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Abstract 

Soil loss stands as a critical global challenge, posing economic and environmental threats to 

soil and water conservation. This study aimed to assess the impact of landscape changes on 

soil loss in the Descoberto River basin, encompassing 62 watersheds in the Cerrado biome in 

central Brazil. We analysed a 32-year time series (1985−2017) of land use and land cover 

data based on geostatistical techniques and spatiotemporal weighted regression analysis. 

Principal component analysis condensed 16 landscape metrics into three factors: 

aggregation/diversity, dispersion/adjacency, and patchiness. The average annual total soil loss 

across all 62 analysed watersheds was estimated at 73.3 ± 78.2 (standard deviation) ton ha−1. 

A significant positive correlation was observed between landscape fragmentation and soil 

erosion, indicating that, as fragmentation increases, soil losses also increase. Furthermore, our 

analysis revealed a decreasing trend in soil loss rates in recent years, primarily attributed to 

the recovery of native vegetation since no significant soil management practices were widely 

implemented in the study area during the study period. 

Keywords: Brazilian Savannah, Landscape, Erosion, Discretized and spatial-temporal 

models 

1. Introduction 

Soil erosion is an important global issue due to its negative impacts on soil productivity, 

nutrient loss, siltation in water bodies, and degradation of water quality (Benavidez et al., 

2018). The projected global annual potential soil erosion rate, by 2012, averaged 2.4 ton ha−1. 

In tropical regions like the Cerrado biome, this rate is expected to increase between 30% and 

50% by 2070 under climate change scenarios (Borrelli et al., 2020; Wuepper et al., 2020). 

The Cerrado biome has become the main agricultural frontier in Brazil, driven by factors 

such as its flat topography, infrastructure, and low land prices (Garcia et al., 2017; Garrett et 

al., 2018). However, land occupation has led to landscape fragmentation by reducing and 

isolating natural habitats. Urbanization of natural areas is a major cause of soil erosion 

(Trabaquini et al., 2017; Ledda and Montis, 2019; Queiroz et al., 2020). 

Land use and land cover (LULC) changes in Brazil are dynamic and spatially dependent 
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(Soares-Filho et al., 2013; Jusys, 2016). Soil erosion has gained global environmental and 

social concern due to the overall increase in LULC changes in recent decades, necessitating a 

better understanding of its location and magnitude at various scales and time periods (Borrelli 

et al., 2020; Hurtt et al., 2020). It is also crucial to comprehend the factors influencing soil 

erosion across multiple spatial-temporal scales (Ouyang et al., 2010; Qi et al., 2012; Mitchell 

et al., 2015; Hu et al., 2019). 

Original erosion models utilizing remotely sensed data and geographic information systems 

(GIS) have been employed to assess soil erosion rates and to map LULC changes at local, 

regional, and global scales using multitemporal datasets (Bera, 2017; Tadesse et al., 2017). 

However, the spatial heterogeneity of the erosion process poses limitations on these models 

(Gao and Wang, 2019).  

The Geographically weighted regression (GWR), proposed by Fotheringham et al. (2002), 

addresses this limitation effectively. However, the GWR does not account for temporal 

non-stationarity, which is also a significant factor influencing land use changes (Ma et al., 

2018). Huang et al. (2010) proposed geographically and temporally weighted regression 

(GTWR), which has proven to be a robust technique for capturing spatial and temporal 

non-stationarity simultaneously, thereby enhancing environmental models considerably (Ma 

et al., 2018; Cui et al., 2019). While there are limitations in soil loss prediction models, the 

task remains challenging in most developing countries due to scarce monitoring systems 

related to social, economic, and political changes (Hrachowitz et al., 2013).  

In this study, we investigated the effects of land use changes and landscape fragmentation on 

soil loss in the Descoberto River basin, located in the Cerrado biome, Brazil. This region is 

pivotal in supplying most of the potable water to the population of the Federal District, Brazil. 

Our findings indicate a distinct relationship between landscape fragmentation and soil erosion. 

The results of this study have great potential to contribute to the formulation of public 

policies aimed at enforcing effective land use and soil management practices to mitigate the 

impacts of land use changes and landscape fragmentation on soil loss in the study region. 

2. Method 

2.1 Regional Setting: Central Brazilian Cerrado Biome 

Our study focused on the upstream region of the Descoberto River basin, covering a total of 

356.73 km² in the western Federal District of Brazil (Figure 1). More than 50% of native 

vegetation in the study area has been converted into agricultural lands, forest plantations, and 

urban areas over recent decades (Nunes and Roig, 2016). The Descoberto River basin is of 

socio-environmental significance, as it supplies 66% of the water to the Federal District of 

Brazil for domestic and agricultural consumption, including Brasília and surrounding satellite 

cities (Ferreira et al., 2015). 
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Figure 1. Location of the study area, which encompasses the Descoberto River basin, within 

the Federal District of Brazil 

 

In the Descoberto River basin, the most prevalent soil classes are Red Latosols and 

Red-Yellow Latosols. However, other soil classes, including Nitosols, Haplic Cambisols, 

Haplic Gleysols, Petroplinthic Ultisols, Quartzipsamments, and Spodosols, are also present 

(Reatto et al., 2003). The altitude in the study area ranges from 1000 m to 1343 m, and it 

features a predominantly Cwa-type climate according to the Köppen climate classification. 

This climate is characterized by dry winters and hot humid summers, as documented by 

CODEPLAN (2020). The average annual precipitation in the region varies between 1200 mm 

and 1750 mm (Nunes and Roig, 2016). 

2.2 Land Use and Land Cover Dataset 

The LULC dataset for this study was sourced from the MapBiomas project (MapBiomas, 

2018a), collection 3.0, providing a 30-meter spatial resolution data for the period between 

1985 and 2017. The overall accuracy of the MapBiomas dataset is reported as 84%. However, 

to improve this accuracy, corrections were implemented using higher-resolution images 

available in the Google Earth platform (Schwieder et al., 2016; Kassawmar et al., 2018). 

Urban area boundaries also underwent refinement and reclassification based on the Federal 

District Urban Evolution database. This database utilized 1-meter spatial resolution 
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orthophoto mosaics covering the period from 1958 to 2015 (SEDUH, 2019). 

Additionally, the original 21 LULC classes were reclassified into six broader categories, 

namely natural forest formation, savanna/grassland formation, planted forest, agricultural 

fields, water bodies, and urban areas. This reclassification aligns with the MapBiomas 

General Handbook (MapBiomas, 2018b). 

2.3 Digital Elevation Model and Area Discretization 

The boundary of the Descoberto River basin was delineated using the ArcHydro function 

available in the ArcGIS® 10.8 software. To generate the digital elevation model (DEM) 

required for this analysis, we utilized the Shuttle Radar Topography Mission (SRTM) data 

provided by the National Aeronautics and Space Administration (NASA) at a spatial 

resolution of 30 meters (NASA, 2023). 

2.4 Watershed Delimitation 

Spatial discretization forms the fundamental basis for all simulations involving spatial 

distribution, as highlighted by Liao et al. (2020). In this research, we focused on a collection 

of watersheds situated within the Descoberto River basin, aiming to assess the influence of 

LULC changes on soil erosion within each specific watershed. To achieve this, we utilized an 

automated watershed delimitation technique, which enabled the division of the entire 

Descoberto River basin into 62 distinct individual watersheds. 

2.5 Universal Soil Loss Equation (USLE) 

To estimate soil loss in the study area, we applied the Universal Soil Loss Equation (USLE), 

originally proposed by Wischmeier and Smith (1978). The USLE is represented by the 

following equation: 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶𝑃                            (1) 

Where: A = the predicted long-term average annual soil loss (ton ha−1 year−1); R = the rainfall 

and runoff erosivity factors (MJ mm ha−1 h−1 year−1); K = the soil erodibility factor (tons ha−1); 

L= the slope length factor (dimensionless); S = the slope steepness factor (dimensionless); C 

= the crop management factor (dimensionless); and P = the supporting practices factor 

(dimensionless). In this analysis, the C and P factors were combined to create the CP factor, 

assuming that no significant soil erosion control practices have been widely implemented in 

the study area and, therefore, CP = 1. 

The R factor was calculated based on the monthly average erosion index (EI), as shown in Eq. 

2, which has been widely used for this purpose (Bertoni and Lombardi Neto, 1999). In this 

analysis, the R factor was estimated by adding the monthly values of the soil erosion indices, 

as expressed in Equations 2 and 3. 

𝐸𝐼 = 67.355 × (
𝑟2

𝑃
)

0.56

                          (2) 

𝑅 = ∑  12
𝑖=1 𝐸𝐼                              (3) 
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Where: EI = the monthly average erosion index (MJ mm ha−1 h−1); r = the average monthly 

precipitation (mm); and P = the average annual precipitation (mm). 

A dataset comprising 32 years of daily rainfall data was acquired from three meteorological 

stations located within or near the Descoberto River basin. These stations are named 

Brazlândia (World Meteorological Organization ID: 1548007), Descoberto (ID: 1548008), 

and Taguatinga (ID: 1548006) stations (Figure 2). To spatially represent rainfall across the 

study area, we utilized the inverse distance weighted (IDW) interpolation technique. The 

IDW default setup was applied, which involves calculating the weighted average of rainfall 

from the n nearest neighbors (Tiwari et al., 2019). The annual rainfall trend in the dataset was 

assessed using the Mann-Kendall test (Nyikadzino et al., 2020). 

 

Figure 2. Location of the meteorological stations in the Descoberto River basin and in the 

surrounding areas 

 

The K factor is defined as the rate of soil loss per unit of the rainfall erosion index (R) and is 

measured on a specific plot (Wischmeier and Mannering, 1969). In our study area, we 

utilized the K values developed and tested by Mannigel et al. (2002), Reatto et al. (2003), and 

Silva and Alvares (2007) for each soil type. 

To compute the LS factor, we employed the ArcHydro and ArcGIS raster calculator tools, 
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using the following equation: 

𝐿𝑆 = (
𝐹𝐴×𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒

22.13
)

0.4
× (

𝑠

0.0896
)1.3                     (4) 

Where: FA = the flow accumulation; grid size = the size of a cell side of the DEM data (30 m) 

used in this analysis; and S = the sine of the slope angle. 

The C factor is influenced by the land use characteristics of a specific basin or watershed, 

while P factor values are assigned based on cultivation methods (Wischmeier and Mannering, 

1969). In our study, the land use map of the study area was reclassified based on CP factor 

values developed and tested by Wischmeier and Smith (1978) and Lopes et al. (2009).. 

As previously described, Equation 1 provides the average annual soil loss in tons per hectare 

per year for each pixel. To calculate the total soil loss (TSL) for the entire Descoberto River 

basin and for each watershed within that basin, we multiplied the results by the pixel area 

(0.09 ha), and then added the values of all the pixels within each watershed to estimate the 

watershed soil loss. 

2.6 Landscape Analysis 

We utilized the FRAGSTATS 4.2.1.603 software (McGarigal et al., 2012) to quantify 

landscape patterns for all 62 watersheds from 1985 to 2017. Our selection of landscape-level 

metrics was guided by our study objectives, aiming to assess the correlation between 

landscape fragmentation and soil loss in the study area. Thus, we included metrics that 

represent the main landscape classes, such as area, edge, core area, aggregation, and diversity 

patterns, as suggested by Singh et al. (2017), Kumar et al. (2018), and Zhang et al. (2019) 

(Table 1). These metrics were calculated with an edge size of 100 m (Bircol et al., 2018) and 

a connection radius of 1000 m (Garcia et al., 2017). 

Table 1. Landscape metrics applied in this analysis 

Analysis Class Metrics 

Area and Edge Metrics Largest Patch Index (LPI) 

Total Edge (TE) 

Edge Density (ED) 

 

Core Areas Metrics 

 

Number of Disjunct Core Areas (NDCA) 

 

Aggregation Metrics 

 

Proximity Index Distribution (PROX_MN) 

Number of Patches (NP) 

Patch Density (PD) 

Landscape Shape Index (LSI) 

Landscape Division Index (DIVISION) 

Contagion (CONTAG) 

Splitting Index (SPLIT) 

Interspersion and Juxtaposition Index (IJI) 

 

Diversity 

 

Patch Richness (PR) 

Patch Richness Density (PRD) 

Shannon’s Diversity Index (SHDI) 

Shannon’s Evenness Index (SHEI) 
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2.7 Variance and Trend Analysis 

The Shapiro-Wilk test indicated a non-normal distribution for both TSL and landscape 

metrics. Consequently, we used the Kruskal-Wallis test at a significance level of 0.05 to 

detect differences among watersheds. To identify potential trend shifts in the dataset over the 

study period, we employed the nonparametric time series trend test proposed by 

Mann-Kendall. Both variance and trend analyses were conducted using STATA 14.0 software 

(version 20.0; SPSS Inc., Chicago, IL, USA). 

2.8 Principal Component Analysis  

The pool of landscape metrics comprised 16 different metrics that reflect the landscape's 

status. Principal Component Analysis (PCA) is used to objectively identify key factors, 

reduce dimensionality, and address multicollinearity in the data (Jha et al., 2015). In this 

analysis, we conducted PCA using STATA® 14.0 software, following three steps: data 

preparation for the correlation matrix; extraction of common factors; and rotation of the axes 

relative to these common factors (Sands and Podmore, 2000). 

We employed the Varimax Rotation Method to obtain orthogonal principal components (PCs) 

and selected the main components based on the Kaiser rule (eigenvalues > 1) (Kumar et al., 

2018). Additionally, we used the first three components to explain the maximum total data 

variability, as they showed no correlation and explained over 70% of the total variance (Hair 

et al., 2009). 

To assess the adequacy of the model, we utilized the Kaiser-Meyer-Olkin parameters and 

Bartlett's sphericity tests. Kaiser-Meyer-Olkin values above 0.6 were considered acceptable, 

and significant Bartlett's test values were expected to exceed 0.05 (Liu et al., 2016b). 

2.9 Geographical and Temporal Weighted Regression 

The Geographical and Temporal Weighted Regression (GTWR) model developed by Huang 

et al. (2010) is expressed as follows: 

𝑌𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) + ∑   
𝑘 𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)𝑋𝑖𝑘 + 𝜀𝑖                  (5) 

Where: (𝑢𝑖 , 𝑣𝑖) = 2D coordinates of the observation i; 𝛽0(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = intercept value; and 

𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = kth parameter, varying with the 2D coordinates and time (𝑡𝑖 ) at the i 

observation.  

In this study, k was assumed to be 1; Yi = the soil loss at the observation I; and 𝑋𝑖𝑘 = the PCs. 

The estimation of 𝛽𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) at each space-time observation i can be expressed as: 

𝛽�̂�(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = [𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)𝑋]−1𝑋𝑇(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)𝑌              (6) 

Where: W(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) = a spatial temporal weight matrix based on the Euclidean distance and 

Gaussian distance decay-based functions in space-time domains.  

In our analysis, the Euclidean distance was measured in meters and years. The elements of 
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the spatiotemporal weight matrix were defined as 𝑊𝑖𝑗
𝑆𝑇 = 𝑊𝑖𝑗

𝑆 × 𝑊𝑖𝑗
𝑇 × 𝑊𝑖𝑗 

𝑇 , with the time 

weighted element between observations i and j ;  𝑊𝑖𝑗 
𝑇 = 𝑒𝑥𝑝 𝑒𝑥𝑝 (

𝑑𝑖𝑗
2

ℎ𝑇
2 ) , where: 𝑑𝑖𝑗 =

√(𝑡𝑖 − 𝑡𝑗)2.  

Complementarily, h is a non-negative parameter known as bandwidth, which produces a 

decay of influence with distance, and dij is the distance between location i and j, in this study, 

measured using a Gaussian Adaptative Kernel and the bandwidth selection criteria, based on 

the Akaike Information Criterion (AIC). 

The goodness fit of the model was assessed by comparing the R² and AIC results of the 

GTWR model with those obtained from the conventional ordinary least square (OLS) model 

(Du et al., 2018; Ma et al., 2018). 

3. Results 

3.1 Land Use and Land Cover Changes 

We estimated that over 52% of native vegetation in the study area has been converted to other 

land use types (e.g. pastures, agriculture, water reservoirs, built areas, and forest plantations) 

by 2017. Most of its territory was covered by a savannah-like vegetation and croplands 

during the period of analysis. In recent years of our analysis, we observed that savannah and 

forest formations have slightly increased in the study area, together covering an average of 46% 

of its territory between 1985 and 2017. Urban areas and rivers/lakes occupied 6.8% and 1.5% 

of the study area by 2017, respectively (Figure 3). 

 
Figure 3. Land use and land cover changes in the Descoberto River basin between 1985 and 

2017. Source: Adapted from MapBiomas (2018a) 

 

However, no significant land use changes were observed between 1985 and 2027 in the study 
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area, although native vegetation has marginally increased from 43.8% in 1985 to 47.2% in 

2017, mostly due to vegetation recovery in that region. 

3.2 Landscape Metrics 

As previously presented, although LULC did not change substantially, the landscape metrics 

results suggest an increasing landscape fragmentation during the study period. For instance, 

we estimated an average of 48 patches (NP) ranging from 7 to 136 patches per watershed 

during the study period. This increased from an average of 40 patches in 1985 to 55 patches 

in 2017. Similarly, we estimated a patch density (PD) of an average of 12, increasing from 10 

to 14 between 1985 and 2017. The largest patch comprised an average of 47% of the 

watershed landscapes, decreasing from 54% to 41% between 1985 and 2017. The edge 

density (ED) increased from 60 to 73 between 1985 and 2017, with an average of 71.9 (Table 

2). 

The aggregation metrics suggest that the landscape in the study area exhibits a certain degree 

of clumping (CONTAG, average of 52) and a number of land use classes (LSI, average of 

5.3). Land use classes are adjacent to each other (IJI, average of 58.5), and the landscape is 

moderately subdivided (DIVISION, average of 0.7), with a moderate to high number of 

patches (SPLIT, average of 0.7). The isolation metric PROX (Proximity Index) indicates that 

patches are moderately distributed in the study area, with an average of 76. 

We calculated both Simpson's Heterogeneity Index (SHDI) and Simpson's Evenness Index 

(SHEI) to assess the distribution of area among patch types for all 62 analyzed watersheds in 

the study area and period. We estimated an average of 0.95 for SHDI and an average of 0.68 

for SHEI among the 62 watersheds. These values suggest an uneven distribution of area 

among patch types, indicating that certain patch types are more dominant than others in terms 

of their abundance in the study area. However, the proportional abundances of different patch 

types are relatively similar across the study area, as suggested by the estimated SHEI value. 

Additionally, other diversity metrics indicate that there is an average of four land use classes 

(PR, average of 4.2) with a moderate number of classes in the landscape (PRD, average of 

1.95) (Table 2). 

Table 2. Statistic summary of the landscape metrics for the 62 watersheds spanning the period 

from 1985 to 2017 

Metric Mean Minimum Maximum Standard Deviation CV 

NP 48.28 4.00 165.00 29.29 0.61 

PD 12.24 2.43 92.59 10.28 0.84 

LPI 47.01 14.45 89.82 16.88 0.36 

TE 36,648.42 990.00 132,540.00 26,166.12 0.71 

ED 71.95 19.14 191.92 22.40 0.31 

LSI 5.31 2.16 9.04 1.48 0.28 

NDCA 13.79 0.00 49.00 9.13 0.66 

PROX_MN 76.19 0.21 469.57 72.39 0.95 

CONTAG 51.90 24.84 77.35 8.99 0.17 

IJI 58.45 0.00 97.63 15.05 0.26 

DIVISION 0.69 0.19 0.92 0.15 0.22 

SLIPT 0.69 0.19 0.92 0.15 0.22 
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PR 4.16 2.00 6.00 0.85 0.20 

PRD 1.95 0.20 33.67 4.38 2.25 

SHDI 0.95 0.37 1.55 0.19 0.21 

SHEI 0.68 0.34 0.97 0.12 0.18 

Our landscape metric results indicate that 28 of them exhibited a substantial upward trend in 

both the number of patches (NP) and patch density (PD) during the study period. Furthermore, 

18 of these watersheds showed increasing trends in metrics such as total edge (TE), edge 

density (ED), and the landscape shape index (LSI) values. Additionally, a significant 

decreasing trend in the contagion metric (CONTAG) was observed within 24 watersheds 

between 1985 and 2017. We also noted changes in the landscape concerning patch richness 

(PR) within 14 watersheds, which showed some decreasing and increasing trends (Figure 4). 

 

Figure 4. Landscape metrics trend (Mann-Kendall test) observed between 1985 and 2017 

 

In the initial stages, the diversity of patch types increased as various land uses were 
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introduced during the early phases of human settlement in the study region. This led to the 

increasing dominance of those newly introduced land uses and a decrease in the richness of 

patch types. 

3.3 Annual Watershed Soil Erosion 

The watershed delimitation within the Descoberto River basin has substantially contributed to 

enhancing the understanding of the intricate relationship between LULC changes and their 

impact on soil erosion. We estimated an average TSL of 73.3 ± 78.2 (standard deviation) ton 

ha−1 year−1 across all 62 analyzed watersheds. Notably, Watershed 38, situated in the central 

region of the study area, showed the highest TSL at 426.62 ton ha−1 year−1, while Watershed 

52, situated in the southeast, showed the lowest TSL at 0.78 ton ha−1 year-1 (Figure 5). 

 

Figure 5. The mean annual Total Soil Loss (TSL) estimated for each watershed spatially 

located within the Descoberto River basin between 1985 and 2017 

 

Upon analysing our 32-year time-series of TSL dataset, we found that the estimated TSL for 

the entire Descoberto River basin did not show a statistically significant trend between 1985 

and 2017 (Kendall's τ-b = 0.1174; p-value = 0.3446). However, when examining shorter-term 

intervals, we identified a notable upward trend in TSL between 1985 and 2010 (Kendall's τ-b 

= 0.5508; p-value = 0.0001), succeeded by a significant downward trend after 2010 (see 

Figure 4). These findings suggest temporal variations in soil loss dynamics within the basin, 
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primarily attributed to the recovery of native vegetation since no significant soil management 

practices were robustly implemented in the study area during the study period. 

Among the 62 analyzed watershed, 26 showed no statistically significant changes in TSL 

during the period of analysis, whereas 20 watersheds exhibited statistically significant 

decreasing TSL trends, and 16 watersheds displayed statistically significant increasing TSL 

trends. The estimated TSL values were statistically different among the watersheds 

(Kruskal-Wallis χ² = 1959.314; degrees of freedom = 61; p-value = 0.0001), suggesting that 

the estimated soil loss depends on the scale of analysis (Chaves, 2010; Ferreira and Ferreira, 

2015; Alewell et al., 2019) (Figure 6). 

 

Figure 6. Total soil loss (TSL) in the Descoberto River basin during the period between 1985 

and 2017 (A), and TSL trend within the watersheds (B). U= upward trend; NS = not 

statistically significant; and D = downward trend 

 

We also noted distinct trends in annual precipitation based on datasets from meteorological 

stations in the region. The Brazlândia meteorological station exhibited a decreasing trend 

(Kendall's τ-b = −0.3462; p-value = 0.0065), while the Taguatinga meteorological station 

showed an increasing trend (Kendall's τ-b = 0.2645; p-value = 0.0381). However, for the 

Descoberto meteorological station, no statistically significant trends were observed in 

precipitation between 1985 and 2017 (Kendall's τ-b = −0.1785; p-value = 0.1634). 

3.4 Principal Component Analysis  

The results of the KMO test and Bartlett's sphericity test indicated that the landscape metric 

dataset was suitable for factor analysis. The overall KMO test yielded a value of 0.685, and 

the Bartlett's sphericity test was highly significant (p < 0.000), suggesting a strong 
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relationship among the analyzed variables. Following the Kaiser criteria (eigenvalue ≥ 1) and 

the objective of explaining the maximum variability of the data with no correlation among the 

components, we extracted and rotated the first three PCs. These three PCs accounted for a 

total of 76.1% of the data variance. 

According to the rotated component matrix (Table 3), the landscape metrics of SHEI, SHDI, 

CONTAG, DIVISION, SPLIT, and LPI showed the highest loads on PC1 and collectively 

explained 30.6% of the total data variance.  

The loads of landscape metrics of PC extraction were determined using PCA and varimax 

rotation (Table 3). 

Table 3. Statistical results of the principal component analysis of the landscape metrics 

Metric PC 1 PC 2 PC 3 

NP −0.006 0.423 0.021 

PD −0.008 −0.036 0.598 

LPI −0.386 −0.074 −0.011 

TE −0.003 0.423 −0.061 

ED 0.151 0.123 0.486 

LSI 0.092 0.409 0.016 

NDCA 0.024 0.392 −0.105 

PROX_MN −0.082 0.284 −0.166 

CONTAG −0.402 0.101 −0.076 

IJI 0.254 −0.266 −0.172 

DIVISION 0.385 0.101 0.035 

SPLIT 0.376 0.083 0.032 

PR −0.085 0.300 0.136 

PRD −0.086 −0.069 0.546 

SHDI 0.310 0.122 0.009 

SHEI 0.431 −0.110 −0.097 

 

PC2 explained 29.9% of the data variance and included the following metrics: NP, TE, LSI, 

and NDCA. NP and LSI measure patch type aggregation or dispersion within a landscape, 

while TE and NDCA assess the adjacency relationships among patches. In this analysis, PC2 

represented the 'dispersion-adjacency' component of the study area's landscape. 

PC3 explained 15.6% of the data variance, which was characterized by the loadings of PD 

(average patch size), PRD (presence of different patch types along the landscape boundary), 

and ED (patches composed of multiple types). In this case, the PC3 primarily captured 

attributes related to individual patches. 

3.5 Geographically and Temporally Weighted Regression (GTWR) 

Our multicollinearity test results showed low variance inflation factor (VIF) values for all 

variables due to the extraction of principal components (PCs). It indicates that there was no 

significant multicollinearity among the chosen variables, supported by the observed 

following VIF values: PC1 = 1.08; PC2 = 1.10; and PC3 = 1.15. These results suggest that 

the derived PCs from landscape metrics were not strongly correlated with each other. 

Furthermore, the ordinary least squares (OLS) model showed better statistical results than the 
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GTWR model in our analysis (Table 4). 

Table 4. Comparation between Geographically and Temporally Weighted Regression (GTWR) 

and Ordinary Least Square (OLS) models. 

Model R² AIC 

OLS 0.48 22423.33 

GTWR 0.87 19665.90 

 

Summary statistics for the GTWR parameters are presented in Table 5. The average 

coefficients of PC1 (representing aggregation and diversity) and PC3 (representing patch 

characteristics) were negative.  

Table 5. Geographically and Temporally Weighted Regression (GTWR) coefficient’s 

summary statistics 

 Mean Minimum Maximum Lower quartile Median Upper quartile 

Intercept 72.29 −2.92 138.17 50.31 68.67 98.25 

PC1 −2.57 −23.36 6.72 −4.96 −1.93 0.69 

PC2 20.42 −0.88 47.62 14.52 21.29 26.43 

PC3 −6.24 −73.59 60.61 −13.52 −5.71 0.57 

 

The mean of the residuals over time is approximately zero, indicating that the model 

successfully integrates both space and time (Figure 7). For example, the Watersheds 51, 52, 

60, and 61 are located within the Brasília National Forest, whereas the Watersheds 29 and 61 

predominantly cover urban areas. Furthermore, the Watersheds 33, 34, and 57 are 

characterized by croplands and pastures. 
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Figure 7. Box plot of the total soil loss (TSL) residuals using the Geographically and 

Temporally-Weighted Regression (GTWR) model estimated between 1985 and 2017 

The dispersion-adjacency coefficients varied across both space and time, as illustrated in 

Figure 8, reflecting changes in the PC2 coefficient. The most significant changes occurred in 

1985 and 1995, predominantly situated in the northeastern and eastern areas of the study 

region. Conversely, the lowest changes were noted in 2005 and 2017, primarily concentrated 

in the southeastern and western areas of the study region. 

 

Figure 8. Dispersion-adjacency coefficient spatiotemporal distribution between 1985 and 

2017 

 

4. Discussion 
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4.1 Total Soil Loss 

The absence of soil conservation practices has played a crucial role in the increased soil 

losses observed in 37 watersheds over the study region, which was also observed by Grecchi 

et al. (2014) and Oliveira et al. (2019) in other study areas in the Cerrado biome. Furthermore, 

LULC changes have emerged as a significant additional factor driving the overall increase in 

TSL within our study area. Comparatively, natural landscapes typically show reduced runoff 

and soil erosion rates in contrast to agricultural lands (Anache et al., 2018). Consequently, 

watersheds characterized by lower values of the K and LS factors, as well as lower rates of 

LULC changes, generally exhibit lower TSL values. 

By keeping the R, K, L, and S factors constant, our findings highlighted that land use 

emerges as an important factor shaping soil loss in our study area. Within the Cerrado biome, 

land use significantly impacts runoff and soil loss rates (Grecchi et al., 2014; Anache et al., 

2018). This is particularly true for the predominant Oxisols (referred to as Latosols in the 

Brazilian Soil Classification System and Ferralsols in the FAO classification), which exhibit 

high sensitivity to land use changes affecting soil organic matter content (Gmach et al., 2018; 

James et al., 2019). 

The increasing and decreasing trend of TSL observed for 16 and 20 watersheds, respectively, 

in the study area between 1985 and 2017, indicate that the estimated soil loss is contingent 

upon the chosen scale of analysis, which can be affected by local factors (Chaves, 2010; 

Ferreira and Ferreira, 2015; Alewell et al., 2019). For instance, rainfall plays a crucial role in 

soil erosion by directly influencing TSL (Zhu et al., 2011; Terranova and Gariano, 2015). 

Complementarily, disruptions in the organic matter content of Oxisols can compromise their 

capacity to retain nutrients, diminish structural stability, reduce water holding capability, and 

ultimately elevate runoff and soil erosion rates (Neufeldt et al., 2002; Gmach et al., 2018; 

Figuerêdo et al., 2020). 

4.2 Landscape Metrics 

Our results showed that changes of number of patches (NP) and patch density (PD) are a 

good indicator of the landscape fragmentation level, which directly affect total edge (TE), 

number of disjunct core area (NDCA), and edge density (ED) because of the edge effects. 

This characteristic pattern is also discernible in the landscape shape index (LSI), which is 

directly affected by the TE. Consequently, an increase in LSI values, as it was observed for 

our study area, indicates a more irregular landscape shape, ultimately intensifying the 

complexity of the patch configuration in the landscape. 

The decline in patch richness (PR) within the study area's landscape between 1985 and 2017 

is primarily resulted from the growing prevalence of introduced anthropogenic land uses in 

the most recent years of analysis. It directly affects biodiversity and native habitat 

conservation. It is worth noting that the expansion of croplands and pastures in the study 

region has been a significant driver of landscape fragmentation. In particular, landscapes 

dominated by crops tend to be more fragmented compared to those dominated by pastures. A 

previous study conducted in the Descoberto River basin focusing on identifying land use 
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conflicts indicated that approximately 40% of the watersheds showed conflicting interests 

among conservation, agriculture, and urban areas (Nunes and Roig, 2016). 

The rapid growth of human activities in the Descoberto River watersheds over the years of 

our analysis has occurred without proper planning of territorial occupation. The lack of 

planning has contributed to illegal land occupation and deforestation, which have had 

detrimental effects on local water resources and soil conservation. Landscape fragmentation, 

resulting from these activities, directly impacts the nature capacity to provide ecosystem 

services (Mitchell et al., 2015; Nunes and Roig, 2016). 

4.3 Principal Component Analysis 

Our observations suggest that some variables (SHEI, SHDI, CONTAG, DIVISION, SPLIT, 

and LP) were significantly influenced by patterns of aggregation and diversity. This led to the 

classification of Principal Component 1 (PC1) to represent the "aggregation and diversity" 

components. In this context, aggregation refers to the tendency of patch types to exhibit 

spatial clustering or contagiousness, a phenomenon commonly observed in extensive and 

consolidated distributions. 

PC2 comprises the NP, LSI, TE, and NDCA landscape metrics. NP and LSI assess the 

aggregation and dispersion of patches within a landscape, indicating how scattered a patch 

type is across the landscape—higher dispersion values suggest greater disaggregation 

(McGarigal et al., 2012). On the other hand, TE and NDCA metrics focus on adjacency 

relationships among patches. In this analysis, PC2 represents a 'dispersion-adjacency' 

component, as it effectively captures landscape patterns related to both patch dispersion and 

adjacency. 

PC3 primarily captured characteristics of individual patch-related landscape metrics, such as 

PD, PRD, and ED. Specifically, PD represents the average patch size, PRD signifies the 

presence of diverse patch types along the landscape boundary, and ED highlights scenarios 

where a patch comprises multiple patch types. In this context, PC3 primarily captured 

attributes related to individual patches. 

We also observed that our study area covers several watershed territories, which highlights 

the distinct and valuable nature of the metrics ED and TE for this analysis. Due to their 

substantial explanatory power, we deemed that the three principal components (PC1, PC2, 

and PC3) are suitable as independent variables to be included in the GTWR model. These 

components collectively account for 76.1% of the data variance, surpassing the 70% 

threshold (Hair et al., 2009). 

4.4 Geographically and Temporally Weighted Regression 

Compared to the conventional OLS model (as presented in Table 4), the GTWR model 

demonstrated superior statistical performance. It exhibited enhanced explanatory capability 

by incorporating both spatial and temporal information into the model, which aligns well with 

findings from prior research (Ma et al., 2018). Previous studies consistently indicate that the 

GTWR model excels in explaining spatially dependent environmental phenomena by 
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considering the inherent spatial relationships and patterns in the data (Chu et al., 2018; Du et 

al., 2018; Li et al., 2020). 

The negative average GTWR coefficients for PC1 and PC3 suggest that watersheds with 

higher scores in these components tend to have lower TSL. These components reflect 

landscape fragmentation, with higher scores indicating less diversity and more spatial 

aggregation, which is associated with lower TSL. 

Conversely, higher values of PC2, representing dispersion-adjacency, were positively 

correlated with high TSL. Watersheds with higher PC2 scores, indicating greater patch 

dispersion and adjacency, tend to have higher TSL. 

The variations in the range of the residuals can be attributed to changes in land use within the 

study basin. The diverse land use compositions across the watersheds contribute to these 

observed variations in the residuals. The changes seen in the residuals after 2010, as depicted 

in Figure 3, are likely due to a decreasing trend in soil loss within the watersheds. This 

suggests a recovery of Cerrado vegetation by 2015 in most of the studied watersheds 

compared to previous years. For instance, by 2015, the Cerrado area had increased by 10.5%, 

cropped area had decreased by 6.3%, and urbanized area had increased by 43.6%. Natural 

regeneration in the Cerrado biome contributes to improving soil conditions by enhancing 

infiltration, reducing surface runoff, and lowering erosion rates (Falcão et al., 2020). 

We observed that, simultaneously, land use changes are influenced by various temporal and 

spatial factors, such as economic opportunities, soil type, streams, and roads (Liu et al., 2016a; 

Garcia et al., 2017; Zimbres et al., 2018). These factors, crucial to the study area, exacerbate 

fragmentation and soil erosion processes, underscoring the need to adopt soil erosion 

management techniques and soil conservation measures. 

This study provides a comprehensive analysis and information on the effects of LULC 

changes on landscape fragmentation and soil erosion in the Descoberto River basin. It 

illustrates the spatiotemporal dynamics of landscape fragmentation and soil loss in the study 

area, both as a whole and on an individual watershed basis. The findings have the potential to 

be applied in supporting definition of public policies related to land use and soil management 

to mitigate deforestation impacts, thereby enhancing the production of ecosystem services, 

including water yield and infiltration. 

5. Conclusions 

The land use and soil management factor (CP) have undergone changes over time in the 

study area. The absence of proper soil management practices has emerged as the primary 

driving force behind soil loss. However, a comprehensive analysis is necessary to fully grasp 

all the factors influencing soil losses in the study region, including economic opportunities, 

soil types, streams, and the road network. 

The use of the PCA reduction technique identified three key landscape components 

(aggregation/diversity, dispersion/adjacency, and patchiness) that represent different aspects 

related to soil erosion in the study area. TSL increased as the dispersion-adjacency factor 
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increased, as this landscape metric is positively associated with the level of fragmentation and 

soil erosion in the Descoberto River basin. Additionally, lower levels of TSL were directly 

linked to less diverse and more aggregated landscapes in the study area. 

The trends of TSL resulting from landscape fragmentation were non-linear, suggesting that 

discretized and spatial-temporal models (such as the GTWR) were better suited for analyzing 

water and soil resources in the study area. These modeling results indicate a decreasing trend 

in soil loss rates by 2015, compared to previous years, likely due to recent native vegetation 

recovery. 

Lastly, we recommend the use of GTWR to assist stakeholders in identifying priority areas 

for implementing soil and water conservation measures. Changes in the provision of these 

ecological services directly impact water reservoirs and agricultural production in the 

Descoberto River basin, Federal District of Brazil. 
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