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Abstract 

This paper is motivated by major food product recall events in recent years, especially how 

the timely and effective response using post-recall management can make a difference. We 

consider the rare but very influential major product recalls as disruptions to the supply chain 

and incorporate locating reprocessing centers for the returned products to mitigate expected 

operational costs. We adopt the closed loop network design framework and assume the 

location decisions for reprocessing center take place after the product recall events. Our 

scenario-based analysis shows the approach is effective in both absolute and relative 

measures. 

Keywords: Risk mitigation, Product recall risks, Facility location model, Forward and 

reverse flow logistics, Lagrangian relaxation 

1. Introduction 

In September 2012, the rejection of ground beef imports by the U.S. custom and the later 

outbreak of the E.coli disease forced XL Inc. (XL) to start a series of beef recalls, which 

turned out to be the largest meat recall event in Canada history. The recall of 1,800 products 

impacted over 33 retail chains across Canada. Over 4,000 tons of meat and meat products 
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were sent back to plants for disposal. This unprecedented amount of recalled products 

overwhelmed the capacities of any existing disposal methods of XL, the largest domestically 

owned meat processor in Canada at the time, resulting in 600 tons of frozen beef being sent 

directly to landfill. The failure to adequately process recalled products raised the public 

concern over XL’s capability to maintain food safety. This incident eventually led to a 

transfer of XL’s ownership for the Calgary plant. Charlebois et al. (2015) discussed this event 

and its impacts in detail. 

In comparison, when facing the 2008 Listeria outbreak, Maple Leaf Food Inc. (MLF) recalled 

all potentially affected products promptly and dealt with the disposal of 1,300 tons of beef 

and beef products. MLF’s actions bought time to discover the contamination source and 

recover the brand. Nevertheless, there was a substantial direct cost of $19 million related to 

recall activities (e.g., collection and destruction, shutdown and sanitation of facility, media, 

and customer response call center). In total, MLF suffered approximately $200 million loss in 

this incident. 

Food safety is generally referred to as the prevention of illness resulting from the 

consumption of contaminated food as discussed by Akkerman et al. (2010). This topic has 

attracted more attention recently because of the growing rigorous government standards as 

well as the large social and financial impacts of major food safety failure. Effective control of 

food safety along the supply chain is important but very complicated because food is 

vulnerable to contamination and food supply chains are sophisticated. For example, 

Desmarchelier et al. (2007) provide a summary of food safety management in the red meat 

industry of Australia. Risk mitigation strategies are applied in the entire food supply chain. 

However, food borne disease is a critical inherent risk factor in food manufacturing and 

distribution, due to the indigenous existence of microbial contaminations in raw food 

materials, natural growth of pathogens, inevitable mistakes in manual operations, 

contamination, and other factors. In response to food safety incidents, business and society 

adopt food recalls to correct the situation and mitigate monetary and social costs. 

Manufacturing companies manage food recalls by collecting products from their distribution 

channels and adopting best methods to recondition and dispose recalled products. 

Proper preparation could help companies manage food recalls more efficiently and effectively, 

especially in strategic planning. For example, firms could use location-allocation decisions 

for both manufacturing plants and reprocessing facilities for recalled products. Linking to 

optimization studies, Akkerman et al. (2010) provide a review of improving food supply 

chain management with network planning models. Food quality, food safety and 

sustainability are considered as key objectives. Three levels of network planning models are 

considered, namely strategic network design (e.g., facility location-allocations), tactical 

network planning (e.g., production and distribution) and operational transportation planning 

(e.g., routing). They suggest that strategic network design is critical in food safety control, 

impacting how long food products travel and how widely the products spread geographically, 

both of which determine the size of potential product recalls. 

This paper addresses the supply chain safety control issue by designing the supply chain 
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network to incorporate the negative effects of product recalls. Although our model is 

motivated by food recall, it can be applied to any supply chain with significant impacts of 

recall events. Extending from the closed-loop network design concept, this work focuses on 

managing the reverse flow (recalled products) in a cost-efficient manner. However, rather 

than maintaining a closed-loop supply chain on a daily basis as in most studies (e.g., repair 

and post-sale service systems), we study the efficient way of managing random and rare 

major product recalls. The features of rareness and randomness of major products recalls lead 

us to disruption management studies in which researchers focus on how to consistently 

satisfy customer demands given that some suppliers may fail. Our focus is different in that we 

consider how to quickly build a reprocessing network to dispose recalled products. 

We study the location-allocation problem with random occurrence of product recalls and treat 

the recall incidences as disruptions to the supply chain. In our setting, the company first 

makes decisions to locate manufacturing plants and allocate demands. After the product recall 

occurs, we make decisions to locate the reprocessing center(s) from internal (self-owned 

recall facility) or external (third-party business) sources and allocate recalled products for 

reprocessing or local disposal. Three features distinguish our problem from other 

location-allocation problems. Firstly, facility location and allocation decisions occur in two 

stages. Secondly, the second stage location-allocation happens under uncertainty. Thirdly, 

reverse logistic flows exist in the second stage. 

We design a two-stage stochastic mixed integer programming model, in which we locate the 

manufacturing plants in the first stage and the reprocessing/disposal facilities in the second 

stage. We adopt a scenario-based approach to describe the uncertainty of major recall events 

that may happen in manufacturing plants as well as of availability of reprocessing facilities. 

Given the complexity induced by our nested facility location problem, we devise an 

algorithm based on Lagrangian relaxation to solve the uncapacitated case. 

This paper will be organized as follows. Section 2 provides a brief review of literature. 

Section 3 introduces the mathematical model, an analysis based on facility capacities, and a 

Branch-and-Bound algorithm incorporating Lagrangian relaxation for the uncapacitated case. 

Section 5 presents the computational results and managerial insights from experiments. 

Section 6 summarizes contributions and discusses further research directions. 

2. Literature Review 

There are two research streams closely related to our research, i.e., reliable supply chain 

network design, and location-allocation with bidirectional logistical flows. 

There is a well-developed literature on modeling supply chain disruption management. 

Snyder et al. (2006) provide a review of optimization models in supply chain network 

planning with disruption management. They categorize by network status, underlying 

mathematical models and risk measures. They show various models extending the classical 

P-median and Uncapacitated Facility Location Problem (UFLP), Capacitated Facility 

Location Problem (CFLP) models with reliability features (i.e., consistent satisfaction of 

demands when some facilities fail in random disruptions). Qi et al. (2010) consider a 
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fortification model with disruptions. They manage locations, allocations, and inventory. Both 

suppliers and retailers can experience random disruptions. Qi (2013) examines different 

sourcing and replenishment decisions with two suppliers. Dada et al. (2007) develop a 

newsvendor procurement model selecting from multiple unreliable suppliers. Their results 

suggest that newsvendor, customers, and retailers perceive different service level changes 

when disruption occurs. Compared to reliability concerns, cost is the most determinant factor. 

This body of work focuses on satisfying customer demand – there is no focus on reverse 

flow. 

On the other hand, in closed-loop supply chain models, the emphasis is to minimize the 

long-run average cost of forward and reverse flows, which does not model the random 

occurrence of product recalls. Uncertainty in closed-loop supply chain network design is not 

always considered. Some studies use a fixed return rate based on historical data (e.g., Lee & 

Dong, 2008; Lu & Bostel, 2007; Min & Ko, 2008; Salema et al., 2006). Savaskan et al. (2004) 

describe product return rate as a function of investment used to promote product return. 

Hitherto, uncertain factors in closed-loop supply chain include return rate, demand for 

re-manufactured products (secondary market), quality of returned products, and variable costs 

for collection, processing and transportation. Pishvaee et al. (2011) describe uncertain 

demands, returns and transportation costs given by a robust network design model. Salema et 

al. (2007) address uncertain demand and return with scenario dependent uniform random 

numbers to minimize the total cost of the reverse logistics network. Ramezani et al. (2013) 

consider uncertainty in demand and return ratio as well as various variable costs in their 

multi-objective forward/reverse network design. Listeş (2007) uses scenario-dependent 

parameters to describe uncertain demand and returned product quantity for their supply and 

product-return networks. Few researchers assume the scenario of randomly failing 

manufacturing plants which results in major recall events. 

The literature has taken different approaches to deciding the quantity to dispose during 

returned products collection and reprocessing. Early literature tends to not consider disposal 

cost. For instance, Savaskan et al. (2004) do not take disposal as a cost factor when 

comparing different re-manufacturing channels. With increasing focus on 

environment-friendly and efficient supply chains, disposal costs are reflected in later studies. 

For example, Min and Ko (2008) alter the repair facility capacities to accommodate returned 

quantities at each time period so no disposal will occur. 

Decisions regarding disposal cost can be categorized in three types: fixed ratios, market 

driven, and cost driven. Fixed disposal ratios are deduced from historical data and adopted to 

simplify the model (e.g., Lee & Dong, 2008; Lu & Bostel, 2007; Pishvaee et al., 2011). Cost 

driven decisions aim to minimize total cost of collection, reprocessing and disposal. Salema 

et al. (2007) minimize total supply chain costs by using fraction of customer demand used for 

disposal or recovery. Ramezani et al. (2013) use disposed quantity to maximize the total 

profit within the capacity of opened disposal centers. Market driven decisions select the best 

efforts to satisfy demands of secondary market. Pishvaee et al. (2011) model the disposal 

quantity as decision variable so that secondary market can be satisfied in the most efficient 
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way. Listeş (2007) takes the perspective that returned products can be disposed in two 

decisions: before collection and before reprocessing, both of which aim to maximize the total 

profit while satisfying market demands. 

In summary, the existing literature treats reverse flow on day-to-day basis. This modeling 

approach does not serve major product recalls well. Our challenge is to design an optimal 

network that can accommodate product returns in the context of major product recalls. 

3. Facility Location to Mitigate Recall Risks 

3.1 Model Development 

In this section, we use a two-stage stochastic programming approach described by 

Ruszczynski and Shapiro (2003) to model the problem. In the first stage, we make facility 

location and transportation decisions. In the second stage, under each disruption scenario, we 

make recall decisions including recall facility locations (e.g., centers for reconditioning, 

reprocessing, and rendering) and recall allocation decisions (e.g., use local disposal or recall 

center). The objective is to minimize the sum of facility location costs, transportation costs 

and recall costs. 

Define ℐ as the set of candidate locations for manufacturing facilities and use 𝑖 as the index. 

Define 𝒦 as the set of candidate locations for recall centers and use 𝑘 as the index. Note 

that recall centers could reuse the manufacturing facilities or use third party processing 

facilities. Thus, we could have ℐ ⊂ 𝒦  or ℐ⋂𝒦 = ∅. We use 𝐹𝐹  and 𝑅𝐹  to indicate 

forward product flow and reverse product flow (initiated by recall events) respectively. 

Clearly, facilities built for manufacturing and recall processing have different fixed costs, 

defined as 𝑓𝑖
𝐹𝐹 and 𝑓𝑘

𝑅𝐹. Facility capacity is denoted by 𝑀𝑖
𝐹𝐹 or 𝑀𝑘

𝑅𝐹. 

Define 𝒥 as the set of retailers and use 𝑗 as the index. Each retailer has a demand 𝐷𝑗, the 

cost of shipping one unit of product demand from facility 𝑖 to retailer 𝑗 is 𝑐𝑖𝑗
𝐹𝐹, while the 

reverse flow costs 𝑐𝑗𝑘
𝑅𝐹 per unit. For recalled products, two recall modes are available, i.e., 

local disposal and central processing. Local disposal incurs a retailer location related cost 

𝑐𝑗
𝐿𝐷, and central processing incurs a recall center related cost 𝑐𝑖

𝐶𝑃. 

To describe the uncertainty of facility disruption, we use scenario set 𝒮 and index 𝑠. We 

used 𝑝𝑠 to denote the probability of scenario 𝑠. Manufacturing facilities failing in scenario 

𝑠 is denoted by set ℐ𝑠. Accordingly, recall centers available in scenario 𝑠 is denoted by set 

𝒦𝑠. The choice of 𝒦𝑠 can be decided extraneously. For instance, recalled products could be 

prohibited from returning to their original manufacturing facility due to safety concerns, or be 

sent to third party facilities due to economic considerations. 

Decision variables used in this model are facility location variables (𝐗 for manufacturing 

facilities and 𝐙 for recall facilities), transportation variables (𝐘), and recall assignment 

variables (𝐕 for local disposal and 𝐖 for central processing): 
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𝑋𝑖 = {
1 manufacturing facility at location 𝑖 is open

0 otherwise. 
 

𝑍𝑘𝑠 = {
1 recall facility is open at location 𝑘 under scenario 𝑠
0 otherwise. 

 

𝑌𝑖𝑗: quantity transported from facility 𝑖 to retailer 𝑗 

𝑉𝑗𝑠: quantity for local disposal under scenario 𝑠 at retailer 𝑗 

𝑊𝑗𝑘𝑠: quantity from retailer 𝑗 to plant 𝑘 for central processing under scenario 𝑠 

With these notations, the two-stage stochastic program for the Facility Location with Recall 

Problem (ℱ𝒧ℛ𝒫) is formulated as follows: 

(ℱ𝒧ℛ𝒫)min ∑𝑓𝑖
𝐹𝐹

𝑖∈ℐ

𝑋𝑖 +∑ ∑𝑐𝑖𝑗
𝐹𝐹

𝑗∈𝒥𝑖∈ℐ

𝑌𝑖𝑗  

 +∑𝑝𝑠
𝑠∈𝒮

*∑ 𝑓𝑘
𝑅𝐹

𝑘∈𝒦𝑠

𝑍𝑘𝑠 + ∑ ∑(𝑐𝑗𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃)

𝑗∈𝒥𝑘∈𝒦𝑠

𝑊𝑗𝑘𝑠 +∑𝑐𝑗
𝐿𝐷

𝑗∈𝒥

𝑉𝑗𝑠+ (1) 

s. t.  ∑𝑌𝑖𝑗
𝑖∈𝐼

= 𝐷𝑗 ∀𝑗 ∈ 𝒥 (2) 

 ∑𝑌𝑖𝑗
𝑗∈𝐽

≤ 𝑀𝑖
𝐹𝐹𝑋𝑖 ∀𝑖 ∈ ℐ (3) 

 ∑𝑊𝑗𝑘𝑠

𝑗∈𝐽

≤ 𝑀𝑘
𝑅𝐹𝑍𝑘𝑠 ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝒦𝑠 (4) 

 ∑ 𝑊𝑗𝑘𝑠

𝑘∈𝒦𝑠

+ 𝑉𝑗𝑠 =∑𝑌𝑖𝑗
𝑖∈𝐼𝑠

 ∀𝑗 ∈ 𝒥, 𝑠 ∈ 𝒮 (5) 

 𝑌𝑖𝑗 ≥ 0 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 (6) 

 𝑊𝑗𝑘𝑠, 𝑉𝑗𝑠 ≥ 0 ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠 (7) 

 𝑋𝑖 ∈ *0,1+ ∀𝑖 ∈ ℐ (8) 

 𝑍𝑘𝑠 ∈ *0,1+ ∀𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠 (9) 
 

The objective (1) is the expected total cost of facility location-allocation decisions from both 

stages. In the first stage, the manufacturing facility location and demand distribution are 

determined, while in second stage, recall center location and recall product distribution are 

determined. Constraint (2) ensures demand of each retailer is satisfied. Constraint (3) and (4) 

guarantees forward and recalled products are processed in an open facility within the 

capacities. Constraint (5) requires recalled products either be sent back to recall center for 

reprocessing or disposed locally. Other constraints are for non-negativity and for binary 

variables. 

It is noteworthy that the proposed formulation is very general and can include different recall 

situations. Firstly, the model can cover cases of capacitated and uncapacitated facilities or any 

hybrid types by changing the capacity parameter 𝑀𝑖
𝐹𝐹 and 𝑀𝑘

𝑅𝐹 to be infinite or finite 

numbers. Secondly, the definition of set 𝒦𝑠 provides a lot of flexibility in modeling. For 

instance, facilities in 𝒦𝑠 can be the exact locations where the food safety incidents happen, 
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suggesting that recalled products must return to their original manufacturing plants; a type of 

corrective action in this situation is to fix problems such as mislabeling. We can also require 

facilities in 𝒦𝑠 be locations other than the original manufacturing facilities to model the 

situation in which the original facilities are unsuitable for processing (e.g., safety overhaul). 

Moreover, 𝒦𝑠 could be third party facility locations to model the outsourcing of processing 

recalled products. Thirdly, for further extension, recall facility location decisions 𝑍𝑘𝑠’s could 

be moved to the first stage. The difference between this extension and (ℱ𝒧ℛ𝒫) will show 

the difference between proactive recall facility location decisions and reactive facility 

location decisions. 

In addition, the model could indicate different traceability capability in forward flow. 

Currently, we assume full traceability in forward flow, i.e., each retailer could distinguish the 

products from failed plants from others. We can also model incomplete traceability such that 

retailer can’t identify the source of the recalled products, by altering constraint (5) to 

∑ 𝑊𝑗𝑘𝑠𝑘∈𝒦𝑠
+ 𝑉𝑗𝑠 = ∑ 𝑌𝑖𝑗𝑖∈ℐ  for all 𝑗 ∈ 𝒥 and 𝑠 ∈ 𝒮. 

3.2 Analysis 

If the demand of a retailer is satisfied by more than one facility, it is called “demand splitting”, 

otherwise, it is called “no demand splitting”. Note that (ℱ𝒧ℛ𝒫) contains two types of 

demands, corresponding to the two stages (i.e., customer demand and recall demand). To be 

concise, we use “plants” to denote manufacturing centers located for forward flows, and 

“facilities” to denote processing centers located for reverse flows. We have the following 

result in the optimal demand splitting schemes of (ℱ𝒧ℛ𝒫): 

Theorem 1. In the optimal solutions of (ℱ𝒧ℛ𝒫), demand splitting schemes of forward and 

reverse flows depend on the capacity constraints of both plants and facilities. There are four 

schemes: 

(a)  If plants and facilities are both uncapacitated, then there exists no demand splitting for 

both forward and reverse flows; 

(b)  If plants are capacitated but facilities are uncapacitated, then there exists demand 

splitting for forward flow and no demand splitting for reverse flow; 

(c)  If plants are uncapacitated but facilities are capacitated, then there could exist demand 

splitting for both flows; 

(d)  If plants and facilities are both capacitated, then there could exist demand splitting for 

both flows. 

Proof. Consider an arbitrary retailer 𝑢 ∈ 𝒥. Assume that except the allocation decisions for 

𝑢, all other decisions are fixed to their optimal values. We use superscript   to represent the 

optimal values. These decisions include: 

𝑋𝑖
 (𝑖 ∈ ℐ) locating plants for forward flow, 

𝑍𝑘𝑠
 (𝑘 ∈ 𝒦𝑠, 𝑠 ∈ 𝒮) locating facilities for reverse flow, 
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𝑌𝑖𝑗
 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝒥 ∖ *𝑢+) allocating demands of retailers other than 𝑢 in forward flow, 

𝑊𝑗𝑘𝑠
 , 𝑉𝑗𝑠

 (𝑗 ∈ 𝒥 ∖ *𝑢+, 𝑘 ∈ 𝒦𝑠, 𝑠 ∈ 𝒮) allocating recall demands of retailers other than 𝑢 for 

central reprocessing and local disposal respectively in reverse flow. 

In the following, we discuss the demand splitting schemes in two steps. We isolate demand 

splitting decisions in the reverse flow in the first step, and apply the results in the second step 

to integrate both forward and revers flows. Note we use   to denote optimal solutions for 

(ℱ𝒧ℛ𝒫) in this proof, while later in algorithm design we use   to denote best solutions 

found in Lagrangian relaxation. 

Step 1. Demand allocations in forward flows, i.e., 𝑌𝑖𝑢
  (𝑖 ∈ ℐ), are known and optimal. 

We use 𝒦𝑠
  to denote the set of facilities to open for reverse flow in scenario 𝑠 ∈ 𝒮 in the 

optimal solution. Let 𝛽𝑘𝑠 be the proportion of demand for retailer 𝑢 allocated to facility 

𝑘 ∈ 𝒦𝑠
  in scenario 𝑠 , 𝛽𝑠

′  be the proportion of demand allocated to local disposal in 

scenario 𝑠. We have ∑ 𝛽𝑘𝑠𝑘∈𝐾𝑠
 + 𝛽𝑠

′ = 1 in scenario 𝑠. 

Let 𝐷𝑢𝑠
  be the optimal recall demand from 𝑢 in scenario 𝑠. Note that when forward flow is 

traceable, we have 𝐷𝑢𝑠
 = ∑ 𝑌𝑖𝑢

 
𝑖∈ℐ𝑠 ; when forward flow is untraceable, we have 𝐷𝑢𝑠

 =

∑ 𝑌𝑖𝑢
 

𝑖∈ℐ  if 𝑌𝑖𝑢
 > 0 for some 𝑖 ∈ ℐ𝑠, and 𝐷𝑢𝑠

 = 0 otherwise. 

Using 𝛺 to denote the total cost of known location and allocation decisions, (ℱ𝒧ℛ𝒫) can 

be simplified as follows: 

 

min 
𝛺 +∑𝑝𝑠

𝑠∈𝒮

* ∑ (𝑐𝑢𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃)

𝑘∈𝒦𝑠
 

𝛽𝑘𝑠𝐷𝑢𝑠 + 𝑐𝑢
𝐿𝐷𝛽𝑠

′𝐷𝑢𝑠+ 

 

s. t. ∑ 𝛽𝑘𝑠
𝑘∈𝒦𝑠

 

+ 𝛽𝑠
′ = 1, ∀𝑠 ∈ 𝒮  

 𝛽𝑘𝑠𝐷𝑢𝑠 + ∑ 𝑊𝑗𝑘𝑠
 

𝑗∈𝒥∖*𝑢+

≤ 𝑀𝑘
𝑅𝐹 , ∀𝑘 ∈ 𝒦𝑠

 , 𝑠 ∈ 𝒮  

 𝛽𝑘𝑠, 𝛽𝑠
′ ≥ 0, ∀𝑘 ∈ 𝒦𝑠

 , 𝑠 ∈ 𝒮.  

 

Note that local disposal at retailer 𝑢 always has unlimited capacity. This setting can be 

altered by adding constraint 𝛽𝑠
′𝐷𝑢𝑠 ≤ 𝑀𝑢

𝑅𝐹 in the analysis, where 𝑀𝑢
𝑅𝐹 is the capacity for 

local disposal of 𝑢. 

If the facilities are uncapacitated, the optimal solution is either 0 or 1 because the objective 

function is a linear function of 𝛽𝑘𝑠 and 𝛽𝑠
′ defined on interval ,0,1-. In other words, there 
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is no demand splitting for any scenario 𝑠 ∈ 𝒮. Denote 

𝛾𝑠
 = min {𝑐𝑢

𝐿𝐷, min
𝑘∈𝒦𝑠

 
*𝑐𝑢𝑘

𝑅𝐹 + 𝑐𝑘
𝐶𝑃+}, 

and optimal recall cost of 𝑢 as 𝜓𝑠
 (𝐷𝑢𝑠

 ) = 𝛾𝑠
 𝐷𝑢𝑠

 , then the optimal objective value is 

𝛺 + ∑ 𝑝𝑠𝑠∈𝒮 𝜓𝑠
 (𝐷𝑢𝑠

 ). 

If the facilities are capacitated, in order to minimize the objective function, we sort the 

coefficients (𝑐𝑢𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃) (𝑘 ∈ 𝒦𝑠
 ) and 𝑐𝑢

𝐿𝐷 in increasing order, denoted as 𝑐1, 𝑐2, ⋯ , 𝑐𝑛𝑠+1 

where 𝑛𝑠 = |𝒦𝑠
 |. Then the optimal solution is to assign demand according to this order 

given the capacity constraints. We redefine reverse flow cost 𝜓𝑠
 (𝐷𝑢𝑠

 ) as follows: 

𝜓𝑠
 (𝐷𝑢𝑠

 ) = ,

𝑐1𝐷𝑢𝑠
 𝐷𝑢𝑠

 ≤ 𝑀1
𝑅𝐹

𝑐𝑘+1 (𝐷𝑢𝑠
 − ∑

𝑘

𝑖=1
𝑀𝑖

𝑅𝐹) + ∑
𝑘

𝑖=1
𝑐𝑖𝑀𝑖

𝑅𝐹 ∑
𝑘

𝑖=1
𝑀𝑖

𝑅𝐹 ≤ 𝐷𝑢𝑠
 ≤ ∑

𝑘+1

𝑖=1
𝑀𝑖

𝑅𝐹 , ∀𝑘 = 1,⋯ , 𝑛𝑠
 

where 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛𝑠 ≤ 𝑐𝑛𝑠+1. Note that if the unit cost of local disposal is ranked 

before that of facility 𝑗, then calculations for facility 𝑗 and its followers are unnecessary 

because local disposal is uncapacitated. 

We have the same form of optimal objective value 𝛺 + ∑ 𝑝𝑠𝑠∈𝒮 𝜓𝑠
 (𝐷𝑢𝑠

 ). Note that reverse 

flow cost 𝜓𝑠
 (𝐷𝑢𝑠

 ) is a continuous and nondecreasing piece-wise linear function of 𝐷𝑢𝑠
  

when facility capacities are limited. Clearly 𝜓𝑠
 (⋅) is a convex function. 

Step 2. In the optimal solution, denote ℐ  as the set of plants open in forward flow, ℐ𝑠
  as 

the set of plants that are open and get disrupted in scenario 𝑠 ∈ 𝒮. Let 𝛼𝑖 be the proportion 

of demand allocated to plant 𝑖 ∈ ℐ  for forward flows, 𝜓𝑠
 (𝐷𝑢𝑠

 ) be the optimal cost for 

reverse flow as defined in Step 1, where 𝐷𝑢𝑠
 = ∑ 𝛼𝑖𝑖∈ℐ𝑠

 𝐷𝑢 (or in the case with untraceable 

demand, if 𝑌𝑖𝑢
 > 0 for some 𝑖 ∈ ℐ𝑠

 , then 𝐷𝑢𝑠
 = 𝐷𝑢). Let 𝛹 be the cost of all known 

optimal decisions. (ℱ𝒧ℛ𝒫) can be simplified as follows: 

min 𝛹 +∑𝑐𝑖𝑢
𝐹𝐹

𝑖∈ℐ 

𝛼𝑖𝐷𝑢 +∑𝑝𝑠
𝑠∈𝒮

𝜓𝑠
 ∑(𝛼𝑖𝐷𝑢)

𝑖∈ℐ𝑠
 

  

s. t. ∑𝛼𝑖
𝑖∈ℐ 

= 1  

 𝛼𝑖𝐷𝑢 + ∑ 𝑌𝑖𝑗
 

𝑗∈𝒥∖*𝑢+

≤ 𝑀𝑖
𝐹𝐹 , ∀𝑖 ∈ ℐ   

 𝛼𝑖 ≥ 0, ∀𝑖 ∈ ℐ   
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Proof. If facilities are uncapacitated, then 𝜓𝑠
 (𝐷𝑢𝑠

 ) = 𝛾𝑠
 𝐷𝑢𝑠

 = 𝛾𝑠
 ∑ 𝛼𝑖𝑖∈ℐ𝑠

 𝐷𝑢. Clearly, the 

objective function is linear in 𝛼𝑖’s. It holds that when plants are uncapacitated, the plant 

incurring the lowest cost will be chosen, thus the optimal solution does not have demand 

splitting for neither forward nor reverse flows, which completes the proof for Theorem 1 

Scheme (a). On the other hand, with capacitated plants the optimal demand splitting scheme 

for reverse flow remains to be no demand splitting; while capacity limits of plants in forward 

flow require demand splitting to satisfy all demands at the lowest cost, which completes the 

proof for Theorem 1 Scheme (b). 

In the case of capacitated facilities and uncapacitated plants, apparently demand splitting in 

reverse flow exists because of facility capacity limits, would the demand splitting in reverse 

flow lead to demand splitting in forward flow even when there is no restriction on plant 

capacity? 

Suppose, on the contrary, there is no demand splitting in the optimal decision. Consider the 

retailer 𝑢  has demand 𝐷𝑢 , served by two plants ℐ = *𝑖1, 𝑖2+ and two facilities 𝒦𝑠
 =

*𝑘1, 𝑘2+ that are open for all scenarios. Plants fail independently. Let us compare the 

following two cases. 

In the first case, 𝐷𝑢 is completely served by plant 𝑖1 ∈ ℐ . Denote the probability of failure 

of 𝑖1 as 𝑞𝑖1 = ∑ 𝑝𝑠𝑠:𝑖1∈ℐ𝑠
 , called the failure rate of 𝑖1. The allocation cost 𝑇𝐶1 for 𝑖1 can 

be represented as 𝑇𝐶1 = 𝑐𝑖1𝑢
𝐹𝐹𝐷𝑢 + 𝑞𝑖1𝜓(𝐷𝑢). Note we use 𝜓(⋅) instead of 𝜓 (⋅) because it 

is not optimal solution. In the second case, 𝐷𝑢 is satisfied by two plants 𝑖1 and 𝑖2. Let 𝛼𝑖1 

and 𝛼𝑖2 denote the proportions of demand 𝐷𝑢 satisfied by 𝑖1 and 𝑖2 respectively, where 

𝛼𝑖1 + 𝛼𝑖2 = 1. Let the failure rates of plants 𝑖1 and 𝑖2 be 𝑞𝑖1 and 𝑞𝑖2 respectively. Then 

the total allocation cost 𝑇𝐶2  would be 

𝐶2 =

𝛼𝑖1𝑐𝑖1𝑢
𝐹𝐹𝐷𝑢 + 𝛼𝑖2𝑐𝑖2𝑢

𝐹𝐹𝐷𝑢 + 𝑞𝑖1(1 − 𝑞𝑖2)𝜓(𝛼𝑖1𝐷𝑢) + (1 − 𝑞𝑖1)𝑞𝑖2𝜓(𝛼𝑖2𝐷𝑢) + 𝑞𝑖1𝑞𝑖2𝜓(𝐷𝑢)  . 

Comparing 𝑇𝐶1 and 𝑇𝐶2: 

𝑇𝐶1 − 𝑇𝐶2 = (1 − 𝛼𝑖1)𝑐𝑖1𝑢
𝐹𝐹𝐷𝑢 − 𝛼𝑖2𝑐𝑖2𝑢

𝐹𝐹𝐷𝑢 − 𝑞𝑖1(1 − 𝑞𝑖2)𝜓(𝛼𝑖1𝐷𝑢)

−(1 − 𝑞𝑖1)𝑞𝑖2𝜓(𝛼𝑖2𝐷𝑢) + 𝑞𝑖1(1 − 𝑞𝑖2)𝜓(𝐷𝑢)

= 𝛼𝑖2(𝑐𝑖1𝑢
𝐹𝐹 − 𝑐𝑖2𝑢

𝐹𝐹 )𝐷𝑢 + (𝑞𝑖1 − 𝑞𝑖2)𝜓(𝛼𝑖2𝐷𝑢)

+𝑞𝑖1(1 − 𝑞𝑖2)[𝜓(𝐷𝑢) − 𝜓(𝛼𝑖1𝐷𝑢) − 𝜓(𝛼𝑖2𝐷𝑢)].

 

Because 𝜓(⋅) is nondecreasing and convex, we have 𝜓(𝐷𝑢) − 𝜓(𝛼𝑖1𝐷𝑢) − 𝜓(𝛼𝑖2𝐷𝑢) ≥ 0. 

If 𝑐𝑖1𝑢
𝐹𝐹 − 𝑐𝑖2𝑢

𝐹𝐹 = 𝑞𝑖1 − 𝑞𝑖2 = 0 , then 𝑇𝐶1 − 𝑇𝐶2 ≥ 0 . Otherwise, by setting external 

parameters, we can always construct a problem where in the optimal solution, demand 

splitting is better than no demand splitting. 

In more general case with multiple (more than two) plants and facilities available to serve the 
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retailer, we can also construct a problem which has an optimal solution with demand splitting, 

which completes the proof for Scheme (c). In addition, a numerical example is given in 

Example 2. Finally, when plants and facilities are both capacitated, from the same analysis, 

the claim in Scheme (d) holds.  

The most interesting result in Theorem 1 is the existence of demand splitting in forward flow 

when the (reverse flow) facilities are capacitated, as shown in Scheme (c). We use a 

numerical example to illustrate Theorem 1. 

Example 2. Suppose we have all the information of the optimal solution except demand 

splitting scheme for retailer 𝑢. With demand 𝐷𝑢
 = 10, retailer 𝑢 has two plants ℐ = *1,2+ 

available in forward flow, and two facilities 𝒦𝑠
 = *3,4+ for any scenario 𝑠 ∈ 𝒮 available 

in reverse flow. We assume the manufacturing facilities fail independently with probability 

𝑞1 = 0.1 and 𝑞2 = 0.9 respectively. We have four scenarios (with probability of 𝑝1 =

0.81, 𝑝2 = 𝑝3 = 0.09, 𝑝4 = 0.01) for all possible outcomes. 

Transportation unit costs in forward flow are 𝑐1𝑢
𝐹𝐹 = 1, 𝑐2𝑢

𝐹𝐹 = 30, unit cost of transportation 

and central processing for reverse flow are 𝑐𝑢3
𝑅𝐹 + 𝑐𝑢3

𝐶𝑃 = 2, 𝑐𝑢4
𝑅𝐹 + 𝑐𝑢4

𝐶𝑃 = 60, local disposal 

unit cost is 𝑐𝑢
𝐿𝐷 = 100. Suppose plants and local disposal location have unlimited capacity, 

and capacities of central processing centers are 𝑀3
𝑅𝐹 = 5,𝑀4

𝑅𝐹 = 60. 

We use 𝑇𝐶 to represent the expected total allocation cost of 𝑢. Note facility 3 and 4 are 

capable of processing any amount of returned product from 𝑢, thus the local disposal at 𝑢 

need not to be considered (more expensive), which leaves 𝑇𝐶 to be solely dependent on the 

demand splitting factor 𝛼1, i.e., the proportion of 𝐷𝑢 satisfied by plant 1 in forward flow. 

With no demand splitting, customer 𝑢 is solely served by plant 1 with 𝑇𝐶 = 289.  

𝛼1 = 1

𝑇𝐶 =∑𝑐𝑖𝑢
𝐹𝐹

2

𝑖=1

𝛼𝑖𝐷𝑢 ++∑𝑝𝑠
𝑠∈𝒮

𝜓𝑠 (∑𝛼𝑖
𝑖∈ℐ𝑠

 

𝐷𝑢)

= 1 ⋅ 10 + 0.81 ⋅ (5 ⋅ 2 + 5 ⋅ 60) + 0.09 ⋅ (5 ⋅ 2 + 5 ⋅ 60)

= 289

 

Similarly, when 𝑢 is solely supplied by plant 2 we have 𝑇𝐶 = 355.8. However, if the 

demand is shared by the two plants evenly, we have 𝑇𝐶 = 191.9. The results show demand 

splitting scheme with 𝛼1 = 0.5 gives lower cost than no demand splitting (𝛼1 = 1 or 

𝛼1 = 0). Moreover, solving the problem with MAPLE shows that 𝛼1 = 0.5 is the optimal 

solution, which complies with our statement in Theorem 1 Scheme (c). 

4. Lagrangian Relaxation 

To find the optimal solution for model (ℱ𝒧ℛ𝒫), we could use readily available commercial 

solvers such as CPLEX. However, preliminary computational studies show that this problem 

is hard to solve even for medium size instances. This motivates us to develop a more efficient 

method based on Lagrangian relaxation. 

Major difficulties for solving (ℱ𝒧ℛ𝒫) come from two aspects: 1) the demand balance 

constraint (2) impedes us from developing an analytical algorithm similar to that of Snyder 
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and Daskin (2005); 2) constraint (5) increases the complexity further by connecting the 

forward flow and the reverse flow. For clarity, we introduce the binary parameter 𝛿𝑖𝑠 equals 

one to denote the case plant 𝑖 has triggered recall event in scenario 𝑠, and zero for otherwise. 

We could relax constraints (2) and (5) of (ℱ𝒧ℛ𝒫) by introducing Lagrangian multipliers 

𝛌 = (𝜆𝑗) and 𝛍 = (𝜇𝑗𝑠) to obtain the following Lagrangian relaxation problem: 

(ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇) 

min 𝒧(𝛌, 𝛍)  

=∑𝑓𝑖
𝐹𝐹

𝑖∈ℐ

𝑋𝑖 +∑ ∑𝑐𝑖𝑗
𝐹𝐹

𝑗∈𝒥𝑖∈ℐ

𝑌𝑖𝑗 +∑𝜆𝑗
𝑗∈𝒥

(𝐷𝑗 −∑𝑌𝑖𝑗
𝑖∈ℐ

) 

 

 

+∑𝑝𝑠
𝑠∈𝒮

*∑ 𝑓𝑘
𝑅𝐹

𝑘∈𝒦𝑠

𝑍𝑘𝑠 + ∑ ∑(𝑐𝑗𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃)

𝑗∈𝒥𝑘∈𝒦𝑠

𝑊𝑗𝑘𝑠 +∑𝑐𝑗
𝐿𝐷

𝑗∈𝒥

𝑉𝑗𝑠+ 

 

 

+∑ ∑𝜇𝑗𝑠
𝑗∈𝒥𝑠∈𝒮

(∑𝑌𝑖𝑗
𝑖∈ℐ𝑠

− ∑ 𝑊𝑗𝑘𝑠

𝑘∈𝒦𝑠

− 𝑉𝑗𝑠) 

 

 

=∑𝑓𝑖
𝐹𝐹

𝑖∈ℐ

𝑋𝑖 +∑ ∑ (𝑐𝑖𝑗
𝐹𝐹 − 𝜆𝑗 +∑𝜇𝑗𝑠

𝑠∈𝒮

𝛿𝑖𝑠)

𝑗∈𝒥𝑖∈ℐ

𝑌𝑖𝑗 +∑𝜆𝑗
𝑗∈𝒥

𝐷𝑗 

+∑ ∑ 𝑝𝑠
𝑘∈𝒦𝑠𝑠∈𝒮

𝑓𝑘
𝑅𝐹𝑍𝑘𝑠 +∑ ∑ ∑[𝑝𝑠(𝑐𝑗𝑘

𝑅𝐹 + 𝑐𝑘
𝐶𝑃) − 𝜇𝑗𝑠]

𝑗∈𝒥𝑘∈𝒦𝑠𝑠∈𝒮

𝑊𝑗𝑘𝑠 

 

 +∑ ∑(𝑝𝑠𝑐𝑗
𝐿𝐷 − 𝜇𝑗𝑠)

𝑗∈𝒥𝑠∈𝒮

𝑉𝑗𝑠 
(10) 

s. t. (3), (4), (8), (9)  

 0 ≤ 𝑌𝑖𝑗 ≤ 𝐷𝑗 , ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 (11) 

 0 ≤ 𝑊𝑗𝑘𝑠 ≤ 𝐷𝑗 , ∀𝑗 ∈ 𝒥, 𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠 (12) 

 0 ≤ 𝑉𝑗𝑠 ≤ 𝐷𝑗 , ∀𝑗 ∈ 𝒥, 𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠. (13) 

 

Constraint (11) is modified from (6) to confine that the product quantity delivered to retailer 

𝑗 is no more than the retailer’s demand. Similarly, constraints (12) and (13) are modified 

from constraint (7) to confine local disposal and central processing quantities. 

4.1 Lower Bound 

Relaxing constraint (5) breaks up the connection between forward and reverse flows, 
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therefore we can separate (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇)  into two optimization problems, i.e., 

(ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 − ℱ) for forward flow and (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 −ℛ) for reverse flow, which 

can be solved separately. The optimization problem for the forward flow is defined as: 

(ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 − ℱ) 

min 

∑𝑓𝑖
𝐹𝐹

𝑖∈ℐ

𝑋𝑖 +∑ ∑ (𝑐𝑖𝑗
𝐹𝐹 − 𝜆𝑗 +∑𝜇𝑗𝑠

𝑠∈𝒮

𝛿𝑖𝑠)

𝑗∈𝒥𝑖∈ℐ

𝑌𝑖𝑗 +∑𝜆𝑗
𝑗∈𝒥

𝐷𝑗 

(14) 

s. t. (3), (8), (11).  

 

Note that (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 − ℱ) can be solved by an efficient algorithm. We will open a 

plant at site 𝑖 if and only if this decision decrease objective value. Objective value changes 

due to opening a plant at 𝑖 (denoted by 𝜙𝑖) can be determined by solving the following 

optimization problem: 

𝜙𝑖 = min 𝑓𝑖
𝐹𝐹 +∑ (𝑐𝑖𝑗

𝐹𝐹 − 𝜆𝑗 +∑𝜇𝑗𝑠
𝑠∈𝒮

𝛿𝑖𝑠)

𝑗∈𝒥

𝑌𝑖𝑗 

s. t. ∑ 𝑌𝑖𝑗𝑗∈𝒥 ≤ 𝑀𝑖
𝐹𝐹 , and (11). 

The calculation of 𝜙𝑖 depends on whether plant 𝑖 has capacity limits. 

In uncapacitated case (𝑀𝑖
𝐹𝐹 = ∞), we have: 

𝑌𝑖𝑗
 = ,

𝐷𝑗 , 𝑐𝑖𝑗
𝐹𝐹 − 𝜆𝑗 +∑𝜇𝑗𝑠

𝑠∈𝒮

𝛿𝑖𝑠 < 0

0, otherwise.

 

In capacitated case (𝑀𝑖
𝐹𝐹 < ∞), the problem is a continuous knapsack problem and we can 

find the optimal solution greedily as the method presented in Daskin (2011). For plant 𝑖, sort 

customer 𝑗 in increasing order of (𝑐𝑖𝑗
𝐹𝐹 − 𝜆𝑗 + ∑ 𝜇𝑗𝑠𝑠∈𝒮 𝛿𝑖𝑠). Let 𝑗′ be the new ranking, and 

𝒥− be the set of customers with negative coefficients. Then: 

𝑌𝑖𝑗′
 =

{
 

 
min,𝐷𝑗′ , 𝑀𝑖

𝐹𝐹 − ∑ 𝐷𝑚

𝑗′−1

𝑚=1

- , 𝑗′ ∈ 𝒥−

0, otherwise.

 

Next, the optimization problem for the reverse flow is defined as: 

(ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 −ℛ) 

min ∑ ∑ 𝑝𝑠
𝑘∈𝒦𝑠𝑠∈𝒮

𝑓𝑘
𝑅𝐹𝑍𝑘𝑠 +∑ ∑ ∑�̂�𝑗𝑘𝑠

𝑗∈𝒥𝑘∈𝒦𝑠𝑠∈𝒮

𝑊𝑗𝑘𝑠 +∑ ∑(𝑝𝑠𝑐𝑗
𝐿𝐷 − 𝜇𝑗𝑠)

𝑠∈𝒮𝑗∈𝒥

𝑉𝑗𝑠 
(15) 
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s. t. (4), (9), (12 ), (13),  

 

where �̂�𝑗𝑘𝑠 = 𝑝𝑠(𝑐𝑗𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃) − 𝜇𝑗𝑠  for all 𝑗 ∈ 𝒥, 𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠 . Clearly, (ℱ𝒧ℛ𝒫 −

𝒧ℛ𝜆,𝜇 − ℛ)  is separable for 𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦𝑠 . Also notice that local disposal decisions 

𝐕 = (𝑉𝑗𝑠) can be decided independently of 𝐙 = (𝑍𝑘𝑠) and 𝐖 = (𝑊𝑗𝑘𝑠) as follows: 

𝑉𝑗𝑠
 = {

𝐷𝑗 , 𝑝𝑠𝑐𝑗
𝐿𝐷 − 𝜇𝑗𝑠 < 0

0, otherwise.
 

Given a scenario 𝑠, if we locate a facility at candidate site 𝑘 ∈ 𝒦𝑠, changes of objective 

value (denoted by 𝜓𝑘𝑠) are determined by the following optimization problem: 

𝜓𝑘𝑠 = min 𝑝𝑠𝑓𝑘
𝑅𝐹 +∑�̂�𝑗𝑘𝑠

𝑗∈𝐽

𝑊𝑗𝑘𝑠 
(16) 

s. t. ∑𝑊𝑗𝑘𝑠

𝑗∈𝒥

≤ 𝑀𝑘
𝑅𝐹 .  

 

To solve (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇 − ℛ), we open a facility 𝑘 under scenario 𝑠 if and only if 

𝜓𝑘𝑠 < 0. The solution of (16) depends on whether plants have capacity limits. 

In uncapacitated case (𝑀𝑘
𝑅𝐹 = ∞), we have: 

𝑊𝑗𝑘𝑠
 = {

𝐷𝑗 , �̂�𝑗𝑘𝑠 < 0

0, otherwise.
 

In capacitated case (𝑀𝑘
𝑅𝐹 < ∞), sort customer 𝑗 in increasing order of �̂�𝑗𝑘𝑠. Let 𝑗′ be the 

new ranking, and 𝒥− be the set of customers with negative �̂�𝑗𝑘𝑠. Then: 

𝑊𝑗𝑘𝑠
 =

{
 

 
min,𝐷𝑗′ , 𝑀𝑘

𝑅𝐹 − ∑ 𝐷𝑚

𝑗′−1

𝑚=1

- , 𝑗′ ∈ 𝒥−

0, otherwise.

 

4.2 Upper Bound 

We solve (ℱ𝒧ℛ𝒫) using location decisions obtained from (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇) for an upper 

bound. With location decisions, (ℱ𝒧ℛ𝒫) is reduced to a linear programming problem with 

allocation decisions only. However, in cases of capacitated plants, initial location decisions 

may be infeasible to obtain an upper bound problem due to insufficient plants’ capacity. To 

restore feasibility, we design a greedy heuristic procedure by assigning unfixed closed plants 

to open in increasing order of contribution 𝜙(𝑖) (shown in the following algorithm).\ 
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Let ℐ′ be the set of plants that are closed in the optimal solution of relaxed problem 

(ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇) but not fixed to closure (e.g. in later mentioned branching process of 

branch and bound), and denote demands not fulfilled by total capacities of open plants with 

 =∑𝐷𝑗
𝑗∈𝒥

−∑𝑀𝑖
𝐹𝐹

𝑖∈ℐ′

. 

Note that we do not need to adjust location solutions of reverse flows, because local disposal 

has unlimited capacity and any returned products beyond capacities of central reprocessing 

can be handled with local disposal method. 

Let ℐ̂ be the set of all open plants and set �̂�𝑠 denotes all open facilities in scenario 𝑠 in the 

optimal solution of relaxed problem (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇). The problem to obtain upper bound 

is formulated as follows: 

 

min 
∑ ∑𝑐𝑖𝑗

𝐹𝐹

𝑗∈𝒥𝑖∈ℐ

𝑌𝑖𝑗 +∑ ∑𝑝𝑠
𝑗∈𝒥𝑠∈𝒮

*∑ (

𝑘∈𝒦𝑠

𝑐𝑗𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃)𝑊𝑗𝑘𝑠 + 𝑐𝑗
𝐿𝐷𝑉𝑗𝑠+ 

(17) 

s. t. (2), (5), (6), (7)  

 
∑𝑌𝑖𝑗
𝑗∈𝐽

≤ 𝑀𝑖
𝐹𝐹𝑋𝑖

 = {
𝑀𝑖

𝐹𝐹 , 𝑖 ∈ ℐ̂

0, 𝑖 ∈ 𝐼 − ℐ̂
 

(18) 

 
∑𝑊𝑗𝑘𝑠

𝑗∈𝐽

≤ 𝑀𝑘
𝑅𝐹𝑍𝑘𝑠

 = {
𝑀𝑘

𝑅𝐹 , 𝑘 ∈ 𝒦�̂�, 𝑠 ∈ 𝒮

0, 𝑘 ∈ 𝒦 −𝒦�̂�, 𝑠 ∈ 𝒮
 

(19) 

 

With constraint (5) maintaining flow balance at different scenarios, above problem cannot be 

categorized as a transportation problem. With Theorem 1 for Schemes (a) and (b) where 

facilities’ capacities are uncapacitated, costs incurred in stage two can migrate to stage one 
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and constraint (5) is omitted. 

In Schemes (a) and (b) with uncapacitated facilities, returned products of affected customer 

are fully processed in one recall mode (either local disposal or central processing). Optimal 

recall mode is selected based on comparative economic attractiveness. Let set ℐ𝑠+ =∪𝑠∈𝒮 ℐ𝑠 

denote plants that fail in at least one scenario. Let the unit cost for reverse flow at each 

customer 𝑗  in scenario 𝑠  in the upper bound solution be �̃�𝑗𝑠 , where 

�̃�𝑗𝑠 = min{min𝑘∈�̂�𝑠
{𝑐𝑗𝑘

𝑅𝐹 + 𝑐𝑘
𝐶𝑃}, 𝑐𝑗

𝐿𝐷}. 

Allocation decisions in reverse flows can be calculated directly: 

𝑊𝑗𝑘𝑠
 = ,

∑ 𝑌𝑖𝑗
𝑖∈ℐ̂∩ℐ𝑠+

, 𝑐𝑗𝑘
𝑅𝐹 + 𝑐𝑘

𝐶𝑃 = �̃�𝑗𝑠

0, otherwise

, 𝑉𝑗𝑠
 = 0; 

OR 

𝑉𝑗𝑠
 = ,

∑ 𝑌𝑖𝑗
𝑖∈ℐ̂∩ℐ𝑠+

, 𝑐𝑗
𝐿𝐷 = �̃�𝑗𝑠

0, otherwise

,𝑊𝑗𝑘𝑠
 = 0 

Then the transportation problem can be transformed into: 

min
(2),(6),(8)

 ∑ ∑𝑐𝑖𝑗
𝐹𝐹

𝑗∈𝒥𝑖∈ℐ̂

𝑌𝑖𝑗 +∑ ∑𝑝𝑠
𝑗∈𝐽𝑠∈𝒮

�̃�𝑗𝑠∑(𝛿𝑖𝑠𝑌𝑖𝑗)

𝑖∈ℐ̂

  

 

=∑ ∑ (𝑐𝑖𝑗
𝐹𝐹 +∑𝑝𝑠

𝑠∈𝒮

�̃�𝑗𝑠𝛿𝑖𝑠)

𝑗∈𝐽𝑖∈ℐ̂

𝑌𝑖𝑗. 

(20) 

 

 

In Scheme (a) where manufacturing plants are uncapacitated, there is no demand splitting in 

both forward and reverse flows according to Theorem 1. Thus allocation decisions are either 

demand 𝐷𝑗  or 0. We can calculate the optimal upper bound given solutions of the 

Lagrangian relaxation problem (ℱ𝒧ℛ𝒫 − 𝒧ℛ𝜆,𝜇) with the following algorithm. 
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In Scheme (b), problem (20) fit the classic form of transportation problem and can be solved 

by network simplex method. We refer to the work of Chvátal (1983) that provides a good 

guidance for network simplex method. 

We close plants and facilities that serve no customers in the found upper bound solution. 

In cases Scheme (c) and (d), we use Cplex LP solver. 

4.3 Lagrangian Multipliers 

Each vector pair of (𝛌, 𝛍) forms a lower bound 𝒧(𝛌, 𝛍) to the optimal solution of (ℱ𝒧ℛ𝒫). 

To obtain the optimal solution, we need to solve 

max
𝛌,𝛍

 𝒧(𝛌, 𝛍) 

We use the subgradient method to update the Lagrangian multipliers as in Fisher (1981). In 

the 𝑛th iteration of Lagrangian relaxation algorithm, denote the lower bound with 𝒧𝑛, the 

best upper bound found so far with 𝐵𝑈𝐵, and the Lagrangian multipliers for the next 

iteration with 𝜆𝑛+1, 𝜇𝑛+1 where: 

𝜆𝑗
𝑛+1 ← 𝜆𝑗

𝑛 + 𝑡𝑛 (𝐷𝑗 −∑𝑌𝑖𝑗
𝑖∈ℐ

) , 𝜇𝑗𝑠
𝑛+1 ← 𝜇𝑗𝑠

𝑛 + 𝑡𝑛 (∑𝑌𝑖𝑗
𝑖∈ℐ𝑠

− ∑𝑊𝑗𝑘𝑠

𝑘∈𝒦

− 𝑉𝑗𝑠) 

The step size is determined by 
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𝑡𝑛 =
𝛽𝑛(𝐵𝑈𝐵 − 𝒧𝑛)

∑ (𝐷𝑗 − ∑ 𝑌𝑖𝑗𝑖∈ℐ )
2

𝑗∈𝒥 + ∑ ∑ (∑ 𝑌𝑖𝑗𝑖∈ℐ𝑠 − ∑ 𝑊𝑗𝑘𝑠𝑘∈𝒦𝑠
− 𝑉𝑗𝑠)

2
𝑗∈𝒥𝑠∈𝒮

 

Note that 𝛽𝑛 is a predetermined constant for the 𝑛th iteration, whose value will be halved if 

three consecutive iterations fail to make improvements. 

The process of closing the gap between upper bound and lower bound is terminated if any of 

the following three criteria is satisfied: 

• 
𝐵𝑈𝐵−𝒧𝑛

𝒧𝑛
< 𝜀 where 𝜀 is a predetermined error tolerance 

• 𝛽𝑛 < 𝛽𝑚𝑖𝑛, where 𝛽𝑚𝑖𝑛 is the minimal step size allowed 

• 𝑛 > 𝑛𝑚𝑎𝑥, where 𝑛𝑚𝑎𝑥 is the maximal step number allowed. 

4.4 Branch and Bound 

We incorporate the Lagrangian relaxation into a branch and bound algorithm to ensure the 

optimality gap is closed at 𝜀-level. Since plants location decisions are more impactive than 

facility location decisions, we branch on the former (i.e. 𝑋𝑖) only. At each node, branching 

plant selected is the unfixed open location with greatest contribution 𝜙(𝑖). The variable 𝑋𝑗 

is forced to be fixed value of zero and then one. Width-first search manner is applied in 

branching. A branch is fathomed if the lower bound of the parent node is greater than the best 

found upper bound. The tree is fathomed if obtained lower bound is within 𝜀 times the best 

found upper bound, for which the latter is the 𝜀-optimal solution for the original problem. In 

each node, final Lagrangian multipliers are inherited to its children nodes and used as initial 

multipliers. 

5. Computational Results 

In the first experiment, we compare total cost and computation time of three models. The first 

model locates both manufacturing plants and recall processing facilities, and allocates 

customer demands all in the first stage. In the second stage, the first model allocates returned 

products given possible recall scenarios in located plants. We use RNM (recovery network 

design model) as studied from Fleischmann et al. (2001) to represent the first model. The 

second model is our model (ℱ𝒧ℛ𝒫), which makes location-allocation decisions for plants 

and customers in the first stage, and locates facilities and allocates returned products in the 

second stage, considering the availability of reprocessing centers in various recall scenarios. 

The third model designs the most cost-effective network in a non-fail situation and takes the 

best available reprocessing centers when failure scenarios happen. We use reactive facility 

location model (RFL) to represent the third model setting. The first model RNM ignores the 

possibility that some facilities may not be available in some scenarios, and makes decisions 

of locating both plants and facilities in the first stage. On the contrary the neglected 

uncertainty is considered in (ℱ𝒧ℛ𝒫), and we expect numerical results show the benefits of 

our consideration. 

Our numerical example in Table 1 shows that the forward flow network of the first two 
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models may not necessarily be the same. The second model shows better total cost (1%-5% 

less) and but a lot more complex to solve (using about five times more calculation time). 

Integration models (i.e. the first two models) performs better in total costs than reactive 

model (the third model). Location decisions are mostly different between integration models 

and reactive model. 

Table 1. Compare costs and computation time of three models 

 RNM ℱ𝒧ℛ𝒫 RFL RNM ℱ𝒧ℛ𝒫 RFL RNM ℱ𝒧ℛ𝒫 RFL 

Cost ($000s) 6.92 6.36 7.54 1.68 1.62 1.81 2.85 2.78 2.96 

Time (sec.) 0.61 0.24 0.50 0.92 0.98 0.70 6.64 24.58 2.56 

Model size  ℐ   4   ℐ   8   ℐ   16  

  𝒦   3   𝒦   6   𝒦   12  

  𝒮   10   𝒮   36   𝒮   136  

  𝒥   4   𝒥   10   𝒥   20  

Cost (/ℱ𝒧ℛ𝒫) 1.09 1.00 1.19 1.04 1.00 1.12 1.03 1.00 107 

Time(/ℱ𝒧ℛ𝒫) 2.56 1.00 2.11 0.94 1.00 0.71 0.27 1.00 0.10 

 

In this section we use numerical experiments to test the necessity and significance of product 

recall modeling as well as the impacts of parameters. The model is coded with General 

Algebraic Modeling System (GAMS) language and tested on a GAMS server which runs on 

Intel Xeon dual CPU 2.00GHz 2.00 GHz processor with 8.0 GB RAM under Windows 

64-bite operating system. We consider three variations in both environment settings and 

modeling settings in our experiments. Modeling settings describe the strategy of network 

design that a manager adopts, and environment settings simulate the true events for which the 

adopted strategic locations are used to satisfy demands and manage reverse flows. Depending 

on how many plants issue recalls in each second stage scenario, we consider three variations, 

namely no-recall, single-recall and dual-recall. No-recall does not consider the possibility of 

recall and its impact on the network. Single-recall assumes exactly one plant issues a recall in 

each scenario. Dual-recall considers the occurrence of recall and assumes at most two plants 

issues recalls per scenario, i.e., situations of exactly one plant and exactly two plants issuing 

recalls. Table 2 illustrates the relationship of no-recall, single-recall and dual-recall in 

environment and modeling settings. 

Table 2. Relationship of no-recall, single-recall and dual-recall in environment and modeling 

settings 

 Number of plants issue  

recall per scenario 

Environment  

notation 

Modeling  

notation 

No-recall 0 𝑆0 𝑀0 

Single-recall 1 𝑆1 𝑀1 

Dual-recall 1 OR 2 𝑆2 𝑀2 
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Combination of three modeling settings and three environment settings gives us nine optimal 

total costs for a specific set of parameters. For instance, the expected total cost with (M0, S1) 

reflects the expenditure of both forward and reverse flows when there are recalls in reality, in 

fact one recall per scenario, while the manager assumes no recall in strategic network designs. 

Table 3 shows one set of typical experiment results, i.e., expected total costs of three model 

settings under three environments. 

Table 3. Numerical example of optimal costs for three modeling settings under three 

environment settings 

 𝑆0 𝑆1 𝑆2 

𝑀0 50,389.44 142,210.15 186,006.79 

𝑀1 53,657.82 138,413.01 179,521.94 

𝑀2 53,657.82 138,413.01 179,521.94 

Notice diagonal numbers are the costs when model settings match environment settings, 

which we can call perfect information decisions (PIDs). Comparing with PIDs, total costs 

naturally increase when failing probability is either over-estimated (e.g., model considers at 

most two facilities have recalls per scenario while only one facility has recall in reality), or 

under-estimated (e.g., model considers no recall while in reality exactly one plant issues 

recall per scenario). We use regrets to evaluate effects of wrong estimation on total costs. 

In the search of optimal modeling setting in three scenarios, we use Savage’s minimax regrets 

method, a widely applied approach that conservatively chooses the option of least worst-case 

costs (Savage 1951). We define regrets in two ways: relative measure and absolute measure. 

Relative measure uses the percent cost increase when modeling settings mismatch 

environment settings compared to PIDs. Absolute measure uses value increase instead of 

percent increase. Table 4 shows results of applying relative and absolute measures of data in 

Table 3. 

The reason that we adopt two measures to describe regrets is that PIDs under different 

environment settings can differ in significant ways. Therefore, the best modeling option 

reflected by relative measure could be different from the choice of absolute measure because 

the PID reference may change. Data in Table 4, for example, shows that, with relative 

measure, no-recall modeling (M0) is superior to single-recall (M1) and dual-recall modeling 

(M2) because, with M0, the worst cost increase is 3.61% more than PIDs compared to 6.49% 

increase for both M1 and M2. However, with absolute measure, the opposite is true (i.e., with 

M0, the worst cost increase is $6485 compared to $3268 for both M1 and M2). To avoid bias 

generated by choosing only one measure, we use both measures. 
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Table 4. Apply relative measure (left) and absolute measure (right) 

 𝑆0 𝑆1 𝑆2 𝑆0 𝑆1 𝑆2 

𝑀0 1 102.74% 103.61% - 3,797.14 6,484.84 

𝑀1 106.49% 1 1 3,268.38 -  

𝑀2 106.49% 1 1 3,268.38  - 

 

5.1 Parameter Settings 

Our experiments test four sets of parameters settings: recall probability, capacity abundance, 

costly reverse flows and facility availability. 

Based on the literature, the probability of a first stage plant issuing a recall in the second 

stage, recall probability, is within the range of [0.01, 0.08]. Due to physical, social and 

financial differences, recall probabilities of candidate plant locations may be quite different 

from each other. We use a uniform distribution with the range [0.01, 0.08] to generate the 

probability of each plant incurring recalls. 

Capacity abundance is how abundant one plant’s capacity is compared to the total demands, 

i.e., the proportion of total demands that one plant can satisfy with its capacity. Four degrees 

of capacity abundance are considered as in Table 5. 

Table 5. Capacity abundance settings 

Capacity abundance Notation Proportion of total demands that a facility can satisfy 

Tight Cap1 25% 

Fair Cap2 50% 

Medium Cap3 75% 

Plenty Cap4 100% 

Costly reverse flows measure how expensive reverse flows are compare to forward flows. 

Three ratios are considered as in Table 6. 

Table 6. Costly reverse flows settings 

Costly reverse flows Notation Ratio of unit cost in reverse flows  

compare to that of forward flows 

Inexpensive costRF1 10 

Medium costRF2 50 

Expensive costRF3 100 

Facility availability measures the proportion of available facilities to open in the second stage 

compared to total number of possibly usable facilities. Four degrees of facility availability are 

considered as in Table 7. 
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Table 7. Facility availability settings 

Facility availability Notation Percentage of facilities available to open in the second stage 

Scarce prKs1 20% 

Somewhat prKs2 40% 

Adequate prKs3 60% 

Sufficient prKs4 80% 

 

5.2 Results 

5.2.1 Impacts of Facility Availability 

In order to find the impacts of facility availability on the choice of best modeling settings, we 

test four different levels of facility availability. With each level, we experiment with four 

variations of capacity abundance and three variations of costly reverse flows, applying 

randomly generated recall probabilities following a uniform distribution. Results are shown 

in Table 8. 

Table 8. Proportion of optimal model setting under various facility availabilities 

  prKs1 prKs2 prKs3 prKs4 Average 

Relative 𝑀0 12.20% 10.70% 11.52% 12.15% 11.64% 

measure 𝑀1 45.14% 44.95% 46.23% 45.46% 45.45% 

 𝑀2 42.66% 44.35% 42.25% 42.39% 42.91% 

Absolute 𝑀0 4.08% 3.86% 4.62% 4.52% 4.27% 

measure 𝑀1 48.62% 49.20% 49.86% 49.46% 49.29% 

 𝑀2 47.30% 46.94% 45.52% 46.02% 46.44% 

When interpreting this table, note that the table columns for both relative and absolute 

measures sum to one. Each table entry represents the proportion of the time that the 

respective modeling setting is optimal. For example, using the relative measure, when facility 

availability is 20% (prKs1), the proportion of M1 being the optimal model is 45.14%. We see 

that facility availability in the second stage does not significantly impact the choice of the 

best model setting using either relative or absolute measures (i.e., the values in each row do 

not deviate much from the row average). For example, in the relative measure M1 row, 

proportions range from 44.95% to 46.23% with an average of 45.45%. Our prior is that 

decreasing facility availability could increase the proportion of modeling with recall 

considerations as optimal settings because higher facility availability indicates lower 

uncertainty in managing reverse flows and thus lower expected costs. Our results, on the 

contrary, show the optimal model setting is indifferent to facility availability. One explanation 

might be that our aggregation of data nullified the impact, or the impact is overshadowed by 

other more influential factors such as capacity abundance. 

In all four cases, models considering recalls (𝑀1𝑈𝑀2) performs significantly better than 

models without (𝑀0) (e.g., for both relative and absolute measures, the M1 and M2 row 
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values are much larger than the M0 ones). On average, with relative measure optimal models 

considering recalls, M1 and M2 account for 88.36% (45.45+42.91) of optimal model settings. 

With absolute measure, optimal models considering recalls account for 95.73% 

(49.29+46.44). This dominance proves that considering potential product recalls reduces total 

costs in the long run. Disregarding potential recalls could lead to selection of plant locations 

that initially seem to minimize costs, but that in hindsight are risky candidate sites with high 

expected costs to handle possible recalls. Our results with both relative and absolute measures 

support the assumption that designing with recall considerations minimizes the worst-case 

regrets. 

The results also suggest that it is not obviously better to consider dual recall over single recall 

modeling. On average, of optimal models with recall consideration, using relative measure, 

single-recall models (M1) have proportions of 45.45% compared to 42.91% for dual-recall 

models; using absolute measure, single-recall models have 49.29% versus 46.44% for 

dual-recall models. 

Dual recalls consider the following cases: a) two plants incurring recalls at the same, and b) 

only one plant incurring a recall at a time. Since plants incur recalls independently with a 

small probability, between 1% and 8%, the chances of two recalls happening at the same time 

appears to be too small to impact the network design in any noticeable scale. However, dual 

recalls modeling requires much more computation resources compared to single recalls since 

the scenario size increases exponentially. Balancing the above considerations, single recall 

modeling sufficiently serves our purpose of planning for potential recall risks and 

rationalizing computation power. 

5.2.2 Impact of Capacity Abundance 

Risks of not considering recall in network design decrease when plants’ capacity abundance 

increases. The reason may be that insufficient plants’ capacity leads to various recall 

scenarios and thus increases the expected costs of managing recalls. This suggests abundant 

plants’ capacity allows more space for risk control for managers in designing networks 

without recall concerns. Results concerning capacity abundance are shown in Table 9. When 

capacity is tight (Cap1), it is almost never good to ignore the possibility of recalls (i.e., for 

relative measure, the M0 table entry is 2% and for absolute measure, the M0 table entry is 

0%). 

Table 9. Proportion of optimal model setting under various capacity availability 

  Cap1 Cap2 Cap3 Cap4 

Relative 𝑀0 2.00% 5.48% 12.33% 41.05% 

measure 𝑀1 50.22% 47.95% 44.57% 32.31% 

 𝑀2 47.78% 46.57% 43.10% 26.64% 

Absolute 𝑀0 0.00% 5.00% 0.48% 20.71% 

measure 𝑀1 50.76% 47.48% 50.00% 45.33% 

 𝑀2 49.24% 47.52% 49.52% 33.95% 
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The only time that it might be acceptable for decision makers to ignore recall costs is when 

plant capacity is large compared to demand (i.e., when there is plenty of capacity (Cap4), the 

M0 table entry is 41.05% for relative measure and the M0 table entry is 20.71% for absolute 

measure). However, if the business is growing, current excess capacity will ultimately 

disappear. Therefore planning with potential recall serves the long term goal of building 

reliable and cost-effective networks. 

5.2.3 Impact of Costly Reverse Flows 

Results concerning capacity abundance are shown in Table 10. Dominance of 𝑀1𝑎𝑛𝑑𝑀2 

may be attributable to the distinguishable recall probabilities of candidate plant locations. To 

optimize the network design for first stage only, 𝑀0 may choose to open plants at relatively 

lower expense despite of their high chance of issuing recalls in the second stage, which 

results in premium payments when recalls do occur. 

Table 10. Proportion of optimal model setting under various costly degrees of reverse flows 

  cRF1 cRF2 cRF3 

Relative 𝑀0 7.36% 15.46% 14.67% 

measure 𝑀1 49.17% 43.26% 42.81% 

 𝑀2 43.47% 41.29% 42.52% 

Absolute 𝑀0 2.86% 4.58% 5.57% 

measure 𝑀1 51.70% 48.01% 48.27% 

 𝑀2 45.44% 47.41% 46.16% 

 

5.2.4 Cost Increase as a Result of Neglecting Recalls in Network Design 

We apply the same set of recall probability and fix facility availability at 70%. Numerical 

results show the dominance of 𝑀1𝑎𝑛𝑑𝑀2 over 𝑀0 with minimax regrets similar to the 

results of Experiment 1. Results concerning capacity abundance are shown in Table 11. 

Table 11. Max regrets for choosing M0 with relative measures 

Max regret  Cap1 tight Cap2 fair Cap3 medium Cap4 plentiful 

costRF1 Inexpensive 70% 50% 40% 40% 

costRF2 Medium 90% 70% 60% 60% 

costRF3 Expensive 100% 80% 70% 70% 

 

We also notice 𝑀1 and 𝑀2 have very close or equal total costs in various capacity 

abundance and costly reverse flow settings. Both perform dominantly better than 𝑀0 when 

considering recalls. 

We show the impact of capacity availability/costly reverse flow on the cost of 𝑀0 compared 

to 𝑀1 and 𝑀2 with relative measure, which is the cost of neglecting recalls in network 

design. 
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The costs of overlooking potential recalls vary largely from our randomly generated data sets, 

which indicates not only considering recalls in initial designs is necessary but also accurately 

predicting product recall probability can be crucial to effectively design the network. 

6. Conclusions 

This paper addresses the supply chain safety control issue by designing the supply chain 

network to incorporate the negative effects of product recalls. This work focuses on 

managing the reverse flow (recalled products) in a cost-efficient manner. We study the 

efficient way of managing random and rare major product recalls and consider how to 

quickly build a reprocessing network to dispose recalled products. We study the 

location-allocation problem with random occurrence of product recalls and treat the recall 

incidences as disruptions to the supply chain. Three features distinguish our problem from 

other location-allocation problems. Firstly, facility location and allocation decisions occur in 

two stages. Secondly, the second stage location-allocation happens under uncertainty. Thirdly, 

reverse logistic flows exist in the second stage. 

We design a two-stage stochastic mixed integer programming model, in which we locate the 

manufacturing plants in the first stage and the reprocessing/disposal facilities in the second 

stage. We adopt a scenario-based approach to describe the uncertainty of major recall events 

that may happen in manufacturing plants as well as of availability of reprocessing facilities. 

Given the complexity induced by our nested facility location problem, we devise an 

algorithm based on Lagrangian relaxation to solve the uncapacitated case. 

The existing literature treats reverse flow on day-to-day basis. This modeling approach does 

not serve major product recalls well. We fill the gap by designing an optimal network that can 

accommodate product returns in the context of major product recalls. 

We compare total cost and computation time in the search of optimal modeling setting in 

three scenarios based on the minimax regrets method using both relative and absolute 

measures. Our experiments test four sets of parameters settings: recall probability, capacity 

abundance, costly reverse flows and facility availability. We find that facility availability in 

the second stage does not significantly impact the choice of the best model setting. However, 

we find that designing with recall considerations minimizes worst-case regrets. Moreover, 

considering potential product recalls reduces total costs in the long run – disregarding 

potential recalls could lead to selection of plant locations that initially seem to minimize costs, 

but that in hindsight are risky candidate sites with high expected costs to handle possible 

recalls. Risks of not considering recall in network design decrease when plants’ capacity 

abundance increases. 
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