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Abstract 

Indian agriculture depends heavily on rainfall. It not only influences agricultural production 

but also affects the prices of all agricultural commodities. Rainfall is an exogenous variable 

which is beyond farmers’ control. The outcome of rainfall fluctuation is quite natural. It has 

been observed that fluctuation in rainfall brings about fluctuation in output leading to price 

changes. Considering the importance of rainfall in determining agricultural production and 

prices, the study has attempted to forecast monthly rainfall in India with the help of time series 

analysis using monthly rainfall data. Both linear and non-linear models have been used. The 

value of diagnostic checking parameters (MAE, MSE, RMSE) is lower in a non-linear model 

compared to a linear one. The non-linear model - Artificial Neural Network (ANN) has been 

chosen instead of linear models, namely, simple seasonal exponential smoothing and Seasonal 

Auto-Regressive Integrated Moving Average to forecast rainfall. This will help to identify the 

proper cropping pattern.  

Keywords: artificial neural network, mean absolute error, mean square error, root mean 

square error, simple seasonal exponential smoothing, seasonal auto-regressive integrated 

moving average, time series analysis 
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1. Introduction 

Rainfall is one of the major factors of agricultural production. In the last few years, the 

world’s climate change has tremendously affected rainfall. The distribution of rainfall has 

fluctuated throughout the world. In some places it has increased whereas it has decreased 

elsewhere. Farmers are finding it difficult to cope with this change, primarily because most of 

the crops are seasonal and rainfall dependent. Presently, about 60 percent of world’s staple 

food production and 90 percent of that of Sub-Saharan Africa depend directly on rainfall. 

Agricultural productivity can move up with increased rainfall and improvement in 

agricultural technology. But the regional variation in rainfall across different parts of the 

world makes it difficult to suggest any general kind of agricultural technology to be adopted 

throughout the world. The agriculture in the regions of the world with high rainfall does not 

face any kind of problem arising out of water scarcity. Here, rainwater can be stored through 

dams, ponds and reservoirs which might help to irrigate the surrounding areas and therefore 

lead to an increase in crop production. However, regions with low rainfall suffer due to poor 

availability of water for cultivation (www.sourcetrace.com). Therefore, rainfall influences 

cropping pattern in different parts of the world in different ways. 

The Economic Survey 2017-2018 pointed out that agriculture in India continues to remain 

vulnerable to the fluctuations of monsoon till date. This is because of the fact that all India 

percentage of net irrigated area to total cropped area is as low as 34.5 percent. Around 52 

percent (73.2 million hectares area out of 141.4 million hectares net sown area) agricultural 

land is still un-irrigated and dependent on monsoon (Financial Express Bureau, 2018). 

According to the Agricultural Ministry of India, the kharif (June - September) cultivation has 

reduced by 7 percent in 2019 compared to 2018 due to rainfall shortage. The kharif cultivated 

area in 2019 was 56.7 million hectares whereas it was 60.9 million hectares in 2018. The lack 

of rainfall has affected kharif paddy and pulses cultivation more than any other crop. The 

shortfall of kharif, paddy and pulses cultivation of 2019 is about 9 percent and 16 percent 

respectively which are larger than 2018 (Chowdhury, 2019). The monsoon rainfall influences 

not only kharif cultivation but also impacts groundwater storage and reservoir levels (thus 

also emerging critical for irrigation of rabi crops). 

The average income of a farmer in India is estimated at Rs 77,976 per year (according to the 

Dalwai committee report 2016) and the Indian government has targeted to double the farmers’ 

income by 2022. After independence, Indian agricultural production has been influenced by 

the Green Revolution, land reforms, agricultural credit, agricultural extension and other 

factors in the long-run. However, in the short-run, year to year fluctuations of agricultural 

production still has been influenced by rainfall. It is not only the volume of rainfall but also 

its distribution at different stages of the cultivation process that influences the total output. 

Similarly, the volume and distribution of rain at the time of sowing, flowering, maturing, and 

harvesting affect crop productivity (Gulati et al., 2013). In other words, rainfall is the major 

source of water that is essential for plant growth and development. But it is an exogenous 

variable which is beyond farmers’ control. Rainfall varies from time to time. Sometimes it is 

more than what is needed and sometimes it falls short of the minimum requirement. There 

can be untimely rainfall as well. Hence, it is not the total amount of rainfall, but its 

http://www.sourcetrace.com/
https://www.financialexpress.com/author/fe-bureau/
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distribution across regions in a particular season is what matters. Therefore, a fluctuation in 

the distribution of rainfall over the cropping season adversely impacts rain-fed crops. If 

severe drought or flood occurs during the reproductive, stages the possibility of crop failure is 

inevitable. So, there is a strong positive impact of rainfall on crop production. The effect of 

poor monsoon or monsoon failure is generally understood by looking at the changes in output 

between the years of monsoon failure and the normal years (Chand and Raju, 2009). Hence, 

rainfall pattern is one of the most important limiting factors for rain-fed crop production. 

So, it can be said that in order to select the proper cropping pattern in India, it is very 

important to determine the exact relationship between rainfall and crop production. At the 

same time, it is equally important to know the expected monthly rainfall to select the most 

suitable crops for cultivation.  

The present study intends to analyse and forecast the monthly rainfall based on the basis of 

time series data on rainfall. Monthly rainfall forecasts will in advance inform the farmers of 

the volume of rainfall. This information will help them to decide what to cultivate and by 

how much during a particular season. The specific objective of the study is as follows. 

i) To analyze the nature of monthly rainfall in India and forecast the future monthly rainfall. 

 

2. Review of Literature 

Gulati Ashok et.al. (2013), attempted to project the likely impact of robust monsoon rains of 

2013 on the Agricultural Gross Domestic Product (GDP) growth in India. The model 

hypothesizes that the performance of agriculture in India depends upon (1) investments in 

agriculture (private and public); (2) agricultural price incentives; and (3) rainfall. A log-linear 

model fitted over 1996-97 to 2012-13 period can explain 95 percent of the variations in 

agri-GDP with all variables being statistically significant. The model also forecasts that the 

agri-GDP growth rate for the agricultural year (July-June) 2013-14 is likely to be between 5.2% 

and 5.7%. They also estimates that agri-GDP growth in 2013-14 is likely to be about three 

times higher than previous year. This growth in agri-GDP is likely to come mainly from 

oilseeds, pulses, cotton, and coarse cereals belt of central and western parts of the country, 

which is less irrigated and thereby more dependent on rain. It is very likely that any damage 

to kharif crops due to excess rainfall (with extended monsoons and cyclones) would be offset 

by a bumper rabi crop harvest, given that there is excellent soil moisture and ample surplus 

water in reservoirs.  

Olatayo. T. O. and Taiwo. A. I. (2014), have tried to predict rainfall on the basis of annual 

rainfall data of 31 years (1982 to 2012) of Ibadan South West in Nigeria. According to T. O. 

Olatayo and A. I. Taiwo, the climate and rainfall are highly non-linear and complicated 

phenomena, which require classical, modern and detailed models to obtain accurate 

prediction. In order to attain precise forecast, they used a modern method i.e, fuzzy time 

series (FST) which belongs to the first order time-variant method. They also used other two 

fundamentally different approaches which are autoregressive integrated moving average 

(ARIMA) and the non-parametric method (Theil’s regression). The performance of the model 
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has been evaluated based on lowest value of mean squared forecast error (MAE), root mean 

square forecast error (RMSE) and Coefficient of determination. The study reveals that FTS 

model is an appropriate forecasting tool to predict rainfall, since it outperforms the ARIMA 

and Theil’s Regression. 

Karuiru Elias Kimani et al. (2016), have analyzed and forecasted precipitation in Keneya. 

They have used linear time series model of Seasonal Autoregressive Integrated Moving 

Average (SARIMA) and non-linear model of Time Lagged Feed forward Neural Network 

(TLFN). In their study, the values of diagnostic checking parameters including Mean 

Absolute Deviation (MAD), Mean Squared Deviation (MSD) and Mean Absolute Percentage 

Error (MAPE) have been found lower in TLFN than SARIMA. They conclude that the Time 

Lagged Feed forward Neural Network model has performed better than Seasonal 

Autoregressive Integrated Moving Average for forecasting precipitation.  

Kamath R.S. and Kamat R.K. (2018), have analysed time series rainfall data during January 

2006 to December 2016 of Iddukki district in Kerala to forecast rainfall. They used both 

linear and non-linear time series models namely the Autoregressive Integrated Moving 

Average (ARIMA), Artificial Neural Network (ANN) and Exponential Smoothing State 

Space (ETS). Their investigation shows that ARIMA model performed better than the other 

models. The analysis is based on Root Mean Squared Error (RMSE).  

Pongdatu. G. A. N. and Putra. Y. H. (2018), in their study have compared SARIMA and 

Holt-Winter's Exponential Smoothing methods for time series analysis and forecasting of 

clothing sales in retail stores from 2013 to 2017. The SARIMA model yields more accurate 

results for short period time series data. However, Holt Winter’s Exponential Smoothing is 

more appropriate in forecasting seasonal time series data, whatever its pattern and trend be. In 

their study, they have compared the Mean Absolute Deviation (MAD) of the two models and 

have concluded that the model with smaller MAD, i.e., SARIMA (1, 1, 0) (0, 1, 0)12 is a 

better one. 

Kistner Erica et.al. (2018), have found that the temperature and precipitation fluctuations 

across the Midwest directly impact quantity and quality of specialty crops (generally more 

sensitive to climatic stressors and require more comprehensive management compared to 

traditional row crops) and indirectly influence the timing of crucial farm operations. They 

have observed that increasingly variable weather and climate condition pose a serious threat 

to specialty crop production in the Midwest. Their results indicate that weather-induced 

losses vary between Midwestern states with excessive moisture resulting in the highest total 

number of claims across all states followed by freeze and drought events. They observe that 

the specialty crop growers are aware of the increased production risk under changing climate 

condition and have identified the need for crop specific weather, production, and financial 

risk management tools and increased crop insurance coverage. 

Renato Rossetti (2019) has discussed time series approaches to forecast the sales of console 

games for the Italian market. More specifically he evaluates two univariate techniques 

namely, Exponential Smoothing and the SARIMA techniques. The aim is to exploit the 

capabilities of these statistical methods in order to have a comparison of the results and to 
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choose the most accurate model through an ex-post evaluation. Using monthly time-series 

data from November 2005 to September 2017, the selection of the most suitable model has 

been indicated by the smallest value of the measures of accuracy (MAPE, MAPE, RMSE) for 

the out-of-sample observations during the period October 2017-September 2018. In terms of 

performance, the smallest values concerning these measures represent the best choice 

between the models studied, and the preferred option for this time series is SARIMA (2, 1, 0) 

(1, 1, 0)12. Therefore the SARIMA model is the most reliable and relevant model for this 

analysis. 

 

3. Data and Methodology 

The study covers the period between 1992-93 and 2016-17. All India monthly, seasonal and 

annual rainfall series were constructed based on the area weighted rainfall of all the 306 

stations during 1989-2013 and 2014-2016 based on IMD Sub-divisional rainfall (Kothawale 

and Rajeevan, 2017). The different time series (linear and non-linear) models have been used 

to analyze the objective of our research. 

3.1 Linear Time Series Models 

In the analysis of time series, several methods of forecasting are used. Most common 

methods are the Moving Average method, Linear Regression with Time, Non-seasonal and 

Seasonal Exponential Smoothing, Autoregressive Integrated Moving average etc.  

The monthly rainfall data of India exhibit seasonality (which is explained later). According to 

the nature of the data, this study concentrates on the Simple seasonal Exponential Smoothing 

and Seasonal Autoregressive Integrated Moving Average models among the linear models. 

3.1.1 Simple Seasonal Exponential Smoothing  

When the sequences of data show no trend but seasonality factors exist, the simple seasonal 

exponential smoothing method is the best option for forecasting. The simple seasonal 

exponential method comprises the forecast equation and two smoothing equations - one for 

the level Lt, and other for the seasonal component denoted by St, with smoothing 

parameters α and δ.  

 Level L t = α (Y t – S t-s) + (1- α) Lt-1         ……… (1) 

            Seasonal S t = δ (Y t - Lt) + (1- δ) S t-s         ………. (2) 

Forecast F t + k = L t + S t +k –s) 

Where s (s = 12 for monthly data) is the length of the seasonal cycle, for 0 ≤ α ≤ 1 and 0 ≤ δ ≤ 1. 

3.1.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) 

The ARMA is an extrapolation (techniques for forecasting using only the past data) method 

which requires historical time series data of the underlying variable. The model in specific 

and general forms may be expressed as follows. 
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  Yt = μ + ɸ1 Yt-1+ ɸ2 Yt-2+ …+ ɸ p Yt-p + εt - δ1 ɛt-1- δ2 ɛ t-2-... – δq ɛt-q         (3) 

Box and Jenkins argue that a non-stationary series can be transformed either into a stationary 

or an almost stationary series if it is differenced (d) an appropriate number of times. After 

transforming the series into a stationary or to an almost stationary series, the model 

transforms to ARIMA.  

The mathematical equation, of the ARIMA (p, d, q) model is defined in Equation (4) as 

follows: 

  ɸ p (B) (1-B) d Yt = θ q (B) εt                        (4) 

If a time series is seasonal of period s, Box and Jenkins made a proposal that such a model 

may be defined as Equation (5)  

ɸp (B) φP (Bs)(1-B) d (1-Bs) D Yt = θq (B) δq (Bs) εt                (5) 

Where B is the backshift operator (i.e. BYt = Yt-1, B2Yt = Yt-2, BsYt = Yt-s and so on),’s’ is the 

seasonal lag and ‘ε’ is a sequence of independent normal error variables with mean 0 and 

variance σ2. ɸs and φs are the non-seasonal and seasonal autoregressive parameters 

respectively. θ s and δs are non-seasonal and seasonal moving average parameters 

respectively. P and q are orders of non-seasonal autoregressive and moving average 

parameters, whereas P and Q are that of the seasonal auto regressive and moving average 

parameters. Here, ‘d’ and ‘D’ denote non-seasonal and seasonal differences respectively. In 

its general form, the Seasonal ARIMA (SARIMA) model is represented as SARIMA (p, d, q) 

(P, D, Q) s. Box and Jenkins (1976) have suggested four basic steps namely (i) Identification 

of the model (ii) Estimation of parameters of the model (iii) Diagnostic Checking of the 

model and (iv) Forecasting- to complete the procedure of model building (details of this 

model has been described in our published article, Mithiya et al., 2019).  

Both models (SARIMA and Simple Seasonal Exponential Smoothing) are based on their past 

values and error terms. One is parametric model and the other one is non parametric. There 

is a controversy between the researchers over which model is more appropriate. Some 

literatures have described that simple seasonal exponential smoothing should be considered 

more useful than SARIMA due to its weight assigning capacity. Others have opined that 

SARIMA is better alternative than simple seasonal exponential smoothing. However, the best 

of the two is the one that describes time series the best without over-fitting. But both are 

suitable in describing linearity of the data.  

3.2 Non-linear Time Series Model 

Sometimes the time series often contains nonlinear components; under such situations the 

linear models are not adequate for modeling and forecasting. To overcome this difficulty, a 

non-linear model has been successfully used. When the linear restriction of the model form is 

relaxed, the possible number of nonlinear structures (ARCH, GARCH, EGARCH, TAR, 

NAR, NMA model, etc.) that can be used to describe and forecast a time series are enormous. 

A good nonlinear model should be “general enough to capture some of the nonlinear 

phenomena in the data” (De Gooijer and Kumar, 1992). Artificial neural networks (ANNs) 
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model is one such that is able to approximate various nonlinearities in the data. To deal with 

uncertainty, linearity or nonlinearity of time series data, artificial neural networks model is 

the most effective method.  

3.3 Artificial Neural Networks (ANNs) 

Artificial neural networks are a class of flexible nonlinear models that can discover patterns 

adaptively from the data. Theoretically, it has been shown that given an appropriate number 

of nonlinear processing units, neural networks can learn from experience and estimate any 

complex functional relationship with high accuracy (Zhang and Qi, 2005). The most widely 

used ANNs in forecasting problems are multi-layer perceptron (MLPs), which use a single 

hidden layer feed forward network (Zhang et.al., 1998). The model is characterized by a 

network of three layers, viz. input, hidden and output layers, connected by acyclic links. 

There may be more than one hidden layers. The nodes in various layers are also known as 

processing elements. The three-layer feed forward architecture of ANN models can be 

diagrammatically depicted as follows: 

 

Figure 1. Structure of ANNs 

 

The relationship between the output (yt) and the inputs (yt-1, y t-3…….yt-p) have the following 

mathematical representation: 

y t = α0 + ∑ α
𝑞
𝑗=1 j g (β0 j +∑ β

𝑝
𝑖=1 i j y t-i) + ε t                   (6) 

Here y t-i (i=1, 2, ..., p) are the p inputs and y t is the output. α j (j = 1, 2, 3,……, q) and β ij 

( i= 1 ,2, 3,……p, j = 1,2,3,………q) are the connection weights and εt is the random shock; 

α0 and β0j are the bias terms. The integers p, q are the number of input and hidden nodes 

respectively. Usually, the logistic sigmoid function is often used as the hidden layer transfer 

function (nonlinear activation function), that is, 

g (x) = 1 1 + 𝑒−𝑥⁄                               (7) 

Hence, the ANN model of (6) in fact performs a nonlinear functional mapping from the past 

observations (yt-1, y t-2, y t-3,……,y t-p,) to the future value yt, i.e.,  
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y t = f ( yt-1, y t-2, y t-3,……,yt-p, w ) + ε t                 (8) 

Where, w is a vector of all parameters and f is a function determined by the network structure 

and connection weights. Thus, the neural network is equivalent to a non-linear 

autoregressive model. Note that expression (6) implies one output node in the output layer 

which is typically used for one-step-ahead forecasting.  

The choice of q is data dependent and there is no systematic rule in deciding this parameter. 

In addition to choosing an appropriate number of hidden nodes, another important task of 

ANN modeling of a time series is the selection of the number of lagged observations, p (the 

dimension of the input vector). This is perhaps the most important parameter to be estimated 

in an ANN model. It plays a major role in determining the nonlinear autocorrelation structure 

of the time series. There is also no standard rule to guide the selection of p. Hence, 

experiments are often conducted to select an appropriate p as well as q. Once a network 

structure (p; q) is specified, the network is ready for training- a process of parameter 

estimation. The parameters are estimated so that an overall accuracy criterion like the mean 

squared error is minimized.  

In other words, the two essential elements that determine the ANNs are architecture structure 

and learning algorithm. The architecture is determined by deciding the number of layers and 

number of neuron nodes in each layer (Aladag et al., 2009) and there is no general rule for 

determining the best architecture (Zurada, 1992). The links that connect the neurons of a 

layer to the neurons of another layer are called weights. These weights are determined by a 

learning algorithm that updates their values. Non-linear least square procedures are used to 

estimate the connection weights. Back Propagation algorithm is one of the most used learning 

algorithms which updates the weights based on the difference between the output value of the 

ANN and the desired real value.  

 

4. Results and Discussion 

4.1 Descriptive Statistics 

The study considers monthly rainfall statistics of India during the period from January 1992 

to December 2016 for time series analysis. The study has taken into account 300 observations. 

The descriptive statistics of monthly, seasonal and yearly rainfall in India are also presented 

in Table 1. The table depicts that the minimum monthly rainfall is 0.80 mm whereas the 

maximum monthly rainfall is 334.1 mm. Therefore the range is 333.30 mm. The mean and 

standard deviation of monthly rainfall in India are 87.88 and 141.26 respectively. 

The seasonal and total rainfall have also been considered in this study. The minimum rainfall is 

91.00 mm in rabi (October-March) season, 646.80 mm in kharif (June- September) season and 

856.10 mm during the year as a whole while the maximum rainfall is 226.90 mm in rabi, 

957.50 mm in kharif and 1229.10 mm in whole year respectively. The mean and standard 

deviation of rainfall in rabi season are 154.49 mm and 35.06, while in kharif season 829.96 mm 



 Research in Applied Economics 

ISSN 1948-5433 

2020, Vol. 12, No. 4 

                                                  http://rae.macrothink.org 9 

and 77.74.  The values of mean and standard deviation are 1066.49 mm and 88.09 for the 

entire period. 

 

Table 1. Descriptive Statistics of Rainfall (mm) 

Category Minimum Maximum Mean Range Std. Deviation 

Monthly Rainfall   (300) 0.80 334.1 87.88 333.30 92.72 

Rabi Rainfall      (25) 91.00 226.90 154.49 135.90 35.06 

Kharif Rainfall    (25) 646.80 957.50 829.96 310.70 77.74 

Total Rainfall     (25) 856.10 1229.10 1066.49 373.00 88.09 

Source: Authors’ calculation, mm: Millimeters 

4.2 Time Series Models 

While analyzing time series data for forecasting purposes, it is very important to know the 

pattern of the data. The series of data may have trends, seasonality, cyclical and random 

variability. The trend can be easily identified and confirmed with a computer analysis of the 

data using statistical techniques such as fitting a trend line or use of the autocorrelation 

function. The trend may be positive or negative. Seasonality, defined as a structured pattern 

of changes within a year, is the subject matter i.e., regular wavelike fluctuations of constant 

length, repeating themselves. Cyclicality is in the realm of economics and is not dealt with 

here (Davey et al., 1993). The graphical presentation of data in figure 2 indicates that data 

have no trend but the seasonality is identified. The values of the autocorrelation function 

(Annexure Table1) have been calculated from our observations and it is clearly indicated that 

the series has seasonality. So the study needs to consider those types of time series models 

which have the power to handle the seasonal factor. 

 

Figure 2. Sequence Chart of Monthly Rainfall of Ind 
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Figure 3. Sequence Chart of Monthly Rainfall of India after Seasonal Differences 

 

4.2.1 Linear Model of Time Series 

4.2.1.1 Simple Seasonal Exponential Smoothing 

After analyzing the nature of data, the study tries to choose the appropriate linear model to 

explain the monthly rainfall and forecasting of rainfall in India. By using SPSS expert 

modeler, the study selects the simple seasonal model as the best model among the all. All 

parameters and model summary of the simple seasonal model are given in Table 2. 

 

Table 2. Parameters and Model Summary of Simple Seasonal Exponential Smoothing 

Division Variable Coefficient SE t-value R2 RMSE MAE BIC 

Indian Monthly 

Rainfall 

Alpha (α) 0.10* 0.031 3.241 0.937 23.25 13.23 6.32 

Delta (δ) 0.000027 0.029 0.001     

Source: Authors’ Calculation 

 

The results of the selected model indicate that the coefficient of level factor (α) is statistically 

significant but the coefficient of seasonal factor (δ) is insignificant. At the same time, the 

residual of ACF and PACF are not in the prescribed range. Hence, the study has not accepted 

the simple seasonal exponential smoothing model for the analysis of rainfall data and 

forecasting. 

Therefore, the study has tried to find the appropriate alternative model which can explain the 

data showing exhibiting seasonality. Seasonal Auto Regressive Moving Average model might 

be an alternative. 
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4.2.1.2 Seasonal Autoregressive Integrated Moving Average 

In the SARIMA model, the series need to be stationary. In Figure 2 above, it can be clearly 

observed that the pattern of the graph indicates series is stationary. There is no upward and 

downward trend but clear seasonal fluctuation is present. 

Augmented Dickey-Fuller (ADF) test has been used to test for stationary. The Dickey-Fuller 

test statistic is -7.60 and the p-value is around 0.000 of the data. Since, the test statistics is less 

than that of critical value, the study, therefore, fails to accept H0 (series is non-stationary) at 5 

percent level and hence concludes that the alternative hypothesis H1 (series is stationary) is 

accepted. Hence, the series is stationary in its mean and variance. Consequently, there is no 

need for non-seasonal differences. The Table 1 in the Appendix indicates that the 

autocorrelation coefficients at lags between t and t-12 are significant. The series has seasonal 

fluctuation. To remove this seasonal fluctuation from the series, seasonal differences have to be 

taken into account. The sequence of de-seasonal data are presented in figure 3. 

4.2.1.2.1 Identification of Model 

The first step of SARIMA is model identification. Here the selected SARIMA model is (0, 0, 

0) (0, 1, 0)12 which has been done using SPSS expert modeler. An identification process has 

been used to determine the initial values of the orders of non-seasonal and seasonal 

parameters, p, q, and P, Q which is obtained from the ACF and PACF plots. The ACF and 

PACF plots (Figure 1 & 2 in the Appendix) of the SARIMA model (p,0,q)(P, 1, Q)12 suggest 

that the model will be (0,0,0)(1,1,1)12. The alternative models are 

(0,0,0)(4,1,0)12 ,(0,0,0)(5,1,0)12 which have also been taken into consideration. 

4.2.1.2.2 Model Estimations 

Table 3. Coefficients of Fitted SARIMA Models of Indian Rainfall 

Sl. No Model SAR(1) SAR(2) SAR(3) SAR(4) SAR(5) SAR(6) SMA(1) 

1 SARIMA 

(0,0,0)(1,1,1)12 

-0.084 - - - - - 0.999 

SE 0.66 - - - - - 2.998 

t- value -1.267 - - - - - 0.333 

2 SARIMA 

(0,0,0)(4,1,0)12 

-0.866* -0.592* -0.431* -0.193* - - - 

SE 0.059 0.77 0.079 0.065 - - - 

t- value -14.581 -7.665 -5.477 -2.959 - - - 

3 SARIMA 

(0,0,0)(5,1,0)12 

-0.902* -0.672* -0.540* -0.353* -0.190* - - 

SE 0.060 0.081 0.086 0.085 0.067 - - 

t- value -15.149 -8.303 -6.245 -4.155 -2.847 - - 

Source: Authors’ Calculation 
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The results of these SARIMA models are summarized in Table 3. The estimated parameters 

of SAR (1) and SMA (1) are not statistically significant in the model (0, 0, 0) (1, 1, 1)12, So 

SARIMA (0, 0, 0) (1, 1, 1)12 is not a appropriate model.  

Whereas in the alternative model, all the coefficients are statistically significant. In addition 

to this, the ACF and PACF of residuals have fallen inside the 95 percent confidence levels in 

both models. The appropriate model is selected from two alternative SARIMA models 

[(0,0,0)(4,1,0) and (0,0,0)(5,1,0)] on the basis of diagnostic checking. 

4.2.1.2.3 Diagnostic Checking  

After estimating the parameters, the study tests the adequacy of the model using Ljung-Box 

(Q) statistics. In both these models, Q statistics are statistically significant. Comparing these 

two models, the SARIMA (0, 0, 0) (5, 1, 0)12 model is found to be best suited for forecasting 

Indian rainfall. The values of RMSE, MAE and BIC in SARIMA (0,0,0)(5,1,0)12 are lower 

than that in SARIMA (0,0,0)(4,1,0). The summary of the results are given in Table 4.  

 

Table 4. RMSE, MAPE, BIC Values and Q Statistics of Fitted SARIMA Models 

Sl. No Model RMSE MAE BIC R2 Ljung Box  

Q Statistics 

Df 

1 SARIMA 

(0,0,0)(4,1,0)12 

26.244 18.146 6.633 0.921 12.281 14 

2 SARIMA 

(0,0,0)(5,1,0)12 

25.885 17.877 6.625 0.9.23 10.963 13 

Source: Authors’ Calculation 

 

On the basis of above statistics SARIMA (0, 0, 0) (5, 1, 0)12 is the best model. The model is 

as follows:  

Φ5 (B12) (1-B12)1Yt = εt                             (6) 

This model is a special case of the SARIMA model, which is called a Seasonal Integrated 

Auto-Regressive Model. 

4.2.1.2.4 Forecasting 

Using the identified model SARIMA (0, 0, 0) (5, 1, 0)12 the study has forecasted the monthly 

rainfall in India up to December 2021. The results of the forecasted monthly rainfall have 

been presented in Table 5. 
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Table 5. Forecasting of Monthly Rainfall (mm.) in India Using SARIMA 

Year

s 

Jan Feb  Mar  April  May  June  July  Aug  Sep Oct  Nov  Dec 

2019 8.6

9 

12.9

7 

18.4

0 

29.2

8 

52.4

8 

164.0

8 

268.9

8 

223.2

5 

156.7

4 

71.2

4 

21.3

8 

6.8

3 2020 9.3

2 

10.3

8 

19.1

7 

27.5

5 

53.0

2 

146.3

7 

263.9

9 

219.7

5 

158.0

6 

58.0

2 

20.7

7 

7.3

2 2021 8.6

9 

8.21 19.5

5 

31.6

6 

50.3

9 

161.0

5 

263.5

1 

219.0

0 

154.2

7 

57.9

6 

23.1

0 

6.9

5 
Source: Authors’ Calculation 

 

The forecasted results show that the rainfall of July-August is maximum and December- 

January is minimum which coincides with actual series. The annual rainfall will be 1034.318 

mm. and 993.715 mm. and 1004.34 mm in 2019, 2020 and 2021 respectively. 

4.2.2 Non Linear Model of Time Series 

4.2.2.1 Artificial Neural Network 

To find the optimal number of input node (time lags) and hidden node, the study attempts to 

train the network with different values of learning rates and momentum rates until the mean 

square error and mean absolute error of the training set is very minimum and checked the 

testing set performance. For whatever values of the above parameters, the mean square errors 

of training set and testing set is minimum.  

The different learning rates and momentum rates have been considered. However, it has been 

observed that, the different learning rates in the hidden layer and an output layer with a 

constant momentum rate leads to fast training. The study has been considered fixed momentum 

rate (value 0.05) with changing learning rates. Learning rates of 0.005 gives better results than 

learning rates of 0.009. The Zaitun software has been used to train and test the network. 

The study developed and trained different time-lagged feed-forward neural networks (TLFN) 

models for forecasting monthly rainfall. It is observed that 36 -12-1 is the best model among 

the several TLFN models. The input layer has 36-time lags; and the output layer has one node 

whereas the hidden layer has 12 hidden nodes. In the model 36-12-1, 74.36 percent 

observations are used as training data and 25.64 percent are used as testing data. All the results 

are given in Table 6. 

Table 6. Different ANNs Models with RMSE, MAE Statistics of Monthly Rainfall in India 

Sl. No Model Learning Rate Momentum MAE MSE RMSE 

1 48-12-1 0.005 0.05 14.33 388.15 19.701 

2 48-06-1 0.005 0.05 15.49 471.54 21.714 

3 36-12-1 0.005 0.05 14.13 359.49 18.960 

4 36-06-1 0.005 0.05 14.90 455.89 21.351 

5 24-12-1 0.005 0.05 15.61 491.63 22.172 

6 24-06-1 0.005 0.05 16.11 537.89 23.192 

7 12-06-1 0.005 0.05 17.46 626.84 25.036 

8 36-12-1 0.009 0.05 14.59 391.44 19.785 

Source: Authors’ calculation 
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To compare the diagnostic checking parameter of the model 36-12-1 at different learning 

rates, 0.005 gives better results than 0.009.  

Hence, 36-12-1 is the best ANN model for Indian monthly rainfall with 0.005 learning rate 

and 0.05 momentum. 

4.2.2.2 Forecasting in ANN 

Table 7 has shown that forecasted monthly rainfall in India during 2019, 2020 and 2021 using 

the ANN model (36-12-1). 

 

Table 7. Forecasting of Monthly Rainfall (mm.) in India Using ANN 

Source: Authors’ Calculation 

 

This rainfall is graphically represented in fig. 4. The Y-axis represents the volume of rainfall 

in millimeters and X-axis indicates time i.e, years. The black and white part of the figure is 

indicates actual values of rainfall and blue or highlighted portion of the figure is representing 

predicted values of rainfall. 

 

          

Figure 4. Forecasted Monthly Rainfall Using ANN Model 

 

4.3 Linear Model (3.1) Vs. Non Linear Model (3.2) 

Now the question is which model performs better when it comes to analyzing time series data 

of rainfall and forecasting future rainfall. To select this, the study has considered the values 

Years Jan Feb  Mar  April  May  June  July  Aug  Sep Oct  Nov  Dec 

2019 13.81 13.34 15.46 21.90 66.71 186.14 263.72 252.44 179.78 70.05 27.12 9.18 

2020 10.65 13.18 20.53 30.44 65.89 171.38 244.36 243.93 160.01 61.93 26.58 11.28 

2021 11.43 9.62 17.60 21.50 67.34 188.12 275.83 250.79 181.19 74.24 28.27 8.61 
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of model selection parameters like MAE, MSE, and RMSE. The values of all these 

parameters are comparatively lower in the case of non-linear (ANN) model than the linear 

(SARIMA) model which are presented in Table 8. Hence, it can be conclude that Non-linear 

Artificial Neural Network model is the best one to explain monthly rainfall of India and to 

forecast rainfall accurately. 

 

Table 8. Comparison of SARIMA and ANN in Diagnostics Checking Statistics 

Sl. No Model MAE MSE RMSE 

1 ANN (36-12-1) 14.13 359.49 18.960 

2 SARIMA (0,0,0)(5,1,0)12 17.877 670.033 25.885 

Source: Authors’ Calculation 

 

4.4 Discussion 

The study has estimated the year to year fluctuations in rainfall and agricultural production. 

The results are presented in Table 1 in the Appendix. The table shows that the years 1995, 

2002, 2004, 2009, 2012 and 2014 have received less (deviation is more than 10 percent) 

rainfall than their respective previous years. While the years 1994, 2003, 2010, 2013 and 

2016 have received more (deviation is more than 10 percent) rainfall compared to the 

preceding years. The agricultural production has changed with change in rainfall. It is 

obvious that the fluctuation in rainfall has influenced the level of output in most of the cases 

and agricultural production has increased with an increase in rainfall and vice versa.  

From table 1in the appendix, it can be observed that a good rainfall positively influences 

kharif production and at the same time provides water for irrigation during rabi season. 

Hence, good and timely rainfall indicates better production and stable prices. Keeping in 

mind the impact of rainfall on agricultural production, the study has attempted to forecast 

monthly rainfall for India with the help of time series analysis based on monthly rainfall 

data. 

The diagnostic checking parameters of analyzed linear (SARIMA) and non- linear (ANN) 

time series models have been presented in Table 8. It is clear that the non-linear model 

performs better in explaining monthly rainfall data and accurate forecasting. The results 

match those obtained by Karuiru et al. (2016). 

The forecasted values of monthly rainfall in our selected model under Artificial Neural 

Networks are given in Table 7. The volume of precipitation is higher in the month of 

July-August and lower in December- January. The nature of forecasted monthly rainfall is 

similar to that of actual monthly rainfall. The expected yearly rainfall will be 1119.65 mm, 

1136.22 mm and 1134.54 mm in 2019, 2020 and 2021 respectively. 
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5. Conclusion 

After 72 years of independence, Indian agriculture still depends on rainfall. The volume of 

rainfall and its distribution over time and region are uneven. Such vagaries of monsoon 

affects not only agricultural production but prices of agricultural commodities as well. The 

study has observed that the fluctuation in rainfall and that of output are highly correlated. The 

variation in rainfall leads to output fluctuations and thereby raises prices. The study has 

attempted to forecast monthly rainfall for the country as a whole with the help of time series 

analysis based on monthly rainfall data. Both linear and non-linear models have been used. 

The value of diagnostic checking parameters MAE, MSE, RMSE are lower in non-linear 

model compared to the linear ones. The Non-linear model of Artificial Neural Networks 

(ANNs) has given better results than linear models namely simple seasonal exponential 

smoothing and Seasonal Auto-Regressive Integrated Moving Average in explaining rainfall 

data. It can therefore be concluded that forecasting of rainfall with ANN is more efficient 

than that using SARIMA model. 
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Appendix: 

Table 1. Autocorrelation Monthly Series 

Lag Autocorrelation Std. Errora 

Box-Ljung Statistic 

Value df Sig.b 

1 0.75 0.06 170.88 1.00 0.00 

2 0.32 0.06 201.23 2.00 0.00 

3 -0.14 0.06 206.88 3.00 0.00 

4 -0.46 0.06 270.86 4.00 0.00 

5 -0.62 0.06 388.44 5.00 0.00 

6 -0.65 0.06 519.38 6.00 0.00 

7 -0.60 0.06 629.29 7.00 0.00 

8 -0.43 0.06 685.84 8.00 0.00 

9 -0.12 0.06 690.11 9.00 0.00 

10 0.32 0.06 721.46 10.00 0.00 

11 0.73 0.06 887.40 11.00 0.00 

12 0.89 0.06 1136.90 12.00 0.00 

13 0.72 0.06 1298.99 13.00 0.00 

14 0.30 0.06 1326.90 14.00 0.00 

15 -0.14 0.06 1332.93 15.00 0.00 

16 -0.44 0.06 1395.19 16.00 0.00 

17 -0.59 0.06 1508.42 17.00 0.00 

18 -0.63 0.06 1635.66 18.00 0.00 

19 -0.58 0.06 1742.45 19.00 0.00 

20 -0.41 0.06 1798.04 20.00 0.00 

21 -0.11 0.06 1801.71 21.00 0.00 

22 0.31 0.06 1832.68 22.00 0.00 

23 0.70 0.06 1993.04 23.00 0.00 

24 0.87 0.06 2241.37 24.00 0.00 

25 0.68 0.06 2395.53 25.00 0.00 

26 0.28 0.05 2421.56 26.00 0.00 

27 -0.14 0.05 2428.02 27.00 0.00 

28 -0.43 0.05 2489.15 28.00 0.00 

29 -0.57 0.05 2599.00 29.00 0.00 

30 -0.60 0.05 2720.56 30.00 0.00 

31 -0.55 0.05 2822.88 31.00 0.00 

32 -0.39 0.05 2874.25 32.00 0.00 

33 -0.10 0.05 2877.91 33.00 0.00 

34 0.29 0.05 2906.14 34.00 0.00 

35 0.67 0.05 3059.79 35.00 0.00 

36 0.82 0.05 3291.44 36.00 0.00 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation. 
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Appendix Fig 1. ACF plots after seasonal differentiation 

 

        

Appendix Fig 2. PACF plots after seasonal differentiation 
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Appendix Fig. 3: Residual ACF and PACF 

 

Appendix Table 2. Year to Year Fluctuation in Rainfall and Rain-fed Crops 

 

Kharif    

rainfall 

     Kharif              

Rice Maize Groundnut Sugarcane 

Kharif 

Cereals 

Kharif 

Pulses 

Kharif 

Oilseeds 

1992         

1993 3.83 8.40 -4.64 -14.32 0.71 -0.86 -9.34 2.69 

1994 13.18 2.66 -10.38 6.19 19.98 1.47 -11.11 3.22 

1995 -14.40 -6.51 8.33 -0.11 2.02 -6.16 -4.39 9.55 

1996 3.83 5.07 10.80 2.48 -1.26 8.78 -19.17 4.35 

1997 0.41 1.70 2.79 -4.87 0.71 -1.15 -20.40 3.49 

1998 0.34 0.26 1.15 17.11 3.28 0.49 19.85 11.74 

1999 -5.78 6.55 1.76 -45.01 3.67 2.99 -6.32 -21.01 

2000 -2.72 -6.07 5.29 29.21 -1.12 -3.04 -7.64 -4.33 

2001 1.11 10.64 10.07 14.51 0.42 9.83 8.77 10.72 

2002 -18.59 -21.66 -17.57 -44.95 -3.31 -22.53 -14.20 -32.10 

2003 32.36 24.63 37.34 121.65 18.62 33.42 48.51 85.74 

2004 -13.36 -8.13 -9.88 -23.29 1.38 -11.05 -23.48 -15.13 

2005 11.70 8.36 5.92 19.68 18.59 6.51 3.13 18.50 

2006 9.27 2.43 -4.93 -47.69 26.44 0.74 -1.43 -16.43 

2007 4.62 3.16 30.72 123.50 -2.06 8.33 33.53 47.83 

2008 -6.85 2.72 -6.53 -23.71 -18.14 -0.96 -26.82 -14.03 

2009 -20.43 -10.59 -12.94 -31.42 2.55 -12.07 -10.29 -11.68 

2010 26.17 6.24 35.34 72.44 17.13 14.01 69.36 39.38 

2011 1.94 14.94 -0.91 -22.82 5.45 10.05 -14.92 -5.62 

2012 -10.83 -0.42 -81.94 -37.81 -5.49 -2.44 -2.35 0.28 

2013 17.66 -0.93 20.16 152.75 3.21 0.44 1.35 8.98 

2014 -22.26 -0.11 5.85 -26.40 2.89 -0.29 -4.38 -15.14 

2015 -1.13 0.02 -21.25 -9.49 -3.83 -2.27 -3.53 -13.08 

2016 16.04 5.35 0.20 12.67 -12.16 7.68 73.31 29.05 
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ABBREVIATION: 

ADF:  Augmented Dickey-Fuller  

ANNs:   Artificial Neural Networks 

ARIMA:  Auto Regressive Integrated Moving Average 

ETS:   Exponential Smoothing State Space  

IMD:   India Meteorological Department 

MAE:   Mean Absolute Error  

MLPs:   Multi-Layer Perceptron 

Mm:   Millimeter 

MSE:  Mean Square Error. 

RMSE:   Root Mean Square Error 

SARIMA: Seasonal Auto Regressive Integrated Moving Average 

TLFN:   Time-Lagged Feed Forward Neural Networks  
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