithm’s curve shows a small increase at 1% loss and then remains
very steady for the remainder of the tests. This allows the TO mechanism to step in
more often and act appropriately aggressively in retransmitting packets.

The inverse nature of FRT and TO behavior under varying packet loss provides the
basic concept of the dynamic RTOmin algorithm, which is driven by the ratio FRT/TO.
Figure 10 provides a pseudocode illustration of the dynamic RTOmin algorithm. At every
RTT measurement, we compute the ratio of the fast retransmission events and timeout
events (FRT/TO). This sequence of values is then filtered using a single-pole, infinite-
impulse-response filter. The filtered difference between the previous and current values
of the FRT/TO ratio provides an effective measure of network context. If the FRT/TO
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Figure 11: Timeout events: static vs. dynamic RTOmin

Figure 12: Fast retransmission events: static vs. dynamic RTOmin

ratio is decreasing, the subsequent RTOmin bounding value is lowered by a dynamic
scaling factor. Conversely, if the FRT/TO ratio is increasing, the RTOmin boundary
is raised by a similar value. The scaling factor for the RTOmin adjustment takes into
account the first-order rate of change of the FRT/TO ratio as well as the current average
RTT. In essence, the dynamic RTOmin algorithm attempts to find the first maxima of
the curve described by the FRT/TO ratio. By increasing RTOmin until the FRT/TO
ratio begins to decrease, the system leverages an initial aggressive RTOmin value which
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Figure 13: Fast retransmission/timeout ratio: static vs dynamic RTOmin

provides quick detection of loss on the link. If the link has low loss, then the RTOmin
value increases to avoid spurious retransmissions.

Since RTOmin bounding is applied to the output of Jacobson’s algorithm, the value
of RTOmin directly affects which of the two mechanisms (FRT or TO) will occur first.
Thus, the dynamic RTOmin approach uses network conditions to dynamically adjust the
context in which Jacobson’s algorithm operates. As a result, in network configurations
where a timeout may improve throughput, the RTOmin boundary is pre-adjusted to the
likelihood of a timeout, rather than “stuck” at a fixed value of 1000 msec, completely
ignoring network context. Conversely, in network configurations where the average RTT
is very large, the dynamic value of RTOmin “floats” above the previously fixed 1000 msec
threshold, preventing a large number of consecutive timeouts and or fast retransmission
in slow networks.

By working in conjunction with existing retransmission mechanisms, the dynamic
RTOmin approach uses network variability to intelligently adjust the operating context
for Jacobson’s algorithm and other retransmission mechanisms. The net result is that
Jacobson’s algorithm is allowed to participate more actively in link management. The
approach works particularly well for “fast, clean” links.

7 Experimental Results

The dynamic RTOmin algorithm has been tested in all the three test environments
described in 4. In the live Internet environment client/server hosts communicate through
the Internet, and between different network providers. The average RTT encountered
during our testing was observed to be between 50 msec and 150 msec, well below the
1000 msec of “static RTOmin”. For completeness, secondary test scenarios used a similar
configuration in the LAN local environment as well as in the virtualized local environ-
ment to emulate datacenter networking trends. The LAN local environment displayed
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average RTT values on the order of 5-10 msec, while average RTT in the virtualized local
environment was under 1 msec. Only Internet-based testing is presented here.

In all cases, we use client hosts running 32 bit Debian Linux and server hosts running
32 bit CentOS 6. All hosts use Linux kernel version 2.6.32, and communicate via an
intervening routed network. The server hosts have unmodified SCTP protocol implemen-
tations, and capture data from the transmission tests. The dynamic RTOmin algorithm is
implemented as modified SCTP modules in the Linux kernel, and is only required on the
client-side. During a test, client systems swap between unmodified and modified SCTP
Kernel modules for different iterations to directly compare the performance of the new
algorithm with the existing Linux implementation [25]. Network conditions such as loss
and delay were manipulated at the client NICs using the Linux Network Emulator [24].

In each test sequence, the servers wait for connections from clients, then log rele-
vant parameters. The clients initialize connections and log relevant parameters while
transferring data. For subsequent test iterations, client systems swap between modified
and unmodified kernel modules. In all cases, a single “test iteration” involves transfer of
SCTP chunks of a specified size via links with packet losses from 0% to 5%. For each test
iteration, several thousand transfers of chunks were attempted, producing statistically
viable data. The shaded areas in Figures 11, 12, and Figure 16 show 95% confidence
intervals for each test. For the purposes of this paper we focus on the transfer of 50-byte
chunks, but other chunk sizes provide similar results.

7.1 Performance with Packet Loss

Figure 14 shows recorded test parameters for the dynamic RTOmin algorithm from
the beginning of a single transfer in a very low loss environment. This trace was taken
from a link with an average RTT of 55 msec and a transfer using 50-byte chunks. The
steady increase of RTOmin can be seen as the transfer progresses. For this particular
transfer the RTOmin value begins settling around 500 msec. This value is well above the
delayed SACK time-out of 200 msec which ensures that there will be no interference, and
well below the conventional “static RTOmin” value of 1000 msec.

Figure 15 shows recorded test parameters for the dynamic RTOmin algorithm from
the beginning of a single transfer in a high loss link. From 0 to 1.75 seconds, the initial rise
of RTOmin is very clear. Starting at 2 seconds, several drops indicate that the FRT/TO
ratio is decreasing, so the dynamic algorithm lowers the RTOmin boundary in response.
After 4 seconds, the RTOmin value settles slightly below 200 msec. Since this is a high-loss
link, the fact that many packets are being lost lessens the impact on the number of delayed
SACKs. Note also that the dynamic RTOmin algorithm proactively reduces RTOmin in
the lossy link, where fast retransmissions are less effective, in preparation for timeout
events. Conversely, RTOmin is raised in the low-loss link to allow for more efficient fast
retransmission events and provide additional operating context for Jacobson’s algorithm.

7.2 Goodput Performance

To emphasize the effect of the dynamic RTOmin algorithm, we measure the goodput
of the transmission tests along with the recorded retransmission parameters. Figure 16
shows the goodput of the conventional “static RTOmin” of 1000 msec (dashed line) versus
the dynamic RTOmin algorithm (solid line). As in previous cases, testing encompassed
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Figure 14: Dynamic RTOmin with packet loss of 0%. After an initial onset period (0-2
sec), the RTOmin boundary “settles” just below 500 msec.

Figure 15: Dynamic RTOmin with packet loss of 5%. The RTOmin boundary “settles”
near 200 msec in a slightly more aggressive approach to retransmission and
link failure detection.
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links with packet losses from 0% to 5%. For each packet-loss value, several thousand
transfers of 50-byte chunks were attempted. The figure clearly shows that the dynamic
RTOmin algorithm exhibits the same general behavior as the static RTOmin case, but
it does so at a uniformly higher goodput, with improvement from roughly 50k to 70k
B/s, or about 40% beginning at 2% packet loss. Similarly, in the “clean network” region
around 0.5% packet loss, the dynamic approach improves goodput by about 6% from
160k to 170k B/s.

Figure 16: Goodput: static vs. dynamic RTOmin

This behavior is further confirmed by the TO and FRT curves of Figures 11 and 12,
which contain data from the same test environment. In Figure 11, note that the static
and dynamic RTOmin cases exhibit similar performance. Further, the dynamic RTOmin
approach exhibits a small but consistent increase of TO events over all packet loss scenar-
ios. Thus, the overall nature of the transfers have not changed, but Jacobson’s algorithm
is engaged more often and producing only slightly more TO events. Note from Fig-
ure 11 that the dynamic RTOmin (solid line) approach produces roughly one additional
TO/MB compared to static approach. In Figure 12 the dynamic RTOmin algorithm
(solid line) maintains a consistent number of fast retransmission events regardless of the
packet loss, while the static RTOmin approach (dashed line) spikes at 0.5% packet loss
with 60 FRT/MB, then asymptotically approaches the operating point of the dynamic
algorithm at 10 FRT/MB. This behavior shows that the dynamic RTOmin approach does
not interfere with the nature of the session. These in-situ observations of FRT and TO
events, along with goodput effectiveness support the assertion that the dynamic RTOmin
algorithm balances effectively between fast retransmissions and timeouts to improve the
throughput of SCTP sessions.
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8 Conclusions

This paper presents a dynamic RTOmin algorithm that dynamically manages the
RTOmin boundary to enhance throughput in SCTP. The current RTOmin is usually
set to such a high value (1000 msec) that the timeout mechanism is hardly active until
the entire link is down. This leaves the fast retransmission mechanism in charge of
both detecting lost packets and detecting network congestion, which is not optimal [21].
The dynamic approach uses a ratio of fast retransmission events and timeout events
to effectively differentiate between congestion and network loss. This allows an initial
aggressive RTO which provides quick detection of loss on the link. If the link has low
loss then the RTOmin value increases to avoid spurious retransmissions.

Our experiments have showed that that RTOmin values can be significantly smaller
than the standard 1000ms minimum RTO value and SCTP employing those smaller
values may only incur an insignificant number of timeouts or fast retransmissions. The
proposed dynamic RTOmin algorithm adjusts RTOmin values according to the change
of network dynamics and can provide RTOmin values that are locally or globally optimal
for goodput.

The dynamic algorithm has been implemented and tested in real network environ-
ments. The extensive testing in these environments shows that the algorithm significantly
enhances goodput versus the current SCTP timeout scheme without interfering with ex-
isting, well-known techniques. We believe that our research presented here is a solid step
forward toward a new timeout scheme for stream protocols (SCTP and TCP) that is
both efficient and stable.

We believe that our research is an important step toward a uniform and dynamic
timeout control of stream protocols, including SCTP and TCP. The experimental nature
of the research merits special attention. The algorithm has been tested extensively under
real network environments.

9 Future Work

In future work, we will investigate the effectiveness of the dynamic RTOmin algorithm
in a number of other environments and with alternate transport protocols, including em-
bedded systems for “Internet of Things” applications as well as virtualized environments
for datacenter applications. Additionally, we continue to experiment with alternative
approaches for retransmission timeout estimation as well as optimization of current al-
gorithms.
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