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Abstract 

The relationships between the Canadian Fire Weather Index (FWI) System components and 

the monthly burned area as well as the number of active fire which has taken from Moderate 

Resolution Imaging Spectroradiometer (MODIS) Aqua/TERRA were investigated in 32 

Guinean stations between 2003 and 2013. A statistical analysis based on a multi-linear 

regression model was used to estimate the skills of FWI components on the predictability of 

burned area and active fire. This statistical analysis gave performances explaining between 16 

to 79% of the variance for the burned areas and between 29 and 82% of the variance for the 

number of fires (P<0.0001) at lag 0. Respectively 16 to 79 % and 29 to 82 % of the variance 

of the burned areas and variance for the number of fires (P<0.0001) at lag0 can be explained 

based on the same statistical analysis. All the combinations used gave significant 

performances to predict the burned areas and active fire on the monthly timescale in all 

stations excepted Fria and Yomou where the predictability of the burned areas was not 

obvious. We obtained a significant correlation between the average over all of the stations of 

burned areas, active fires and FWI composites with percentage of variance between (75 to 84% 

and 29 to 77%) for active fires and burned areas at lag0 respectively. While for burned area 

peak (January), the skill of the predictability remains significant only one month in advance, 

for the active fires, the model remains skilful 1 to 3 months in advance. Results also showed 

that active fires are more related to fire behavior indices while the burned areas are related to 

the fine fuel moisture codes. These outcomes have implications for seasonal forecasting of 

active fire events and burned areas based on FWI components, as significant predictability is 

found from 1 to 3 months and one month before respectively. 

Keywords: Active fire, Burned area, FWI components, Guinea 

1. Introduction 

The fire has an important role in the structure and functioning of ecosystems (Archibald et al., 

2013). It is commonly used by people for various purposes in function of socio-economic 

activities and geographic areas as a management tool. Fire's satellite observations could be 

obtained with different time resolutions : daily (Alonso et al.,2003, Lozana et al., 2007, 

Alberson et al., 2009, Wottan et al., 2010, Padilla et Vega, 2011, Sakr et al., 2011), monthly 

(Preister et al., 2004, Boulanger et al., 2014), and yearly (Prestemon et Butry, 2005, Hu et 

Zhou, 2014, Karouni et al., 2014). Some authors consider fire as a planning tool of the 

savannas (Dupuy, 1968, Jeffrey et Humphrey, 1975), while others particularly point it out as 

the ecological, economic and social threat (Sheehan et Hewitt, 1969). The long term effects 

of bush fires on ecosystems have been highlighted by several recent studies (Scholze et al., 

2006; Miller et al., 2013; Reed-Dustin, 2015; Doerr and Santín, 2016; Hagmann et al., 2018; 

Guiterman et al., 2018; Inoue et al., 2018) which demonstrated their disruptive role on the 

water cycle, soil absorption capacity, aerosol emission, climate change, vegetation dynamics 

and soil fertility. The estimation of the danger of fire is a way to quantify the potential or 

capacity of a fire to start, spread and cause damage (Merrill et Alexander, 1987). In the 

current context of climate change, it is therefore important to have indicators of risk of bush 

fires to better define the management policies of ecosystems.  
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The Fire Weather Index (FWI) has been developed by the Canadian method, involving 

weather parameters such as wind, relative humidity, surface temperature, and rain to 

characterize the level of bush fire risk. The evaluation system of the dangers of fires (Stocks 

et al., 1989) includes two subsystems currently used: the Canadian fire weather index (Van 

Wagenr, 1987) system and the Canadian system of fire forecasting (PBF) (Group Fire Danger 

of Forests Canada 1992). This system uses a method so-called Canadian method of the fire 

weather index (Turner and Lawson, 1978, Van and Pickett, 1985). This method was widely 

applied over North America and Europe where observation stations are very dense and the 

results were very conclusive. This index is derived from different indices characterizing the 

state of fuel or the weather conditions on a specific point of the globe. These indices are: 

 The Fine Fuel Moisture Code (FFMC) is a numeric rating of the moisture content of 

litter and other cured fine fuels. This code is an indicator of the relative ease of 

ignition and the flammability of fine fuel. 

 The Drought Code (DC) is a numeric rating of the average moisture content of deep, 

compact organic layers. This code is a useful indicator of seasonal drought effects on 

forest fuels and the amount of smoldering in deep duff layers and large logs.  

 The Duff Moisture Code (DMC) is a numeric rating of the average moisture content 

of loosely compacted organic layers of moderate depth. This code gives an indication 

of fuel consumption in moderate duff layers and medium-size woody material. 

 The Initial Spread Index (ISI) is a numeric rating of the expected rate of fire spread. It 

combines the effects of wind and the FFMC on a rate of spread without the influence 

of variable quantities of fuel. 

 The Buildup Index (BUI) is a numeric rating of the total amount of fuel available for 

combustion. It combines the DMC and DC. 

 The Fire Weather Index (FWI) is a numeric rating of fire intensity. It combines the 

Initial Spread Index and the Buildup Index. It is suitable as a general index of fire 

danger throughout the forested areas of Canada. 

In West Africa, many types of research were conducted on the spatial and temporal 

distribution of the fires activities (Millimono et al., 2017, Mbow, 2000, Sow, 2012, Valea, 

2010, Barry et al., 2018). For better management, it is important to have preventive measures 

of bush fire with early warning systems through on fire's occurrences. In this study, FWI's 

products from the National Aeronautics and Space Administration (NASA) through the 

Goddard Institute for Space Studies (GISS) are used. All details of these products are 

described in (Field et al., 2015). The FWI components have been widely used to characterize 

bush fires in many countries (Carvalho et al., 2008, Davies et Legg, 2016, De Groot et al., 

2007) and the results are very interesting for saving the environment. Figure1 shows the 

structure of the fire weather index„s calculation. 

 



Environmental Management and Sustainable Development 

ISSN 2164-7682 

2019, Vol. 8, No. 2 

http://emsd.macrothink.org 21 

 

Figure 1. Basic structure of the fire weather index „s calculation (Van Wagner, 1987) 

The most active world fire areas (Africa and Latin America) still require modeling efforts 

(Costefreda-Aumedes et al., 2018) and few studies are devoted to fires in these areas of high 

forest fire activities (Chuevieco et al., 2008, Krawchuk et al., 2009 , Knorr et al., 2014, Bedia 

et al., 2015). For this purpose, this study seeks the relationship between FWI components, 

burned areas and active fires on a monthly time scale based on the combinations of FWI 

components as predictors. A statistical analysis using a linear prediction model is used to 

define the performance of the two indices to predict bush fire on the different sites selected 

for this study at the national level.  

The main contributions of this study are outlined as follows: 

 The predictability of active fires and burned areas in Guinea at the whole scale and in 

32 specific sites was highlighted. 

 For each site, the FWI components that most characterize active fires and burned 

areas are identified and ranked in order of importance. 

 The dependence of the predictability with the nature of the vegetation cover is 

highlighted. 

The paper is organized as follows. In Section 2, data and methodology (including the 

presentation of the study area) used in this study are described. Section 3 is accorded to 

results highlights and discussion. Finally, section 4 presents the conclusion. 

2. Data and Methods 

2.1 Study Area 

The vegetation of Guinea, according to the annual report of 2015 of the Ministry of 

Environment, Water, and Forests (MEEF), consists of 1.02% of mangroves, 2.85 of humid 

forests, 6.51% of dense forests, 43.26% wooded savannah, 6.9% cropland and 30.5% fallow. 
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According to the Tropical-Guinea Forestry Action Plan (TFAP, 1988) and the Report on 

Forest Policy and National Forest Action Plan of 2010, the forest patrimony would amount to 

about 13 186 000 hectares (53,64 % of the national territory). The vast Savannah encountered 

in Guinea, 43.26% of the national territory, combined with slash-and-burn activities in most 

of the country, offers a very exposed environment to the negatives effects of bush fires on the 

ecosystems. These savannas are mainly found in the areas of upper and middle Guinea and 

part of Forest Guinea. 

According to the 2015 annual report of the National Directorate of Water and Forests, the 

average annual deforestation rate is 30 000 ha per year against an annual reforestation rate of 

1043 ha. That means a negative difference of 19850 ha each year over the period from 2004 

to 2013. In the same report, the average area of forests devastated by bush fires between 2004 

and 2013 has been estimated to 205.318 ha, although the trend has been declining since 2009. 

Statistics on the annual afforestation rate, the deforestation rate and the area under bush fire 

damage according to the National Directorate of Water and Forests (DNEF) are shown in 

Table 1. 

Table 1. Statistics of vegetation cover in Guinea from 2003 to 2014 (see DNEF report, 2015) 

Years 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Reforested 

areas per 

year (ha) 

1070,29  2500 2828,54 337,35 511,89 404,36 908,22 938,51 618,25 317,72 

Deforestation 

rate (ha/ 

year) 

30 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 

Total area of 

forest burned 

(ha/year) 

333001  332950 333153,5 332972,5 332 

960 

377,5 100402 98384,5 95455,84 93 532 

32 sites were selected for this study in order to specify in detail, the level of risk across the 

country. These sites are shown in Figure 2 and the main characteristics of each site are 

described in Table 2. 
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Figure 2. Location of Guinea on the African map and sites of interest identification 

Table 2. Main characteristics of the stations considered in the present study (cf National 

Directorate of Water and Forests (DNEF)) 

Station 
Longitude 

 (°W) 

Latitude  

(°N) 

Altitude Beginning  

data 

End date Number  

of years 

Coyah 
13.23 09.42 20 January 2003 December 

2013 

11 

Dubréka 
13.28 09.47 15 January 2003 December 

2013 

11 

Kindia 
12.52 10.03 458 January 2003 December 

2013 

11 

Forékariah 
13.06 09.26 47 January 2003 December 

2013 

11 

Fria 
13.34 10.22 160 January 2003 December 

2013 

11 

Boffa 
14.26 10.21 30 January 2003 December 

2013 

11 

Boké 
14.19 10.56 69 January 2003 December 

2013 

11 

Téléminè 
13.05 10.56 650 January 2003 December 

2013 

11 

Labé 
12.18 11.19 1050 January 2003 December 

2013 

11 

Dalaba 
12.15 10.43 1202 January 2003 December 

2013 

11 

Mamou 
12.05 10.20 782 January 2003 December 

2013 

11 
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Mali 
12.18 12.08 1464 January 2003 December 

2013 

11 

Tougué 
11.40 11.26 868 January 2003 December 

2013 

11 

Gaoual 
13.12 11.17 100 January 2003 December 

2013 

11 

Lélouma 
12.35 11.25 892.35 January 2003 December 

2013 

11 

Koubia 
11.55 11.35 722  January 2003 December 

2013 

11 

Koundara 
13.31 12.34 90 January 2003 December 

2013 

11 

Kankan 
09.18 10.23 376 January 2003 December 

2013 

11 

Faranah 
10.42 10.02 358 January 2003 December 

2013 

11 

Kouroussa 
09.53 08.39 372 January 2003 December 

2013 

11 

Dinguiraye 
10.43 11.18 490 January 2003 December 

2013 

11 

Kérouané 
09.02 09.17 510 January 2003 December 

2013 

11 

Siguiri 
09.10 11.26 361 January 2003 December 

2013 

11 

Dabola 
11.07 10.45 438 January 2003 December 

2013 

11 

Mandiana 
08.45 10.40 388 January 2003 December 

2013 

11 

N‟Zérékoré 
08°17 07.45 467 January 2003 December 

2013 

11 

Macenta 
09°28 08.32 542 January 2003 December 

2013 

11 

Kissidougou 
10°16 09.11 524 January 2003 December 

2013 

11 

Guéguécdou 
10°07 08.35 425 January 2003 December 

2013 

11 

Beyla 
08°39 08.41 695 January 2003 December 

2013 

11 

Lola 
08°30 07.50 501 January 2003 December 

2013 

11 

Yomou 
09°16 07.50 48 January 2003 December 

2013 

11 

2.2 The Burned Areas 

As described in burned area products User Guide Version 3.0.1 of MODIS (Boschetti, 2018), 

the burned areas are characterized by deposits of charcoal and ash, removal of vegetation, and 

alteration of the vegetation structure (Roy et al., 1999). To map the burned areas, the MODIS 

algorithm takes advantage of these spectral, temporal, and structural changes. The algorithm 

detects the approximate date of burning at 500 m resolution by locating the occurrence of 

rapid changes in daily surface reflectance. A bidirectional reflectance model is used to deal 

with angular variations found in the satellite. The bidirectional reflectance model-based 

change detection algorithm developed for the MCD45 product is a generic change detection 

method that is applied independently to geolocated pixels over a long time series (weeks to 

months) of reflectance observations (Roy et al., 2002, Roy et al., 2005). Reflectance sensed 
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within a temporal window of a fixed number of days is used to predict the reflectance on a 

subsequent day. A statistical measure is used to determine if the difference between the 

predicted and observed reflectance has a significant change of interest. Rather than 

attempting to minimize the directional information present in a wide field of view satellite 

data by compositing, or by the use of spectral indices, this information is used to model the 

directional dependence of reflectance. This provides a semi-physically based method to 

predict change in reflectance from the previous state. However, it allows MODIS to map only 

the spatial extent of recent fires and excludes fires that occur- red in previous seasons or years. 

2.3 The Active Fire 

As described by Giglio et al., (2003); Giglio, (2010); Giglio, (2015) and Giglo et al., (2016), 

the detection algorithm of active fire uses native (i.e., unprojected swath) 4-, 11-, and 12-μm 

brightness temperatures derived from the corresponding 1-km MODIS channels, denoted by 

T4, T11, and T12, respectively. And, for daytime observations, 0.65-, 0.86-, and 2.1-μm 

reflectance (denoted by ρ0.65, ρ0.86, and ρ2.1, respectively), aggregated to 1-km spatial 

resolution are used. Table 3. provides a summary of all MODIS bands used in the algorithm. 

Table 3. Summary of MODIS channels used in the detection algorithm and ingested from the 

Collection 6 MODIS Level-1B radiance product (MOD021KM/MYD021KM). Details 

regarding the blending of bands 21 and 22 may be found in (Giglo et al., 2003) 

Channel  

number 

Central  

Wavelength 

(μm) 

Purpose 

1 0.65 Sunglint and coastal false alarm rejection; cloud masking. 

2 0.86 Bright surface, sun glint, and coastal false alarm rejection; cloud masking. 

7 2.1 Sunglint and coastal false alarm rejection. 

21 4.0 High-range channel for active fire detection. 

22 4.0 Low-range channel for active fire detection. 

31 11.0 Active fire detection, cloud masking, forest clearing rejection. 

32 12.0 Cloud masking. 

The goal of the detection algorithm is to identify “fire pixels” that contain one or more active 

burning fires at the time of the satellite overpass. To this end, the algorithm ultimately 

classifies each pixel of the MODIS swath as missing data, cloud, non-fire, fire, or unknown. 

For the sake of backward compatibility, the collection 6 fire products actually use a slightly 

larger set of classes that can be uniquely mapped into the five classes defined here. Framing 

the algorithm output in terms of these five classes, however, greatly simplifies the subsequent 

description of the collection 6 algorithm. Full details may be found in the product User's 

Guide (Giglo, 2015). 

The MODIS active fire products have been evaluated in different studies (e.g.,Csiszar et al., 

2006; Hawbaker et al., 2008; Schroeder et al., 2008; Tanpipat et al., 2009; Freeborn et al., 

2014; He and Li, 2011; De Klerk et al., 2008; Hantson et al., 2013; Maier et al., 2013), and in 

the context of optimizing the global MODIS algorithm for use within a specific region (e.g. 

Cheng et al., 2013; Ressl et al., 2009; Wang et al., 2007). 
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2.4 The Fire Weather Index database 

The FWI components used are the Global FWI v1p5 of the fire weather index and they are 

available online at ftp.nccs.nasa.gov or on the website of the Center for research in climate 

and society at the University of Colombia (http://iridl.ldeo.columbia.edu/SOURCES 

/.GISS/.GlobalFWI/). With 0.5 latitudes and 0.66 longitude grid resolution and a daily 

temporal resolution. The development and testing of the Global Fire WEather Database 

(GFWED) details can be found in Field et al., 2015). Applications of the FWI system can be 

found in Taylor and Alexander (2006), and the technical descriptions are provided by Field et 

al., 2015 and Dowdy et al., 2009. The GFWED can be used for analyzing historical 

relationships between fire weather and fire activity at continental and global scales, in 

identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-

based fire prediction models (Field et al., 2015). The severity of the risk thresholds defined 

by the Canadian method described in Table 4. 

Table 4. Interpretation of the values of the components of the FWI (Van Wagner CE, 1987) 

Indices Low Moderate High Very High Extreme 

FFMC 0-81 81-88 88-90.5 90.56-

92.4 

92.5+ 

DMC 0-13 13-28 28-42 42-63 63+ 

DC 0-80 80-210 210-274 274-360 360+ 

ISI 0-4 4-8 8-11 11-19 19+ 

BUI 0-19 19-34 34-54 54-77 77+ 

FWI 0-5 5-14 14-21 21-33 33+ 

The values of the different components of the FWI were extracted from the 32 sites using the 

nearest neighbor method. A statistical analysis using a linear prediction model is used to 

define the performance of the two indices (components of FWI) to predict the burned areas 

calculated from the MODIS burned area products (Boschetti et al., 2009) and active fire 

(Giglo et al., 2016). The predictors are used to perform a leave-one-out cross-validated 

hindcast at lag 0 (predictors/predictands based on the same period). Then, the linear 

regression model is built for each month to be predicted, calculating the coefficients of the 

model with all the months in our database except the one that is predicted (ter Braak and 

Juggins, 1993; Birks, 1981). This method consists to take, for each month, all the values of 

the combined indices and that of the burned area, with the exception of the month that we 

wish to predict, and this for all months of our time series, and to compare the observed signal 

with that predicted by the linear model that combines regressions and their coefficients. The 

hind-cast is performed and correlated with the omitted observations. The FWI components 

(table 4) are then introduced in the multi-linear regression model as predictors and the terms 

were selected only if they reach the 0.05 significance level. Lagged correlations and model 

skills from lag-1 (one month before) to lag-5 (five months before) are evaluated and the 

results and discussions are explained in the next section. All statistical analysis and 

processing are performed as our own Matlab codes. 

3. Results and Discussion 

3.1 Month-to-month Variability of Fire Activity 



Environmental Management and Sustainable Development 

ISSN 2164-7682 

2019, Vol. 8, No. 2 

http://emsd.macrothink.org 27 

The monthly MODIS active fire and burned area are calculated for the 32 sites across 

Guinean, over the period 2003-2013 to investigate the fire spatial and temporal activity. 

Results show very remarkable differences regarding the variability of observed fire activity of 

each site without considering the human activity. Figure 3 presents the distribution over the 

2003-2013 period of monthly bush fire activities and burned areas of the 32 sites. Many extra 

box-plot values are observed for almost all of the sites, meaning the local monthly temporal 

distribution of both bush fire and burned areas present strong local variability, with many 

extreme and unusual situations. This feature is more marked with the number of active fire 

than with the burned areas.  

Figure 3a also reveals that the highest number of fire cases are observed in Kankan with a 

maximum of 1500 fire cases per month and within 25% of values higher than 750 cases, 

Beyla and Kouroussa with a maximum of 1100 cases per month for both sites, and within 25% 

of the values higher than 400 and 600 cases respectively and finally Kérouané and Dubreka 

with a maximum of 1000 cases per month for both sites, with 25% of the recorded values 

higher than 400 cases of fire. The lowest values were recorded in Labé, Koubia, Touhgué, 

Lélouma, Siguiri, Fria, Dabola and Forécariah with a maximum less than 70 cases of fires per 

month. Regarding the burned areas, the highest values are noted over Siguiri and Kankan 

with a maximum of 8.10
4 
ha per month and within 25% of values higher than 5.10

4
 ha, Beyla, 

Tougué, Mali and Kérouané with a maximum of 5.10
4 

ha per month and within 25% of 

values higher than 2.10
4
 ha (Figure 3b). And for the lowest values of burned areas over the 

period, 2003 to 2013 are recorded in the N'Zérékoré, Koubia, Tougué, Lélouma, Macenta, 

Boffa, Kindia, Coyah, Labé, Fria, Dabola and Forécariah sites with maxima values less than 

1,5.10
3
 ha per month. These results show that the Northern sites such as Kankan, Kérouané, 

kouroussa, Dinguiraye, are the most vulnerable to bushfires. A finding that is in agreement 

with the results of Barry et al., (2015). These sites are characterized by high temperatures 

recorded during the dry season (season of wildfires) that can reach more than 42°C, with 

minimum rainfall, low relative humidity and a strong wind compared to the Southern sites.  
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Figure 3. Number of active fires (a) and area burned (b) by site in Guinea, for the period 

of 2003– to 2013 

3.2 Seasonal Cycle of Fire Activity 

Figure 4 presents the seasonal cycle of the number of actives fire as well as the burned areas 

based on the monthly climatology over the period 2003-2013 when data overall 32 sites have 

been averaged. As expected, no fired case is recorded by MODIS Aqua/TERRA combination 

during the monsoon period extending June to October (Figure 4a). In contrast, the highest 

numbers of fire are observed from January to April, with a monthly mean higher than 200 

cases. The strongest peak is noted in April, with a maximum of 310 fire cases, within 25% of 

these cases higher than 300 cases. Also, a moderate number of cases are observed during 

May and November-December. These periods correspond to early fires corresponding to 

early dry season and late fires (late dry season respectively. Regarding the seasonal cycle of 

burned areas, likewise the number of active fire, zero surfaces is recorded (Figure 4b). 

Observed burned area increases from November to January and decrease from January to 

March. January is indexed as the month in which the burned area is strongest according to the 

high value of the burned areas median in this month. The maximum observed is around 

3.9.10
4
 ha, with 25% of values higher than 3.10

4 
ha.  

One can see that seasonal cycles of the number of active fire and burned area are not 

correlated. The peak of the number of fire is noted in April (figure 4a) while that of the 

burned area in January (figure 4b). Indeed, November to January period is the beginning of 

the dry season, there are several burned areas even if the number of active fire is low. In April, 

the number of active fire is higher because at this period there is no humidity and the 

vegetation is dry according to the opinions of water and forest officers and field observations 
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during this period. But this does not lead to a maximum of the burned area because there is 

no surface to be burned anymore due to the early burning by a small number of active fire in 

January for instance. Also, this dis-proportionality could also result from the fact that active 

fires are samples that correspond to the fires recorded during the passage of the satellite in 

contrast to the burned areas that are not dynamic over time. 

 

Figure 4. Number of active fires (a) and Area burned (b) by month in Guinea, for the 

2003–2013 period 

The spatial and temporal variabilities of observed fire activities (Figure 3 and Figure 4) 

demonstrate the importance of the implementation of forest fire warning systems in Guinea. 

Several studies on the variability of bush fires activity and fire emission show the ability of 

FWI components to characterize bush fire activity in some other areas (Amiro et al., 2005, 

Flannigan et al., 2005, Carvaillo et al., 2008, Giuseppe et al., 2018, Jain et al., 2018, Erickson 

et al., 2018). According to these authors, it is possible to investigate the predictability of 

active fires and burnt areas using the FWI components as predictors in addition.  

Therefore, based on these findings, we have tried to assess the predictability of fire activity in 

Guinea using cross-validation multi-linear regression model and results are presented and 

discussed in the following section. 

3.3 Predictability of Fire Activity 

The predictability of fire activity is investigated using a multilinear regression model using 

combinations of a couple of FWI components as predictors and the number of active fire as 

well as burned areas as predictands. This analysis is applied to monthly time series using 

values from the 32 sites for each parameter. Tables 5 and 6 summarize the explained variance 

of the monthly burned area and monthly active fire respectively for 32 sites considered in this 
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study. All components of the FWI (Figure 1) have been combined and combinations that lead 

to significant skills have been selected. These skills are ranked in Table 5 and 6 in increasing 

order of importance (percent explained variance). Concerned sites (Tables 5 and 6) are 

classified by alphabetic order. Two by two combinations: (FWI-FFMC, ISI-FFMC, BUI-

FFMC, DMC-FFMC, DC-FFMC, DC-DMC, DMC-FWI, DMC-BUI, ISI-BUI, ISI-DC, FWI-

DC, BUI-DC, BUI-FWI, ISI-FWI) have been used. And combinations with significant skill 

are selected through the multi-regression stepwise, for each site. 

The explained variance ranges of the number of active fire, from 29% (at Siguiri) to 98% (at 

Kankan) (Table4) and for the burned area from 28% (at Télémelé) to 79% (at Kankan) (Table 

6) are all highly significant (P < 0.0001). The results obtained for the burned area are higher 

than those from the statistics given by the 2015 report of the DNEF. This is due to the fact 

that these statistics on the burned area do not concern all the regions of Guinea, in contrast to 

our analysis where the missing data are here taken into account. Also, the method used by 

DNEF to estimate areas burned is not mentioned in the report and the differences could come 

out from the methodology as well.  

In the northern and central region, 15 out of the 32 sites involved in this research, cover 60.51% 

of the areas burned and 46.12% of the cases of active fire during the period from 2003 to 

2013 with a very heterogeneous distribution. The largest cumulative area burned has been 

recorded at Beyla (15% of burned area) while for the number of active fire, Kankan records 

the most important cases (9.58% of the total number of fire cases).  

The percentages of variances explained for the burned areas and for the number of active fire 

are more significant with combinations of DC, DMC, and FFMC (Fuel Moisture Codes) and 

ISI (Fire Behavior Code). For instance, the DMC-BUI combination in Kouroussa explains 82% 

of the variance of the active fires and that of ISI-FWI explains 79% of the variance of burned 

area in the same location. 

The results show strong performances of the linear model in the sites with a homogeneous 

distribution of the vegetation cover like the case of the regions of Upper Guinea where one 

finds vast expanses of Savannah. However, in areas with a heterogeneous vegetation cover 

(Savannah with trees), like Middle Guinea and Lower Guinea predictability gives significant 

values of performance but with lower skills. This could be explained by the fact that the code 

of fuel is not variable inside the 0.5° * 0.5° grid of the GFWED, and could reduce the 

precision in case that, inside the grid, the plant cover is non-homogeneous. 

Tables 5 and 6 show that from one site to another, the combination of predictors with 

significant skills and strong explained variance of area burned and the number of active fire, 

differ significantly. Although most of the significant variables are found in all districts except 

Yomou, Labé, and Fria. For these sites, the burned areas could not be predicted with good 

skills. The results show the ability of the FWI components to predict active fire and burned 

areas across Guinea with highly significant performance and with several possible 

combinations for 90% of sites considered. In Faranah, Forékariah, Tougué, Télémelé, Labé, 

and Lélouma, the percentages of the variance of areas burned and the number of active fires 

is the lowest. This can be due to the fuel characteristics and the physical conditions surely 
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different from the fuel characteristics and the physical conditions related to the rest of the 

country (Carvaillo et al., 2008) and the homogeneity of vegetation cover.  

Table 5. District monthly number of active fire explained variance (r
2
) and variables selected, 

in order of importance, by stepwise regression 

Sites Significant selected combinations Explained  

variance  

range (%)  

N P 

Beyla ISI-DC, FWI-DC, ISI-FWI, DMC-BUI, DMC-FWI 75 to 79  132 <0.0001 

Boffa ISI-BUI,, DMC-FWI, DMC-FFMC, ISI-DC, FWI-FFMC 60 to 77 132 <0.0001 

Boké FWI-DC, ISI-DC, DC-DMC 38 to 43 132 <0.0001 

Coyah ISI-FFMC, FWI-FFMC, DMC-FFMC, ISI-DC, DC-

FFMC 

50 to 59 132 <0.0001 

Dabola BUI-DC, FWI-DC, ISI-DC 37 to 41 132 <0.0001 

Dalaba DMC-FFMC, ISI,-FFMC, FWI-FFMC, BUI-FFMC 67 to 78 132 <0.0001 

Dinguiraye DMC-FFMC, DC-DMC, DMC-BUI 34 to 50 132 <0.0001 

Dubréka ISI-FWI, ISI-FFMC, BUI-DC, DC-DMC,  

FWI-FFMC, BUI-FFMC 

74 to 77 132 <0.0001 

Faranah BUI-DC, FWI-DC, DC-DMC, ISI-DC 31 to 36 132 <0.0001 

Forécariah  BUI-DC, DC-DMC, BUI-FWI 31 to 37 132 <0.0001 

Fria DC-DMC, BUI-DC, FWI-DC, ISI-DC 33 to 41 132 <0.0001 

Gaoual BUI-DC, FWI-DC, ISI-DC, DC-DMC, DC-FFMC 39 to 59 132 <0.0001 

Guékédou BUI-DC, FWI-DC, ISI-DC, DC-DMC, DC-FFMC 56 to 77 132 <0.0001 

Kankan DMC-BUI, FWI-DC, FWI-FFMC, ISI-FWI, DMC-FWI 70 to 79 132 <0.0001 

Kérouané ISI-DC, FWI-DC, BUI-DMC,  

BUI-DC, DC-DMC 

72 to 81 132 <0.0001 

Kindia BUI-DC, FWI-DC, DC-DMC, DC-FFMC 37 to 46 132 <0.0001 

Kissidougou BUI-DC, FWI-DC, ISI-DC, DC-DMC, DC-FFMC 73 132 <0.0001 

Koubia DMC-BUI, FWI-DC, DC-FFMC, ISI-DC,  

DMC-FWI, FWI-FFMC, ISI-FWI 

41 to 60 132 <0.0001 

Koundara ISI-DC, FWI-DC, ISI-BUI, ISI-FWI, ISI-FFMC  79 to 82 132 <0.0001 

Kouroussa ISI-DC, FWI-DC, BUI-DC, DC-FFMC, DC-DMC 77 to 81 132 <0.0001 

Labé BUI-DC, DC-DMC, ISI-DC, FWI-DC, DC-FFMC 39 to 47 132 <0.0001 

Lélouma DC-DMC, BUI-DC, ISI-DC, FWI-DC 42 to 46 132 <0.0001 

Lola BUI-DC, DC-FFMC, DC-ISI, DC-FWI, DC-DMC  72 to 73 132 <0.0001 

Macenta BUI-DC, DC-DMC, ISI-DC, FWI-DC, DC-FFMC 50 to 60 132 <0.0001 

Mali DMC-BUI, DMC-FWI, ISI-FWI 36 to 41 132 <0.0001 

Mamou BUI-DC, FWI-DC, DC-DMC, ISI-DC, DC-FFMC 41 to 51 132 <0.0001 

Mandiana BUI-FWI, DMC-FWI, FWI-FFMC, ISI-FFMC,  

ISI-BUI, FWI-DC, ISI-FWI  

53 to 57 132 <0.0001 

N‟Zérékoré BUI-DC, ISI-DC, FWI-DC, DC-DMC 45 to 49 132 <0.0001 

Siguiri DMC-BUI, DC-DMC 25 to 29 132 <0.0001 

Télémelé DC-FFMC, BUI-FFMC, DMC-FFMC, FWI-FFMC 37 to 70 132 <0.0001 

Tougué DMC-BUI, DC-DMC, BUI-DC, ISI-DC 30 to 37 132 <0.0001 

Yomou ISI-FFMC, FWI-FFMC, DMC-FFMC, BUI-FFMC 29 to 34 132 <0.0001 

Table 6. District monthly area burned explained variance (r
2
) and variables selected, in order 

of importance, by stepwise regression 

Sites Significant selected combinations  Explained variance 

range (%) 

N P 

Beyla FWI-DC, BUI-FWI, DMC-FWI, FWI-FFMC, ISI-FWI 75 to 77 132 <0.0001 

Boffa ISI-DC, DC-FFMC, FWI-DC 39 to 40 132 <0.0001 

Boké BUI-FFMC, FWI-FFMC, DMC-FFMC 33 to 37 132 <0.0001 

Coyah DC-FFMC 19 132 <0.0001 

Dabola ISI-DC, DC-FFMC, FWI-DC 42 to 43 132 <0.0001 
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Dalaba DC-FFMC, FWI-FFMC, BUI-FFMC 24 to 32 132 <0.0001 

Dinguiraye FWI-DC, ISI-FWI, BUI-FWI-FWI-FFMC, DC-DMC 54 to 65 132 <0.0001 

Dubréka ISI-FWI, ISI-BUI, FWI-DMC 20 to 22 132 <0.0001 

Faranah BUI-FWI, FWI-DC, ISI-DC, FWI-FFMC 42 to 49 132 <0.0001 

Forécariah  DC-FFMC, ISI-FWI 22 to 25 132 <0.0001 

Fria   132 <0.0001 

Gaoual DC-FFMC, DC-DMC, ISI-DC, FWI-DC, BUI-DC 46 to 47 132 <0.0001 

Guékédou FWI-DC, BUI-DC, BUI-FFMC, FWI-FFMC, DC-

DMC, ISI-BUI, BUI-FWI 

54 to 57 132 <0.0001 

Kankan ISI-FWI, FWI-DC, FWI-FFMC, DMC-FWI, BUI-FWI 74 to 79 132 <0.0001 

Kérouané DMC-FWI, BUI-FWI, ISI-FFMC, ISI-DC, ISI-FWI, 

ISI-BUI 

69 to 74 132 <0.0001 

Kindia ISI-FWI, ISI-FFMC, DMC-FFMC, Fwi-FFMC, BUI-

FFMC 

23 to 25 132 <0.0001 

Kissidougou BUI-FFMC, ISI-FWI, DMC-FFMC, DC-FFMC, FWI-

FFMC 

59 to 61 132 <0.0001 

Koubia DC-FFMC, ISI-DC, FWI-DC, FWI-FFMC, ISI-FFMC, 

ISI-BUI 

28 to 41 132 <0.0001 

Koundara ISI-DC, FWI-DC, ISI-BUI, BUI-FWI, ISI-FWI, DMC-

FWI, ISI-FFMC 

56 to 67 132 <0.0001 

Kouroussa ISI-FWI, ISI-DC, ISI-FFMC, ISI-BUI, FWI-FFMC, 

DMC-FWI, DMC-BUI 

65 to 70 132 <0.0001 

Labé DC-FFMC 16 132 <0.0001 

Lélouma DMC-FFMC, BUI-FFMC 22 to 25 132 <0.0001 

Lola ISI-DC, ISI-FFMC, ISI-FWI, FWI-FFMC, ISI-BUI, 

DMC-FWI 

62 to 65 132 <0.0001 

Macenta ISI-FFMC, ISI-DC, ISI-BUI, ISI-FWI, DMC-FWI, 

DMC-BUI, FWI-FFMC 

56 to 61 132 <0.0001 

Mali DC-FFMC, BUI-FWI, ISI-BUI, FWI-DC 32 to 42 132 <0.0001 

Mamou ISI-FWI, ISI-BUI, ISI-FFMC, DC-FFMC, ISI-DC, 

DMC-FFMC, FWI-FFMC 

47 to 53 132 <0.0001 

Mandiana BUI-FWI, FWI-DC, ISI-BUI, FWI-FFMC, ISI-FFMC, 

DMC-FWI, ISI-DC 

52 to 54 132 <0.0001 

N‟Zérékoré ISI-FFMC, ISI-DC, DMC-FWI, ISI-BUI, ISI-FWI, 

FWI-FFMC, FWI-DC 

56 to 59 132 <0.0001 

Siguiri ISI-BUI, BUI-FWI, FWI-DC, ISI-DC 37 to 41 132 <0.0001 

Télémelé ISI-DC, FWI-DC, DMC-DC 26 to 28 132 <0.0001 

Tougué DC-FFMC, ISI-DC, FWI-DC, ISI-FWI, ISI-FFMC 24 to 36 132 <0.0001 

Yomou   132 <0.0001 

Based on the average monthly values of the number of active fire cases (table 5) and areas 

burned (table 6) for the 32 sites, all combinations of FWI components present very significant 

skill, with explained percentages of variance range between 75 and 84% and between 29 and 

77% respectively. Figures 5a and 5b show results from the best combinations of predictors 

for active fire ( FWI-DC) and burned area (FWI-BUI).  

However, the analysis of simple correlations between the FWI components and the burned 

and active fires shows that the FWI (better correlated) alone explains 82% of the variance of 

the active fires whereas the FFMC (better correlated) explains 50% of the variance of burned 

areas. This shows that active fires are easier to characterize with the fuel moisture codes and 

as are the burned areas with the fire behavior indices. 

A qualitative analysis of the relationship between best-selected combinations and both active 

fire and burned areas (figure 5) shows that the multi-linear regression model is able to predict 

fire in Guinea on monthly timescale with highly significance skills at lag 0. The predicted and 
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observed plots (figure 5a and figure 5b) show the same evolution with often underestimation 

of the burned area and active fire at the beginning of the year during the whole period 2003 to 

2013 except the year 2005 where both have been over-estimated and 2011, when burned area 

alone are overestimated. The underestimates and overestimates bias of active fire and area 

burned in Guinea seen in Figure 5, can be explained by human activities. For periods of over-

estimation of burned areas and active fire, the risk of starting and spreading fires has been 

high, but the human activities were less intense and conversely when we have an under-

estimation. 

The percentages of unexplained variances can be attributed to the homogeneity of the 

vegetation cover. In sites where vegetation cover is homogeneous, the percentages of 

variances explained are the most important. The spatial resolution of the FWI data could also 

smooth the small scales details. The prevention and sensitization campaigns that the National 

Directorate of Water and Forests (DEF), and the Center for Observation, Monitoring and 

Environmental Information (COSIE) and their local authorities implemented at the beginning 

of fire period is also another aspect that can influence the forest fires statistics and bush fire 

ignition according to Carvailho et al. (2008).  

 

Figure 5. Observed (black line) and predicted (pink line) monthly active fire (a) and 

burned area (b) between 2003 and 2013, over Guinea 

In figure. 6, the same model is extended to take into account the pairs of selected predictors, 

FWI-DC and FWI-BUI, for the active fires and the burned areas respectively, at lag0 

(January), then at lag-1 (December of last year) until-5 (June of last year) successively. In 

figure 6, the shifted correlations between predictands (active fire and burned areas) and 

predictors (selected FWI components) are provided with bars, while the skill scores of the 

multi-regression model are represented with stars. For December, active fire events, appear 

significant predictable by FWI and DC predictors down to 3 months in advance (Figure. 6a, 

95% confidence level). The model is then able to predict in, October the situation in 
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December, based on FWI and DC as predictors. This result is also in agreement with the 

shifted correlation values, which are statistically significant (same confidence interval) for 

both DC (thin bars) up to lag-1 (one month before) and FWI (wide bars) until lag-2 (two 

months before). Figure 6a also shows that where we have positive correlations between the 

active fires and the two predictors, model performance is significant. 

For burned areas, the skill of the predictability of the situation in January (based on the FWI 

and BUI predictors) remains significant just on 1 month in advance (November) (Fig. 6b). 

There is also a rapid decrease in the correlations between burned areas and the two predictors 

(FWI and BUI). As with active fires, we note that significant performance is observed when 

we have significant correlations between area burned and predictors. The difficulty of 

predicting areas burned more than a month in advance can be attributed to the fact that they 

are not dynamic over time (these are not the events but rather the consequences of active 

fires). These results are therefore extremely important given the fact that the model has the 

ability to predict active fire events (cause of burned areas observed) down to 3 months in 

advance, thus providing the opportunity to take fire prevention measures.  

 

Figure 6. Lagged correlation and cross-validation hindcast of Bush fire: (a) Active fire, 

(b) Burned area for January. Bars denote lagged correlations on a monthly basis between 

January active fire and burned area (predictands) and preceding monthly FWI, DC, and BUI 

(predictors). The dashed horizontal line delimits the statistical significance (95% confidence 

level) for correlation. Markers are the multi-linear regression model skill 

4. Conclusion 

This study investigates the relationship between Global Fire WEather Index Database 

components and monthly burned area and active fire recorded by MODIS Aqua/TERRA 

combination overall Guinea considering 32 sites. Statistical analysis through a multiple linear 
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regression model evaluated the predictability of active fires and burned areas in these stations 

and across the country using two-by-two combinations of Fire Weather Index (FWI) 

components of predictors. The combinations of Drought Code (DC), Initial Spread Index 

(ISI), Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), The Buildup Index 

(BUI) and FWI components have been selected by the linear multi-regression stepwise model 

based on the skill of the model to predict the fire activity. All two-by-two combinations of 

these components show very significant skill at lag 0 for both active fires and burned areas, 

with a percentage of variances between 75 and 84% and between 29 and 77% respectively. 

Results also showed that active fires are more related to fire behavior indices while the 

burned areas are related to the fine fuel moisture codes.  

In the latest way, the application of lagged correlations and the evaluation of the stepwise 

multi-linear regression model skills from lag0 (same month) to lag-5 (five months before) has 

been computed based on the month of January for active fire and burned areas. Monthly FWI 

and DC and monthly FWI and BUI for the active fire and burned areas respectively have 

been considered as predictors. Results show that the active fire events can be predicted 

several months in advice using FWI and DC as predictors and the burned areas can be 

predicted just one month in advice using FWI and BUI as predictors. These may have 

implications on seasonal forecasting of active fire events specially. These are also a stepping 

stone in supporting Guinea's water and forest services in protecting ecosystems and 

biodiversity against the impacts of bush fires. These results also open up perspectives on the 

possibility of using forecasting models to project future and past events in order to better 

understand the long-term effects of bush fire on ecosystems, biodiversity and on the pollution 

of the environment.  
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