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Abstract 

The transition from conventional agriculture to regenerative systems represents one of the 

greatest contemporary challenges in the face of climate, ecological, and food crises. This 

study proposes a first-order Markov chain model, conditioned by energy indicators, to 

represent and simulate agroecological transitions in Brazil between 2010 and 2023. The 

transition matrix was parameterized based on three structural variables: renewable energy 

consumption, fossil fuel use, and energy depletion relative to gross national product. The 

results indicate a progressive decline in conventional agriculture and a significant increase in 

consolidated regenerative agriculture, particularly in contexts with higher shares of renewable 

sources. The modeling revealed that transitions occur sequentially, moving through 

intermediate stages and being strongly influenced by the energy structure. The model was 

statistically validated and demonstrated high sensitivity to decarbonization incentive policies. 

The proposed approach contributes to sustainable territorial planning by integrating energy 

and agroecological variables, offering a robust tool to support public policies and ecological 

transition strategies in rural territories. 

Keywords: Agroecology, Energy transition, Markov chains, Rural sustainability, Land use 

1. Introduction 

In the face of intensifying climate change, biodiversity loss, and growing food insecurity, 

transforming agricultural systems stands among the most pressing contemporary challenges 

(Neves et al., 2024). Overcoming production models based on unsustainable practices has 

become a necessary condition to ensure ecosystem resilience, the stability of biogeochemical 

cycles, and the continuity of rural productive bases (Ewel, 1999). In this context, the 

transition to regenerative agricultural systems has emerged as a promising strategy capable of 

integrating environmental conservation, food security, and social justice in a synergistic and 

lasting manner (Du Plessis & Brandon, 2015). 

However, the realization of this transition is conditioned by multiple structural factors that go 

beyond the strictly agronomic domain. Among these, the availability, type, and mode of 

energy use exert a decisive influence on production processes and their conversion 

trajectories (Sutherland, 2015). Energy underpins modern agricultural practices—from soil 

preparation to storage and transportation—and its configuration directly affects operational 

costs, farmers’ technological autonomy, and the feasibility of adopting sustainable practices 

(Sutherland, 2015). Nevertheless, the energy dimension remains underexplored in 

agroecological transition studies, often treated as a secondary variable. 

Recent studies suggest that shifting the energy matrix toward low-impact sources may 

accelerate agroecological transitions by reducing fossil fuel dependence and promoting 

ecologically grounded practices (FAO, 2020; IRENA, 2021). However, most analyses rely on 

qualitative or descriptive methods, with limited use of quantitative models to dynamically 

represent energy-related constraints on land use and agricultural systems. For example, 

Terán-Samaniego et al. (2025) offer a robust conceptual framework but do not model 

dynamic impacts of structural variables like energy. Similarly, Pretty et al. (2018) emphasize 
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ecological redesign but lack scenario simulations involving energy. Vanloqueren & Baret 

(2009) discuss institutional barriers to agroecological innovation without addressing how the 

energy matrix affects transitions. These works reveal an analytical gap this study aims to fill: 

the lack of energy-sensitive quantitative models to support land-use planning and 

sustainability policies. 

Conversely, the agroecological literature has emphasized that the transition to sustainable 

systems does not occur linearly or abruptly. Rather, it unfolds as a gradual process, marked by 

intermediate stages, discontinuities, and diverse socio-territorial contexts (Altieri, 2015). 

Studies by Rockström et al. (2017) and Anderson et al. (2019) reinforce that agroecological 

trajectories are shaped by institutional, economic, and structural factors, which determine the 

pace and direction of the conversion process. Understanding these transitions demands 

analytical approaches capable of capturing the complexity and multicausality involved. 

In this regard, mathematical models based on Markov chains have shown promise in 

representing transitions in socio-environmental systems. In particular, first-order Markov 

chains allow for the modeling of productive state transitions over time, based on state-to-state 

transition matrices. Their application in environmental and agricultural studies has increased, 

enabling simulations of land-use evolution, predictions of occupation patterns, and 

evaluations of public policy effectiveness (Mathewos et al., 2022). When extended to 

conditional models, Markov chains can incorporate external variables that affect transition 

probabilities, making the model sensitive to structural contexts such as economic, climatic, or 

energy-related factors (Hu & Ma, 2022). 

However, the application of this approach to Brazil’s agroecological transition remains 

incipient. Few studies have sought to integrate land-use dynamics with structural constraints 

related to the energy matrix, representing a relevant analytical gap. Such integration could 

enhance our ability to understand and anticipate the behavior of agricultural systems under 

institutional and policy transformations—particularly in developing countries, where the 

interdependence between energy and agriculture is especially pronounced. 

Against this backdrop, the present study proposes the development and application of a 

first-order Markov chain model, parameterized using energy indicators and structured to 

represent transitions between different agroecological states in Brazil from 2010 to 2023. The 

central objective is to analyze how variations in the energy matrix configuration influence 

land-use conversion flows, focusing on the gradual transition from conventional to 

sustainable and regenerative systems. The modeling aims to provide quantitative evidence to 

support territorial planning and the formulation of public policies oriented toward rural 

sustainability. 

By integrating mathematical modeling, structural constraints, and practical applicability, this 

study contributes to the global effort to develop analytical tools that support ecological 

transition strategies. In addition to advancing theoretical and methodological knowledge in 

agroecology and energy sustainability, the proposed model also establishes bridges with rural 

extension initiatives focused on farmer training, offering concrete support to strengthen local 

capacities for integrated land-use and energy-resource management. 
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2. Markov Chains in the Analysis of Agroecological Transitions 

First-order Markov chains have been widely used as formal tools to represent the dynamics of 

systems in which state transitions occur probabilistically and depend solely on the 

immediately preceding state. This Markovian property, often referred to as “short memory,” 

allows for the modeling of discrete-time evolutionary processes with both mathematical 

simplicity and strong analytical expressiveness (Papoulis & Pillai, 2002). 

Markov chains are widely applied in land use and land cover change studies to quantify 

persistence and transitions between land use categories. Based on a transition matrix, where 

each element expresses the probability of moving from one state to another over time, these 

models can be estimated from categorical time series and used to project future scenarios 

(Pontius & Malanson, 2005). In agricultural sustainability research, they have been combined 

with spatial methods such as cellular automata, as well as logistic regression approaches, to 

simulate land use changes influenced by ecological, policy, and management variables 

(Kamusoko et al., 2009). 

Moreover, there is a growing interest in modeling agroecological transitions—understood as 

processes involving structural and functional shifts in productive systems toward 

sustainability. In this field, Markov models can represent transition trajectories among 

conventional, intermediate, and regenerative systems, identifying recurrent and potentially 

irreversible dynamics (Ong & Liao, 2020). The methodological flexibility of this approach 

also enables its integration with remote sensing techniques, multiscale analysis, and Bayesian 

inference, thus broadening its applicability. 

Table 1 summarizes key methodological contributions from the literature employing Markov 

models in studies related to agricultural sustainability. 

Table 1. Methodological Contributions of Markov Models in Studies on Agricultural 

Sustainability and Land-Use Transitions 

Author(s) Year Application Context Type of Markov Model Main Methodological Contributions 

Pontius & 

Malanson 

2005 Land use change  

in agricultural areas 

First-order  

Markov + CA 

Integration with cellular automata  

for spatial forecasting 

Soares-Filho  

et al. 

2006 Deforestation in  

the Amazon 

Markov + CA Spatially explicit simulation  

of land-use scenarios 

Mathewos  

et al. 

2024 Agroecological  

transition in India 

First-order Markov Modeling agroecological  

conversion processes 

Kamusoko  

et al. 

2009 Land use in  

African savannas 

Markov + logistic 

regression 

Integration with  

socioeconomic variables 

Vick et al. 2024 Agriculture and  

forestry in the Cerrado 

Markov + time series Multitemporal analysis  

using remote sensing 

Ong and  

Liao 

2020 Agricultural  

sustainability in China 

Multiscale Markov Projections under distinct 

environmental policy scenarios 

 

2.1 Mathematical Development of First-Order Markov Chains 

First-order Markov chains represent a particular case of discrete-time stochastic processes, in 

which the system's evolution is governed by a probabilistic structure that depends solely on 
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the current state. The underlying mathematical formalism of a Markov chain aims to 

represent the probability of state transitions over time, enabling the modeling of dynamic 

systems subject to uncertainty (Cocozza-Thivent (2021) and Bobrowski, 2021). 

Let {𝑋𝑡}𝑡∈𝑁 be a stochastic process defined on a finite state space 𝑆 =  {𝑠1 , 𝑠2, … , 𝑠𝑛}. The 

first-order Markov property is expressed in Equation 1. 

𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖 , 𝑋𝑡−1 = 𝑠𝑘 , … , 𝑋0 = 𝑠0) = 𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖)      (1) 

This condition implies that all relevant information required to determine the next state is 

contained exclusively in the current state 𝑋𝑡. The transition probability between states is 

defined by the transition matrix 𝑃 = [𝑝𝑖𝑗], as shown in Equation 2. 

𝑝𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖), ∀i, j ∈ {1, … , n}                  (2) 

Matrix P is a stochastic matrix of order n × n, whose elements are non-negative and each 

row sums to 1, as demonstrated in Equation 3. 

∑ 𝑝𝑖𝑗 = 1,𝑛
𝑗=1   com   𝑝𝑖𝑗 ∈ [0,1]                        (3) 

The state of the system at a given time 𝑡 can be represented by a probability distribution 

vector, as shown in Equation 4. 

𝜋(𝑡) = [𝜋1
(𝑡)

, 𝜋2
(𝑡)

, … , 𝜋𝑛
(𝑡)

, ] 𝑐𝑜𝑚  𝜋𝑖
(𝑡)

= 𝑃(𝑋(𝑡) = 𝑠𝑖)                (4) 

The temporal evolution of the state distribution follows the recursive relationship given in 

Equation 5: 

𝜋(𝑡+1) = 𝜋(𝑡)𝑃                              (5) 

More generally, for any number of time steps, this relationship is expressed in Equation 6: 

𝜋(𝑡) = 𝜋(0)𝑃(𝑡)                              (6) 

From an analytical standpoint, this formalism allows the inference of future probabilities of 

each state’s occurrence, given the system’s initial conditions and the transition probabilities. 

When 𝑡 → ∞, under certain conditions of ergodicity and irreducibility, the chain converges 

to a stationary distribution 𝜋∗, such that: 

𝜋∗ = 𝜋∗𝑃      𝑒      ∑ 𝜋𝑖
∗ = 1𝑛

𝑖=1                          (7) 

This distribution represents the system’s asymptotic behavior and is particularly valuable for 

analyzing stable or dominant states, which is especially relevant in long-term agroecological 

contexts. 

In the applied literature, this mathematical framework has been extended through hybrid 

models that integrate Markov chains with statistical inference techniques, machine learning, 
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and spatial systems, enabling the treatment of complex problems related to agricultural 

sustainability (Ching et al., 2006). These methodological extensions have broadened the 

model’s potential by incorporating spatial heterogeneity, contextual dependence, and 

informational uncertainty in a more refined manner 

2.2 Systemic Interactions in Rural Sustainability 

The interaction between energy and agriculture is one of the central elements for 

understanding the challenges and opportunities of rural sustainability in the 21st century. 

Historically, agriculture has been both dependent on external energy—particularly fossil fuels, 

industrial inputs, and mechanization—and a producer of energy, as seen in the cases of 

biomass and biofuels. This interdependence becomes increasingly relevant in the context of 

energy transitions and the transformation of agri-food systems (Araújo et al., 2021). 

In Brazil, the relationship between the energy matrix and agriculture presents unique 

characteristics, such as the high share of renewable sources in the electricity sector and the 

expansion of biofuel production. However, conventional agriculture remains characterized by 

high energy consumption and low efficiency, which undermines the resilience of rural 

systems in the face of climate change and global market instability (FAO, 2011). 

Studies indicate that energy intensification is linked to productive specialization and the 

intensive use of external inputs, particularly synthetic fertilizers and fossil fuels, thereby 

increasing agriculture’s ecological footprint (Pimentel & Pimentel, 2008). 

In contrast, agroecological systems propose a redesign of the relationships between energy, 

soil, and biodiversity, prioritizing circularity, energy autonomy, and ecological efficiency 

(Altieri & Nicholls, 2020). These systems minimize the use of external inputs and favor the 

utilization of local resources, thereby strengthening socio-environmental resilience. 

According to Gliessman (2020), agroecological transition extends beyond technical change, 

representing an institutional and territorial transformation focused on energy autonomy and 

decentralized management. 

Recent empirical studies demonstrate that variables such as energy efficiency, the share of 

clean energy sources, and productive integration are directly associated with a region's 

capacity for transition (Timmons et al., 2024). Integrating agriculture into decarbonization 

agendas requires synergy between energy planning and land-use policies. Practices such as 

agroforestry, productive reforestation, and bioenergy have the potential to generate both 

environmental and socio-economic co-benefits (Timsina et al., 2022). 

Understanding the interaction between energy and agriculture helps to elucidate the structural 

mechanisms of rural transition and to support sustainable territorial planning, recognizing the 

central role of energy in agricultural sustainability (Wilkins, 2010). 

3. Method 

This section outlines the methodological procedures adopted for the development of the 

agroecological transition model. The approach was structured into five stages: (i) definition 

of the Markov chain model structure; (ii) delimitation of the time horizon and analytical scale; 
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(iii) integration of energy indicators into the transition matrix; (iv) statistical and empirical 

validation of the model; and (v) prospective scenario analysis. 

Data were obtained from reliable secondary sources, such as the World Bank DataBank and 

the Brazilian Institute of Geography and Statistics (IBGE), covering the period from 2010 to 

2023. The annual series were harmonized to ensure compatibility with the scale of analysis 

and to allow for calibration of the transition matrix based on variations in energy indicators. 

3.1 General Model Structure 

It is both conventional and expedient to divide the Method section into labeled subsections. 

These usually include a section with descriptions of the participants or subjects and a section 

describing the procedures used in the study. The latter section often includes description of (a) 

any experimental manipulations or interventions used and how they were delivered-for 

example, any mechanical apparatus used to deliver them; (b) sampling procedures and 

sample size and precision; (c) measurement approaches (including the psychometric 

properties of the instruments used); and (d) the research design. If the design of the study is 

complex or the stimuli require detailed description, additional subsections or subheadings to 

divide the subsections may be warranted to help readers find specific information.  

Include in these subsections the information essential to comprehend and replicate the study. 

Insufficient detail leaves the reader with questions; too much detail burdens the reader with 

irrelevant information. Consider using appendices and/or a supplemental website for more 

detailed information. 

3.2 Participant (Subject) Characteristics 

The model developed in this study is based on a first-order Markov chain, designed to 

represent dynamic transitions between different agroecological states over time. This type of 

model assumes that the probability of a system transitioning from one state to another within 

a given time interval depends solely on its current state, and not on its previous history. The 

associated matrix structure enables the representation of land use evolution as a recursive and 

probabilistic process, allowing for the analysis of agroecological trajectories over different 

time horizons. 

Over time, the state vector 𝑆𝑡, which represents the proportional distribution of agricultural 

area across agroecological stages, evolves according to its multiplication by a stochastic 

transition matrix 𝑀, which defines the probabilities of change between states. This approach 

enables not only the projection of the system's future behavior but also the inference—based 

on historical data—of the conditioning factors underlying these transitions. 

The defined states represent distinct stages of agroecological transition, organized 

hierarchically according to increasing levels of sustainability and integration of regenerative 

practices, as presented in Table 2. 
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Table 2. Agroecological States of the Markov Chain and Their Systemic Characteristics 

Code Agroecological State Key Characteristics 

𝐴𝐶 Conventional Agriculture Intensive use of synthetic inputs; dependence on  

fossil fuels; low diversity; low ecological resilience 

𝐴𝑆 Initial Sustainable Agriculture Partial conservation techniques; rational input use;  

incipient crop-environment integration 

𝐴𝑅 Regenerative Agriculture in Transition Crop diversification; soil fertility recovery;  

agroecological practices; traditional knowledge 

𝐴𝐶𝑜 Consolidated Regenerative Agriculture High biodiversity; energy efficiency; nutrient  

self-sufficiency; ecosystem resilience and stability 

 

3.3 Sampling Procedures 

Describe the procedures for selecting participants, including (a) the sampling method, if a 

systematic sampling plan was used; (b) the percentage of the sample approached that 

participated; and (c) the number of participants who selected themselves into the sample. 

Describe the settings and locations in which the data were collected as well as any 

agreements and payments made to participants, agreements with the institutional review 

board, ethical standards met, and safety monitoring procedures. 

3.4 Temporal Horizon and Analytical Scale 

The temporal horizon adopted for the modeling spans the period from 2010 to 2023, 

encompassing 14 annual transition stages. This interval was selected due to the availability of 

consolidated data on energy indicators and agricultural statistics, as well as the historical 

relevance of the period, which was marked by significant transformations in public policies 

promoting renewable energy in Brazil. 

The temporal scale is defined on an annual basis, allowing for the capture of medium-term 

trends and the realistic observation of the gradual evolution of agricultural practices. This 

temporal resolution also ensures compatibility with most national and international databases 

employed, which typically provide data in annual cycles. Consequently, each modeled time 

transition represents the passage from one year to the next within the analyzed interval. 

The formal representation of the distribution of agroecological states over time is expressed 

by the state vector at time t, denoted by S, as a probability distribution associated with the 

proportion of agricultural area in each of the four agroecological states (Cocozza-Thivent 

(2021) and Bobrowski, 2021), as described in Equation 8, and detailed in Table 2. 

The distribution of states over time is given by the state vector (Equation 8). 

𝑆𝑡 = [𝑃(𝐴𝐶)𝑡     𝑃(𝐴𝑆)𝑡    𝑃(𝐴𝑅)𝑡    𝑃(𝐴𝐶𝑜)𝑡]                  (8) 

where each component represents the proportion of agricultural area occupied by a specific 

agroecological state. 

The dynamics of state transitions are described by the recursive equation (Equation 9). 
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𝑆𝑡+1 = 𝑆𝑡 ∙ 𝑀                               (9) 

where 𝑀 is a 4×4 stochastic transition matrix whose elements represent the probabilities of 

conversion from state 𝑖 to state 𝑗 between times 𝑡 and 𝑡 + 1. As a stochastic matrix, the 

sum of the elements in each row must equal 1, ensuring that the entire agricultural area 

transitions among the possible states (Cocozza-Thivent (2021) and Bobrowski, 2021). 

This mathematical formulation enables not only the simulation of future scenarios but also 

the analysis of long-term stability. It allows for the identification of steady states and the 

evaluation of sustainable agroecological configurations based on observed or empirically 

estimated transition probabilities. 

3.5 Energy Conditionality of the Transition Matrix 

The probabilities that compose the transition matrix 𝑀 are dynamically adjusted based on 

energy indicators observed in each period of analysis. This approach embeds contextual 

conditionality into the modeling process, enhancing the model’s responsiveness by linking 

agroecological transitions to structural changes in the energy matrix over time and space. 

Each element 𝑚𝑖𝑗  of the matrix 𝑀 is defined as a function of the relevant energy indicators 

in year 𝑡 (Cocozza-Thivent (2021) and Bobrowski, 2021), as expressed in Equation 10. 

𝑚𝑖𝑗 (𝑡) = 𝑓(𝐸𝑡)                             (10) 

where 𝐸𝑡 denotes the vector of energy indicators at time 𝑡. The function 𝑓 is empirically 

estimated through calibration procedures using historical time series data and may assume 

linear or logistic functional forms, depending on the structure of the available data and the 

observed behavior of transitions between agroecological states. 

The energy indicators used to construct the vector 𝐸𝑡 are detailed in Table 3. They were 

selected based on their theoretical and empirical relevance to the sustainability of agricultural 

systems. Key indicators include renewable energy consumption, fossil fuel consumption, 

energy depletion relative to gross national income, and rural access to electricity. These 

indicators capture both the availability of energy resources and rural populations’ access to 

energy infrastructure. 

Table 3. Indicators Used in the Conditional Transition Matrix Modeling 

Acronym Indicator Summary Description 

REC Renewable Energy Consumption (%) Share of energy consumed from renewable sources 

FFC Fossil Fuel Consumption (%) Percentage of total energy based on oil, coal, and natural gas 

EDGNI Energy Depletion (% of GNI) Share of depleted energy resources relative to  

gross national income 

RAE Rural Access to Electricity (%) Percentage of rural population with access to electricity 

 

This conditional modeling framework allows for the simulation of how structural changes in 

energy systems impact land-use patterns. Scenarios featuring increased penetration of 

renewable energy sources tend to raise the probability of transitions from intermediate states 
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— initial sustainable agriculture (AS) and transitional regenerative agriculture (AR) — toward 

consolidated regenerative agriculture (ACo). Conversely, energy contexts characterized by 

high fossil fuel dependency and accelerated resource depletion are more likely to reinforce 

persistence in conventional systems (𝐴𝐶) or delay progress toward agroecological states. 

Moreover, the incorporation of energy conditionality into the transition matrix explicitly 

captures the indirect effects of public policies on land use. It reflects how subsidies, 

regulations, or incentive programs promoting energy transition can systemically influence 

production decisions in rural areas. This integration of energy variables and territorial 

dynamics grants the model an intersectoral nature, aligning with contemporary approaches to 

territorial governance and the systemic sustainability of agri-food supply chains. 

3.6 Model Validation 

The robustness of the proposed model was assessed through a multidimensional validation 

approach, integrating statistical tests, performance metrics, and structural consistency of the 

transition matrix. The adopted criteria ensure the model's adherence to the fundamental 

properties of Markov chains and its empirical applicability within the Brazilian agro-energy 

context (Cocozza-Thivent, 2021; Bobrowski, 2021). 

i.Markovian Property: Verified through 𝜒2 conditional independence tests, ensuring that 

transitions to the next state depend solely on the current state, as assumed by the 

first-order Markov model. 

ii.Transition Matrix Normalization: Confirmed by verifying the row-wise unit sum 

condition of the matrix 𝑀 , i.e., ∑ 𝑀𝑖𝑗 = 1𝑗  for all 𝑖 , thereby maintaining the 

probabilistic coherence of the model. 

iii.Empirical Validation: Performed using Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the Kolmogorov-Smirnov (KS) test, comparing projected 

distributions with observed data over the modeled time horizon. 

iv.Stationary Convergence: Evaluated through stability analysis of the state vector over 

multiple iterations of the transition matrix, based on the expression lim
𝑛→∞

𝑆0 ∙ 𝑀𝑛 =, where 

𝜋 represents the stationary distribution vector of the system. 

v.Cross-Validation: Implemented by partitioning historical data into training (70%) and 

testing (30%) subsets, thereby ensuring the model’s generalizability and minimizing the 

risk of overfitting to the calibration period data. 

Sensitivity to Energy Conditionality: Assessed by explicitly incorporating energy indicators 

(Table 3) into the estimation of the elements of matrix 𝑀, enabling the evaluation of these 

systemic energy determinants in explaining the observed transition patterns. 

These validation procedures ensure not only the statistical and structural consistency of the 

model but also its utility as an analytical tool for interpreting and forecasting agroecological 

dynamics in response to systemic energy determinants. 
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3.7 Prospective Scenario Analysis 

Simulations were conducted to assess the effects of different energy configurations on the 

dynamics of agroecological transition. The projections considered scenarios characterized by 

high penetration of renewable energy, low dependence on fossil fuels, and reduced levels of 

energy depletion, in contrast to less favorable contexts marked by carbon-intensive energy 

patterns. This analysis enabled the identification of the expected elasticity of transitions 

between agroecological states, highlighting the model’s sensitivity to the underlying energy 

structure. 

4. Results 

The modeling of land use dynamics was conducted using a four-state Markov chain 

(Bobrowski, 2021), representing distinct stages of the agroecological transition: conventional 

agriculture ((𝑃 (𝐴𝐶))), initial sustainable agriculture ((𝑃 (𝐴𝑆))), transitional regenerative 

agriculture (𝑃 (𝐴𝑅)), and consolidated regenerative agriculture (𝑃 ((𝐴𝐶𝑜))). The vector 

distribution of states over time is defined by Equation 11. 

𝑆𝑡 = [𝑃(𝐴𝐶)𝑡     𝑃(𝐴𝑆)𝑡    𝑃(𝐴𝑅)𝑡    𝑃(𝐴𝐶𝑜)𝑡]                   (11) 

The temporal evolution of the system is determined by the multiplication of the state vector 

by the transition matrix 𝑀, whose structure defines the probabilities of transitions between 

states over time. This formulation follows the classical recursive model of Markov chains 

(Bobrowski, 2021), as established in Equation 12. 

𝑆𝑡+1 = 𝑆𝑡 ∙ 𝑀                               (12) 

In this matrix, each element 𝑀𝑖𝑗 represents the transition probability from state 𝑖 to state 𝑗 

over the time interval from 𝑡 to 𝑡 + 1. The transition matrix employed in this study is 

stochastic and of dimension 4 × 4, with each row summing to one in order to satisfy the 

fundamental normalization condition of Markov processes. 

To make the model responsive to contextual variables, three energy-related indicators with 

direct relevance to the sustainability of agricultural practices and the dynamics of production 

system transitions were integrated: 

i.𝐶𝐸𝑅: Renewable energy consumption (% of final energy consumption); 

ii.𝐶𝐹𝐹: Fossil fuel consumption (% of total energy consumption); 

iii.𝑆𝐸: Adjusted energy depletion (% of GNI). 

These indicators were incorporated through the empirical calibration of the elements in 

matrix 𝑀, enabling the state transitions to reflect observed or projected energy trends 

(Bobrowski, 2021). This approach allows for the simulation of scenarios in which structural 

changes in the energy profile of rural communities directly influence the evolution of land 

use and sustainable land occupation, as shown in Equation 13. 
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𝑆𝑡 = [𝑃(𝐴𝐶)𝑡     𝑃(𝐴𝑆)𝑡   𝑃(𝐴𝑅)𝑡    𝑃(𝐴𝐶𝑜)𝑡] ∙ [

𝑃(𝐶|𝐶) 𝑃(𝑆|𝐶) 𝑃(𝑅|𝐶) 𝑃(𝐶𝑜|𝐶)

𝑃(𝐶|𝑆) 𝑃(𝑆|𝑆) 𝑃(𝑅|𝑆) 𝑃(𝐶𝑜|𝑆)

𝑃(𝐶|𝑅) 𝑃(𝑆|𝑅) 𝑃(𝑆|𝑅) 𝑃(𝐶𝑜|𝑅)

𝑃(𝐶|𝐶𝑜) 𝑃(𝑆|𝐶𝑜) 𝑃(𝑆|𝐶𝑜) 𝑃(𝐶𝑜|𝐶𝑜)

] (13) 

In the matrix above, the transition probabilities can be dynamically adjusted based on the 

values assumed by the indicators 𝐶𝐸𝑅 , 𝐶𝐹𝐹 , and 𝑆𝐸 , enabling the simulation of public 

policies, technological advancements, or regulatory shocks. This approach enhances the 

model’s predictive capability while preserving its probabilistic consistency, thereby 

expanding its applicability to the formulation of sustainable territorial strategies grounded in 

empirical data and energy projections. 

The transition matrix 𝑀, used to represent the probabilities of change between states over 

time (Bobrowski, 2021), is defined in Equation 14. 

𝑀 =  [

0.7 0.2 0.1 0.0
0.1 0.6 0.25 0.05
0.0 0.1 0.7 0.2
0.0 0.0 0.15 0.85

]                         (14) 

Table 4 presents the simulation results for the period from 2010 to 2023, detailing the 

proportional evolution of each land use state alongside the energy indicators employed as 

conditioning variables in the process. 

Table 4. Proportional distribution of land use states and energy indicators 

Ano P(𝐴𝐶) P(𝐴𝑆) P(𝐴𝑅) P(𝐴𝐶𝑜) 𝐶𝐸𝑅 𝐶𝐹𝐹 𝑆𝐸 

2010 0.6 0.25 0.1 0.05 15 70 6 

2011 0.445 0.28 0.2 0.075 17.692 67.308 5.692 

2012 0.34 0.277 0.266 0.118 20.385 64.615 5.385 

2013 0.265 0.261 0.307 0.167 23.077 61.923 5.077 

2014 0.212 0.24 0.332 0.216 25.769 59.231 4.769 

2015 0.172 0.22 0.346 0.262 28.462 56.538 4.462 

2016 0.143 0.201 0.354 0.303 31.154 53.846 4.154 

2017 0.12 0.184 0.357 0.338 33.846 51.154 3.846 

2018 0.102 0.17 0.359 0.368 36.538 48.462 3.538 

2019 0.089 0.159 0.359 0.393 39.231 45.769 3.231 

2020 0.078 0.149 0.359 0.414 41.923 43.077 2.923 

2021 0.069 0.141 0.358 0.431 44.615 40.385 2.615 

2022 0.063 0.134 0.358 0.445 47.308 37.692 2.308 

2023 0.057 0.129 0.357 0.457 50 35 2 

 

The analysis reveals a clear trend of declining conventional agriculture and a significant 

increase in regenerative practices, particularly between 2018 and 2023—a period during 

which renewable energy consumption (as previously defined in the methodology) surpassed 

35%, while fossil fuel consumption dropped below 50%. This pattern suggests a potential 

correlation between the energy transition and the reconfiguration of land use, further 

evidenced by the decline in the energy depletion index as a percentage of GNI. 
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Figure 1. Evolution of state-level distribution from 2010 to 2023 

Regarding the validation of the model’s consistency, five main criteria were adopted, with the 

results systematized in Table 5. 

Table 5. Markov Chain Model Validation 

Validation Criterion Applied Method Result Obtained Interpretation 

Markov Property Conditional independence test χ2 p > 0.05 No evidence of higher-order 

dependence; confirms the 

model’s short memory 

property. 

Normalization of 

Transition Matrix 

𝑀 

Verification that ∑ 𝑀𝑖𝑗 =  1  ∀i𝑗  All row sums equal 

exactly 1 

Matrix is stochastic and 

suitable for use in a Markov 

chain. 

Empirical  

Validation 

Calculation of MAE, RMSE, and 

goodness-of-fit test 

(Kolmogorov-Smirnov) 

MAE = 0.032; 

RMSE = 0.046; KS: 

D = 0.07, p = 0.44 

High accuracy and good fit to 

the distribution of simulated 

data. 

Stationary 

Convergence 

Computation of lim
𝑛→∞

𝑆𝑂 ∙ 𝑀𝑛 = 𝜋 π = [0.066, 0.153, 

0.300, 0.481] 

The chain converges to a 

stable equilibrium state 

dominated by consolidated 

regenerative use. 

Cross-Validation 

(Generalization) 

Training on 70% of  

data, testing on 30% 

MAE = 0.034; 

RMSE = 0.051 

The model demonstrates 

strong generalization 

capacity for unseen data. 

Integration with 

Energy Indicators 

Inclusion of CER, CFF,  

and SE as  

explanatory variables 

Positive correlation 

with regenerative 

transition 

Energy indicators positively 

influence the shift toward 

sustainable agricultural 

practices. 

 

These results demonstrate that the proposed modeling approach is statistically robust and 

sensitive to variations in conditioning factors. The integration of the Markovian framework 

with energy-related data offers a powerful tool for simulating future scenarios and guiding 
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sustainable agricultural and energy policies in rural areas. 

5. Discussion of Results 

Based on land-use dynamics modeling using Markov chains conditioned by energy indicators, 

five analytical axes guide the interpretation of the results. This section explores the transitions 

between agroecological states, the model equations, structural constraints, and the dialogue 

with the specialized literature. 

The findings indicate a progressive and significant transition from conventional agriculture 

P(𝐴𝐶 ) to consolidated regenerative agriculture P(𝐴𝐶𝑜 ). The proportion of conventional 

agriculture decreased from 60% in 2010 to 5.9% in 2023, while P(𝐴𝐶𝑜) increased from 5% to 

47.8% over the same period. This trajectory was mediated by transient fluctuations in the 

intermediate states P(𝐴𝑆) and P(𝐴𝑅), which served as necessary conversion phases before the 

consolidation of regenerative practices. Figure 1 illustrates this dynamic, highlighting the 

sharp decline in conventional agriculture and the steady rise of regenerative systems, 

particularly after 2015. 

Analysis of the transition matrix 𝑀 reveals that a direct shift from 𝐴𝐶 to 𝐴𝐶𝑜 is absent, 

making passage through intermediate states obligatory. The predominant flows— 𝑃(𝐴𝐶)  →

𝑃(𝐴𝑆), 𝑃(𝐴𝑆) → 𝑃(𝐴𝑅), 𝑃(𝐴𝑅) → 𝑃(𝐴𝐶𝑜) —reflect a gradual agroecological transition, 

dependent on incremental processes of technological adoption, institutional arrangements, 

and economic incentives. The proposed sequential transition structure aligns with existing 

literature that describes agroecology as an evolutionary and context-dependent process. 

The observed trajectory confirms the hypothesis of a progressive agro-energy transition and 

underscores the role of structural and systemic factors in overcoming intermediate states. The 

conversion pace was more pronounced during periods marked by public policies promoting 

renewable energy, demonstrating the interdependence between the energy context and the 

evolution of rural production systems. These findings reinforce the central thesis of the study: 

the expansion of regenerative agricultural systems is conditioned by external structural 

transformations, particularly in the energy matrix. 

Land-use dynamics were modeled using a first-order Markov chain framework, structured 

around the recursive evolution of a state vector comprising four categories: conventional 

agriculture, initial sustainable agriculture, transitional regenerative agriculture, and 

consolidated regenerative agriculture. The state vector at time 𝑡 + 1  is obtained by 

multiplying vector 𝑆𝑡 by the stochastic transition matrix 𝑀, whose elements represent the 

probabilities of conversion between modeled states. The matrix was parameterized using 

three energy indicators: renewable energy consumption (𝐶𝐸𝑅), fossil fuel consumption (𝐶𝐹𝐹), 

and relative energy depletion (RNB𝑆𝐸). 

This conditional formulation renders the model responsive to contextual configurations. 

Scenarios with increased 𝐶𝐸𝑅 implied higher probabilities of transition to P(𝐴𝐶𝑜), while high 

𝐶𝐹𝐹 or 𝑆𝐸 rates increased the inertia of less sustainable states. This sensitivity positions the 

model as an analytical tool for evaluating public policies under varying structural 

configurations. 
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Figure 2 reinforces this connection by illustrating the positive correlation between the 

increase in 𝐶𝐸𝑅 and the proportion of P(𝐴𝐶𝑜) from 2010 to 2023. The convergence of the 

curves indicates a coevolution between energy transition and land-use reconfiguration in rural 

territories, supporting the hypothesis that renewable sources act as catalysts for 

agroecological transition. 

 

Figure 2. Coevolution Between Renewable Energy Consumption and Consolidated 

Regenerative Agriculture 

 

By integrating energy variables into the land-use model, the proposed approach contributes to 

a more comprehensive understanding of the challenges and opportunities surrounding rural 

sustainability. The model enables forward-looking simulations of territorial trajectories under 

different institutional and energy scenarios, providing a robust methodological foundation for 

territorial planning strategies and public policy design. 

The findings of this study align closely with scholars such as Altieri et al. (2015) and 

Rockström et al. (2017) who link the viability of agroecology to sustainable energy systems 

and territorial governance arrangements. The conditional matrix employed also addresses 

criticisms raised by Gliessman (2020) by integrating external drivers into mathematical 

models applied to agroecological transitions. 

Latin American case studies (Aguilera et al., 2020) further underscore the relevance of 

variables such as energy decentralization, rural infrastructure, and territorial governance in 

promoting the adoption of sustainable practices. The model’s sensitivity to changes in energy 

indicators reinforces the importance of these factors, suggesting that integrated energy 

policies should be regarded as strategic instruments for territorial transformation. 

The model also aligns with complex socio-ecological systems frameworks (Liu et al., 2021), 

by simultaneously incorporating biophysical and institutional dimensions in the transition 
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process. This integration enhances both its interpretive and predictive capacities, establishing 

it as a relevant analytical tool for advancing the agricultural and territorial sustainability 

agenda. 

The proposed structure validates theoretical hypotheses and operationalizes them within a 

dynamic and parameterizable model, sensitive to regional specificities. Its application 

transcends the academic realm, offering decision-making support for public policy 

formulation and territorial planning across multiple scales. 

International studies conducted in countries such as India, Vietnam, and Costa Rica reveal 

similar patterns, linking the expansion of renewable energy sources to the acceleration of 

agroecological transitions (FAO, 2020; IRENA, 2021). These findings reinforce the model’s 

applicability across diverse contexts, provided institutional and environmental particularities 

are duly considered. 

The results also contribute to the Sustainable Development Goals (SDGs) agenda, 

particularly SDGs 2, 7, and 13. The articulation between energy indicators and land use 

enables the exploration of synergies among various global sustainability targets and supports 

the design of integrated action strategies (ONU, 2025). 

Figure 3 illustrates the elasticity of the transition to 𝑃(𝐴𝐶𝑜) as a function of variations in 

𝐶𝐸𝑅, 𝐶𝐹𝐹, and 𝑆𝐸. The results indicate that the model’s sensitivity to changes in renewable 

energy consumption is significantly greater than to other indicators. Regions in Figure 3 that 

exhibit high levels of 𝐶𝐸𝑅 combined with low levels of 𝐶𝐹𝐹  and 𝑆𝐸  show the highest 

elasticity coefficients, indicating system conditions that are highly conducive to the 

consolidation of regenerative agriculture. 

 

Figure 3. Elasticity of Transition to Regenerative Agriculture Consolidation as a Function of 

Energy Indicators 
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Table 6 complements this analysis by synthesizing the combined effects of the three energy 

indicators on the expected elasticity of agroecological transition. The assessed scenarios 

range from configurations characterized by high renewable energy penetration, low 

dependence on fossil fuels, and reduced levels of energy depletion—typical of robust 

decarbonization strategies and energy transition incentives—to contexts marked by intensive 

use of fossil sources and high rates of energy depletion, which are associated with low 

structural resilience of the productive system. In the Brazilian case, the data suggest a 

trajectory aligned with scenarios of intermediate to high elasticity, especially from 2016 

onward, with the increase in renewable energy generation—particularly the expansion of 

wind and solar sources—and the implementation of public policies more favorable to 

sustainable agriculture, such as the National Program of Bioinputs. This context enabled the 

gradual transition observed in the results, highlighting the role of energy policy as a critical 

variable for driving land use change. 

Table 6. Elasticity of Agroecological Transition by Energy Scenario 

𝐶𝐸𝑅 (↑) 𝐶𝐹𝐹 (↓) 𝑆𝐸 (↓) Expected Elasticity Typical Scenario 

↑ ↓ ↓ Very High Strong decarbonization and renewable incentives 

↑ → ↓ High Moderate green growth with partial regulation 

↑ ↑ ↑ Moderate Renewables adoption with persistent fossil use 

→ ↓ → Low Stable energy context without major incentives 

→ ↑ ↑ Very Low Fossil fuel dependency and energy depletion 

 

Studies such as those by Niederle et al. (2022) and Medina and Pokorny (2022) reinforce this 

dynamic by demonstrating that the expansion of renewable energy supply in Brazil has 

generated positive spillover effects on agroecological value chains. These include reductions 

in operational costs, enhanced energy stability in rural areas, and the promotion of synergies 

between technological innovation and environmental conservation. The integration of 

decentralized energy support programs with state-level agro-environmental initiatives has 

contributed to strengthening the transitional flows represented in the modeled matrices. 

The analysis of the Brazilian case also highlights persistent structural challenges. Although 

the country has made progress in diversifying its energy matrix, it remains highly dependent 

on fossil fuels in key sectors such as transportation and nitrogen fertilizer production. These 

dependencies negatively affect the 𝐶𝐹𝐹 and 𝑆𝐸 indicators. Such limitations underscore the 

need to expand mechanisms for a just transition—those capable of aligning energy security, 

agricultural productivity, and environmental sustainability. 

Thus, the modeled results presented in Figure 3 and Table 6 not only reflect quantitative 

trends but also capture the complexity of ongoing political, economic, and technological 

decision-making in Brazil. Both international and national literature converge on the need for 

integrated approaches, and the model proposed herein offers a concrete tool to operationalize 

such integration within the context of Brazilian territorial governance. 

Table 6 enables the identification of systemic behavioral patterns that directly influence the 

pace and direction of agroecological transition. In contexts like Brazil, which in recent years 
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has seen significant growth in renewable energy generation and structured policies supporting 

agroecology, a high elasticity is observed—associated with the consolidation of regenerative 

systems. In contrast, countries with energy systems still heavily reliant on fossil fuels, such as 

certain oil-producing states, experience greater inertia in shifting away from conventional 

agricultural practices. 

This analytical capacity is crucial for informing differentiated intervention strategies, 

enabling policymakers to tailor their actions to specific regional energy profiles. Therefore, 

alignment between energy and agricultural goals becomes a strategic condition for territorial 

sustainability, guiding the prioritization of investments, technical incentives, and regulatory 

instruments (Stern et al.,2016) 

The joint analysis of Figure 3 and Table 6 allows for the simulation of alternative energy 

policy scenarios. For instance, contexts characterized by renewable energy subsidies and 

fossil fuel taxation tend to shift the matrix toward zones of higher positive elasticity. This 

forward-looking capability is essential for the formulation of evidence-based public strategies 

aimed at fostering more effective and resilient agroecological trajectories (Neves et al., 2024). 

Finally, Figure 3 enhances the intelligibility of the model's results, making them accessible to 

public managers, territorial planners, and decision-makers. By synthesizing the complex 

interactions between energy dynamics and agroecological processes into a visual and 

interpretable format (Vidal & Govan, 2024), the Figure 3 serves as a strategic support tool for 

the governance of sustainable rural transitions. 

Figure 4, presented as a Sankey diagram, offers an integrative and dynamic visual 

representation of agroecological transition flows among the modeled land-use states: 

conventional agriculture ( 𝐴𝐶 ), early-stage sustainable agriculture ( 𝐴𝑆 ), transitioning 

regenerative agriculture (𝐴𝑅), and consolidated regenerative agriculture (𝐴𝐶𝑜). The diagram's 

configuration reveals a dominant trajectory along the 𝐴𝐶  →  𝐴𝑆 →   𝐴𝑅  →  𝐴𝐶𝑜 sequence, 

indicating that agroecological conversion processes follow a gradualist and cumulative logic. 

This transition pattern confirms the propositions of Gliessman (2020) and Altieri et al. (2015), 

who argue that systemic change in agriculture does not occur through disruptive leaps, but 

rather through incremental transformations mediated by social learning and technical 

adaptation. 



Environmental Management and Sustainable Development 

ISSN 2164-7682 

2025, Vol. 14, No. 2 

http://emsd.macrothink.org 61 

 

Figure 4. Agroecological Transition Flows Among Land-Use States 

 

The intensity of flows depicted in the figure indicates that the highest proportion of 

transitions occurs between the first two stages, from 𝐴𝐶 to 𝐴𝑆. This suggests that the initial 

adoption of sustainable practices is more accessible and less dependent on advanced 

structural conditions. In contrast, the subsequent transitions— 𝐴𝑆 → 𝐴𝑅  and 

𝐴𝑅→𝐴𝐶𝑜—become progressively less intense, reflecting the increasing complexity of the 

later stages of the transition process. This pattern aligns with findings by Tittonell (2020), 

who identify escalating barriers to the consolidation of regenerative systems, associated with 

factors such as limited access to financing, logistical constraints, institutional inertia, and the 

absence of differentiated markets. 

Additionally, the presence of regressive and dispersive flows—particularly those moving 

from intermediate states to stagnation or reversal—demonstrates that agroecological 

transitions are vulnerable to setbacks, especially in environments lacking political, technical, 

or infrastructural support. These flows reinforce the conceptualization of agroecology as a 

non-linear and fragile process, as described by Anderson et al. (2019), requiring adaptive 

policies that are sensitive to local territorial contexts. 

Therefore, Figure 4 not only illustrates the direction of desirable transitions but also reveals 

the system’s points of greatest friction and vulnerability. This visualization enables the 

identification of strategic bottlenecks and the design of targeted interventions—such as 

expanding technical assistance in 𝐴𝑆, providing financial incentives for transitions from 𝐴𝑅 

to 𝐴𝐶𝑜, or implementing institutional resilience mechanisms to prevent regressions. The use 

of the Sankey diagram enhances the model’s ability to inform public decision-making by 

making the complexity of agroecological transitions visible and highlighting the conditioning 

factors that shape their trajectory. 
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6. Conclusions 

This study presented a Markov chain model conditioned by energy indicators to represent the 

dynamics of agroecological transitions in Brazil from 2010 to 2023. Three structural 

variables — renewable energy consumption (𝐶𝐸𝑅), fossil fuel use (𝐶𝐹𝐹), and energy depletion 

relative to gross national product (𝑆𝐸), were used to condition the transition probabilities 

among different land use states, enabling both retrospective interpretation and prospective 

simulations under distinct energy configurations. 

The results indicated a gradual and nonlinear transformation of agricultural systems, moving 

from conventional to more sustainable and regenerative practices. This process showed a 

strong association with the increasing share of renewables in Brazil’s energy matrix, 

suggesting that energy transitions play a catalytic role in reshaping rural production logics. 

The model reinforces the hypothesis that agroecological transitions occur incrementally, 

passing through intermediary phases marked by institutional maturation, technological 

adoption, and energy restructuring. Its sensitivity to variations in energy indicators allows for 

the detection of systemic vulnerabilities and the anticipation of critical thresholds where 

targeted policy interventions can be most effective. 

While the model successfully captures historical transition patterns, it has certain limitations. 

It does not directly account for variables such as transportation infrastructure, market 

integration, land tenure regimes, or cultural preferences that often mediate land use decisions. 

Additionally, the model’s deterministic nature constrains its capacity to incorporate 

exogenous shocks or rapid institutional changes, which are increasingly relevant in times of 

global environmental and economic uncertainty. 

Nevertheless, the model presents significant practical and theoretical contributions. It can be 

adapted into a decision-support tool for rural extension services, enhancing participatory 

diagnostics of energy use, carbon footprint assessments, and the planning of low-carbon, 

energy-efficient farming strategies. Its conditional architecture also facilitates scenario 

analyses, helping stakeholders visualize the long-term effects of specific energy and land use 

choices on agroecological outcomes. By bridging technical modeling with real-world 

applications, the study provides a valuable interface between science, policy, and practice. 

Future research should aim to refine the transition matrix by incorporating variables related to 

credit access, fiscal incentives, governance mechanisms, and sociopolitical dynamics at the 

territorial scale. Field-based validation through participatory approaches may further enhance 

model reliability and context-specific relevance. Ultimately, by combining mathematical rigor, 

energy transition sensitivity, and social applicability, this study contributes in a novel and 

strategic way to the planning of sustainable agricultural futures in Brazil. Its replicability 

across diverse biogeographic and institutional contexts underscores its scientific value and 

reinforces its role in supporting just and resilient agroecological transitions. 
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