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Abstract 

The paper presents a formulation for robust optimization of aerial and marine vehicles design. 

The general framework is that of optimal design under uncertainty, also referred as Robust 

Design Optimization (RDO). Specifically, statistical decision theory concepts are used to 

formulate the design decision problem under uncertain operating conditions. The design 

specifications are given in terms of probability density function of different operating 

parameters and the optimal design configuration is that which maximizes the performance 

expectation. Applications to the conceptual design of civil aircraft and vessels are shown. 
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1. Introduction  

In the standard approach to design optimization, all the relevant quantities are addressed from 

a deterministic viewpoint and the overall analysis disregards any kind of uncertainty involved 

in the process. In this context, the final solution of the optimal design process is (very) 

specialized for the deterministic conditions assumed, and, apparently, depends on the 

deterministic models adopted. Nevertheless, in most cases the final products operate in 

off-design conditions. This is because of the unavoidable deviations from the theoretical 

design due to the manufacturing tolerance, and/or to the variety of environmental conditions 

and operational constraints the designed system is subject to, during its every day exercise. In 

these conditions, the performances might significantly drop, limiting the effectiveness and the 

productivity of the final product. Marczyk (2000) stresses the latter limitation stating that, in 

a deterministic engineering context, optimization is synonymous of specialization and, 

therefore, is the opposite of robustness and flexibility about uncertainties. 

The aim of the present work is to reformulate the problem of optimal design, taking into 

account the uncertainty and redefining optimality in terms of robustness of the final solution. 

Specifically, the final goal is that of identifying a final solution able to keep a good 

performance in the whole uncertain scenario under analysis. The general framework is that of 

Robust Design Optimization (RDO) in which optimality criteria from statistical decision 

theory are assessed from the designer’s viewpoint. 

Theory and tools of RDO have been developed to improve product quality and reliability in 

industrial engineering. Specifically, the uncertain parameters are taken into account by means 

of their probabilistic distribution and included, some how, in the definition of the optimality 

criteria used for the design optimization – see, e.g., Beyer and Sendhoff (2007), Park et al. 

(2006) and Zang et al. (2005). 

Generally, the source of uncertainty may be categorized into two main types: external and 

internal (Du and Chen, 2000). External uncertainties are related to the analysis models input, 

such as design variables tolerance or uncertain usage and operating conditions. Internal 

uncertainties are related to the system output and may be associated to the accuracy in 

computing. In other words, internal sources of uncertainty are related to those stochastic 

variations that are not conditional on the input uncertainties. In the context of optimal design 

and from the designer’s viewpoint, we may consider the uncertainty related to the definition 

of the design variables (tolerance or actuators precision), of the environmental and operating 

conditions, and to the evaluation of the relevant functions (inaccuracy in computing). 

The tools of statistical decision theory, specifically Bayes criteria (De Groot, 1970), may 

provide the designer with a sound framework to manage the above uncertainties and 

formulate the problem for RDO (Trosset et al., 2003). Specifically, the expectation of the 

merit factors (with respect to the stochastic variations involved in the analysis) may be taken 

as the objective of the optimization procedure. In addition, the standard deviation of the 

relevant quantities may be also taken into account to improve the insensitiveness of the final 
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solution to the uncertain parameters variation (Zang et al., 2005). 

In this work, particular attention will be paid to the uncertainty related to the environmental 

and operating conditions of the final product. It may be noted that, in aerial and marine 

vehicle design (Padula et al., 2006, Diez and Iemma, 2007, Torenbeek et al., 2004, Diez and 

Peri, 2009 and 2010), operating and environmental conditions may be considered as 

“intrinsic” stochastic functions, whose expected values and standard deviations can neither be 

influenced by the designer nor by the manufacturer. Conversely, the uncertainties related to 

the design variables and to the functions evaluation are connected to the available knowledge 

and technology, and – theoretically – may be reduced by improving modeling, computing and 

manufacturing processes. The final goal here is that of minimizing the effects of the 

uncertainties involved in the system design, without suppressing their causes. The tools used 

for the definition of the decision problem are that of statistical decision theory, properly 

translated in the context of optimal design. 

The next section presents the general problem of design optimization subject to uncertainty. 

In Section 3 the formulation for robust decision making in optimal design is given, whereas 

numerical example of conceptual design of aircraft and vessels are shown in Section 4. 

Specifically, an application of robust design optimization aimed at minimum life-cycle cost 

of a mid range civil aircraft will be shown as well as a robust decision making process for 

optimal design of a bulk carrier. Moreover, Appendices 1 and 2 present a brief overview of 

the models used for the conceptual design of the above aerial and marine vehicles. 

2. Design optimization subject to uncertainty 

The present Section deals with the general description of a design optimization problem 

subject to uncertainty. Depending on the application, different kind of uncertainties may be 

addressed. A comprehensive overview of design optimization under uncertain conditions may 

be found in Beyer (2007), Park et al. (2006), Zang et al. (2005). In order to define the context 

of the present work, we may formulate the following optimization problem, 



minimize w.r.t. x  A,    f (x,y)          for a given y = ˆ y  B

subject to                       gn (x, ˆ y )  0   for n 1,...,N

and to                            hm (x, ˆ y )  0   for m 1,...,M

  (1) 

where x  A is the design variables vector (which represents the designer choice), y  B is the 

design parameters vector (which collects those parameters independent of the designer choice, 

like, e.g., environmental or usage conditions, defining the operating point of the final 

product), and f, gn, hm: R
k
R, are the optimization objective, the inequality and equality 

constraints functions, respectively. While handling the above problem, the following 

uncertainties may occur (the present classification may be found in Diez and Peri, 2010, and 

the interested reader is referred to their work). 

a) Uncertain design variable vector. When translating the designer choice into the “real 

world,” the design variables are likely affected by uncertainty due to manufacturing tolerance 

and/or actuators precision. Assume a specific designer choice x* and define    the error or 
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tolerance related to this choice.
1
 Assume then  as a stochastic process with probability 

density function
2
 p(). The expected value of x* is, by definition,  



x *:(x *)  x * p()d


  

It is apparent that, if the stochastic process  has zero expectation, i.e. 



 :()   p()d


  0 

we obtain 



x * x *. It may be noted that, in general, the probability density function p() 

depends on the specific designer choice x*. 

b) Uncertain environmental and usage conditions. In real life applications, environmental and 

operational parameters may differ from the given guess 



ˆ y , made during the design phase  

(see problem 1). The design parameters vector may be assumed as a stochastic process with 

probability density function p(y) and expected value or mean 



y :(y)  y p(y)dy

B

  

Note that, in this formulation, the uncertainty on the usage conditions is not related to the 

definition of a specific design point. Environmental and operating conditions are treated as 

“intrinsic” stochastic processes in the whole domain of variation B, and the designer is not 

requested to pick a specific design point in the usage parameters space. For this reason, we do 

not define an “error” in the identification of the usage conditions, preferring the present 

approach, which addresses the environmental and operational parameters in terms of their 

probabilistic distributions in the whole domain of variation. 

c) Uncertain evaluation of the function of interest. The evaluation of the functions of interest 

(objectives and constraints) may be affected by uncertainty due to inaccuracy in computing. 

Collect objective and constraints in a vector  := [f,g1,…,gN,h1, …,hM]
T
, and assume that the 

assessment of  for a specific “deterministic” design point, * := (x*,



ˆ y ), is affected by a 

stochastic error   . Accordingly, the expected value of * is  



*:( *)   * p()d


  

Note that, in general, the probability density function of , p(), depends on * and, 

therefore, on the design point (x*,



ˆ y ). 

Combining the above uncertainties, we may define the expected value of  as  

                                                        
1 The symbol * is used in the present formulation to denote a specific designer choice. While x represents all the possible 

choices in A, x* defines a specific one.  
2 It is, by definition,



p()d


 1. 
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

 :()  (x *,y) p(,y,,)ddyd
B

      (2) 

where p(,y,) is the joint probability density function associated to , y, and . It is apparent 

that 



 (x*) ; in other words, the expectation of  is a function of only the designer choice. 

Moreover, the variance of  with respect to the variation of , y, and , is  



V() : 2
()  (x *,y) (x*) 

2
p(,y,,)ddyd

B

  (3) 

resulting, again, a function of only the designer choice x*. Equations 2 and 3 give the general 

framework of the present work. Specifically, we concentrate on the stochastic variation of the 

operating and environmental conditions, thus referring to uncertainties of the b type. 

3. Robust decision making for optimal design subject to uncertain environmental and 

operating conditions 

In this section, the formulation for robust design optimization subject to uncertain 

environmental and operating conditions is presented. Assume that the optimization objective 

in problem 1 is associated to a general loss (like, for instance, the performance loss with 

respect to a given target). Under the hypothesis of uncertain environmental and operating 

conditions, we may refer to f(x,y) as the loss associated to the designer choice x, when the 

condition y occurs. Therefore, the expectation of the loss f, evaluated through the integral of 

Eq. 2 (limited to uncertain y), may be defined as the risk associated to the decision x under 

the distribution p(y) (De Groot, 1970). It follows that the designer should choose, if possible, 

a decision x which minimizes the risk (expected loss). 

Specifically, if we consider the Bayes risk, i.e. the lower bound of the expected loss for all the 

possible choices in A, 



f *: inf
xA

f  

we look for the Bayes decision of the problem against the distribution p(y), for which the risk 

equals the Bayes risk. 

The Bayes approach to the designer decision problem may be formulated as follows. 



minimize w.r.t. x  A,   f (x) : f (x,y)p(y)dy
B

  

subject to                      supyB  gn (x,y)  0             for n 1,...,N

and to                            h m : hm (x,y)p(y)dy
B

  0   for m 1,...,M

  (4) 

In the present formulation, the inequality constraints are treated in the worst case, following a 

conservative approach. An alternative method is that of considering the inequality constraints 
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as probabilistic inequalities, and assessing the reliability of the design with respect to the 

constraints violation. The latter approach is the main idea behind Reliability-Based Design 

Optimization (RBDO - see, e.g., Tu et. al, 1999, Agarwal, 2004, and Agarwal and Renaud, 

2004) and is beyond the scopes of the present work and, therefore, not further addressed here. 

The optimal designer choice x = x* of the problem of Eq. 4 is that which minimize the 

expected loss of the system performances with respect to the stochastic variation of the 

environmental and operating conditions collected in y. It may be noted that in the present 

context, the design specifications, are not longer given in terms of a single operating design 

point, but in terms of probability density function of the operating scenario. 

The problem of Eq. 4 may be enriched by considering the standard deviation of f, with 

respect to the operating conditions variation, as a second objective function. The latter 

approach improves the insensitiveness of the final design to the operating conditions 

variation.  

4. Numerical results 

In this section we present an example of application of robust design optimization aimed at 

minimum life-cycle cost of a short-mid range civil aircraft, as well as a robust decision 

making process for optimal design of a bulk carrier, aimed at minimum unit transportation 

cost. 

4.1 Optimal aircraft conceptual design aimed at minimum life-cycle cost  

The formulation presented in Morino et al. (2004) and its extension to take into account the 

community-noise cost (Iemma et al., 2006 and Iemma and Diez, 2005), are used here for 

estimating the life-cycle cost of the aircraft in the context of Multidisciplinary Design 

Optimization (MDO, see also Appendix 1). Specifically, the total aircraft life-cycle cost 

(TALC) is modeled as a linear function
3
 of empty weight W, useful fuel weight F and noise 

emission N,  

TALC = C0 + CW W + CF F + CN N          (5)  

where C0 is the portion of the cost that is independent of W, F and N, whereas CW, CF and CN 

are the cost increases per unit W, F and N, respectively. The second and the third term of the 

right-hand side of Eq. 5 are representative of research, development, test, evaluation and 

manufacturing costs as well as direct operating costs of flying (fuel and oil cost) and direct 

operating costs of maintenance (labor and spare parts for airframe and engines). The cost of 

the noise is expressed as a cost per dB and included in the last term of Eq. 5. The cost of crew, 

depreciation, take-off, landing and navigation fees (independent of noise emissions), registry 

taxes and cost of financing, are included in the term C0. Specifically, the latter includes all 

those contribution to the TALC insensitive to the aircraft-designer choice. The objective 

function of the optimization process may be written as (note that the “insensitive” part of the 

                                                        
3 Note that in the context of design optimization, we look for a model able to relate the designer choice to the life-cycle 

costs. Although the relation used here doesn’t constitute an exhaustive modeling of all the issues connected to the total 

aircraft life-cycle cost estimate, we believe that this simple relation fits well the requirements of the problem at hand, 

emphasizing the “designer’s contribution” to the total cost. 
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cost, C0 , is inessential in the optimization)  

f = ( CW W + CF F + CN N ) Q0
-1

  

where, again, CW , CF and CN are respectively the cost per unit empty-weight, fuel-weight and 

noise. Q0 is a reference value used to normalize f . Finally, we may write  



f W

W

W0

F

F

F0

N

N

N0

           (6) 

where the quantities with subscript 0 denote reference values and αW := CW W0/Q0 and αF := 

CF F0/Q0 are known constants (in this work, they are calculated using the values of CW and 

CF from Morino et al., 2004); αN := CN/Q0 is the relative cost of noise. For details on 

life-cycle cost multidisciplinary optimization, the reader is referred to Morino et al. (2004).  

In the following, we present the numerical results obtained applying the formulation to the 

optimization of the wing system of a mid range aircraft (the interested reader may found 

more details in Diez and Iemma, 2007, AIAA paper 2007-3668). The aircraft major 

specifications are shown in Tab. 1, whereas the designer-choice variables are listed in Tab. 2.  

The design constraints are given in Tab. 3. As probabilistic parameters we take into account 

the relative cost of the noise introduced above, αN, and the cruise Mach number, M∞. Note 

that the first parameter depends upon Governments and Authorities regulations and 

significantly increased in the last decade. The cruise Mach number depends on the air traffic 

in a specific sector (especially for short-mid range missions in high density flights regions) 

and can vary upon air traffic control decisions. For the sake of simplicity and without loss of 

generality, the probability density function for both parameters (p1 and p2 respectively) is 

taken as a constant function in the variation domain (uniform distribution). Specifically, 0.4 ≤ 

αN ≤ 1.2 and p1(αN ) = 1/0.8, whereas 0.7 ≤ M∞ ≤ 0.9 with p2(M∞) = 1/0.2; the joint probability 

density function is set to p(αN,M∞) := p1(αN) p2(M∞).  

Table 1.  Design specifications. 

number of seats 150 

payload, kg 16,600 

max. range, nm 3,000 

max. cruise Mach no. 0.9 

number of engines 2 

max thrust per engine, lb 25,000 

  

Table 2.  Design variables vector (designer choices). 

variable lower b. upper b. 

span, m 28.00 40.00 

root chord, m 2.00 12.00 

tip chord, m 0.50 2.00 
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root panel thickness, mm 1.0 15.00 

tip panel thickness, mm 1.0 15.00 

root spar thickness, mm 10.0 100.00 

tip spar thickness, mm 10.0 100.00 

root built-in angle of attack, deg -5.00 12.00 

tip built-in angle of attack, deg -5.00 12.00 

sweep angle, deg 0.00 50.00 

 

Table 3.  Design constraints. 

Maximum normal stress  100 MPa 

Maximum shear stress  100 MPa 

Minimum flutter speed  280 m/s 

Minimum divergence speed 280 m/s 

   

The noise emission has been evaluated in terms of SEL (dB) for an observer situated 1,000 m 

from the aircraft in the final approach phase and at flight Mach number equal to 0.3, with a 

sloope angle of 3 degrees. 

The objective of the optimization process is the expected value of the total aircraft life-cycle 

cost according to Eqs. 4 and 6, whereas the constraints for the aircraft configuration are 

shown in Tab. 3. The constrained minimization problem is solved using an evolutionary 

algorithm (see Goldberg, 1989) coupled with a penalty function method. In order to evaluate 

the reference parameters used in Eq. 3, a preliminary robust analysis has been performed, 

setting the cost of the noise equal to zero. The minimum noise configuration has been also 

identified for further comparisons.  
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Figure 1. Wing optimized configurations. 

 

Figure 1 presents (from the left to the right) the minimum-noise solution, the reference 

configuration (minimum life-cycle cost with a cost of the noise equal to zero), the optimal 

solution found performing a “deterministic” analysis with all the probabilistic parameters 

equal to their expectations and, finally, the robust solution which takes in to account the 

stochastic variation of the uncertain parameters. The optimal configurations are summarized 

in Tab. 4. It is worth noting that (at least) one of the structural constraints is always critical.  

It may be noted how the minimum-noise solution has a very high aerodynamic efficiency in 

the final approach condition and how the aerodynamic efficiency drops down for the cruise 

condition (increasing the overall life-cycle cost). The noise emission in terms of SEL is, as 

expected, the lowest. The reference configuration has the greater efficiency in cruise 

condition and the greater value of the noise emission in the approach phase; the 

configurations optimized taking into account the cost of the noise present closer values for 

the aerodynamic efficiency for the two conditions, cruise and approach respectively.  

Figure 2 depicts the variation of the total aircraft life-cycle cost depending on the operating 

cruise Mach number for the optimal “deterministic” solution (standard deterministic problem) 

and for the “robust” solution. As apparent, the configuration optimized using the present 

approach for robust design optimization has a lower average cost and a greater “robustness” 

with respect to the variation of the operating conditions. 

 

Table 4.  Optimized parameters. 
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variable/function min. noise reference MDO MRDO 

span, m 39.98 28.00 28.00 28.00 

root chord, m 4.66 4.54 4.65 4.56 

tip chord, m 1.06 0.5 0.54 0.50 

root panel thickness, mm 1.55 1.53 1.60 1.63 

tip panel thickness, mm 1.04 1.92 1.00 1.08 

root spar thickness, mm 21.30 10.00 10.01 10.45 

tip spar thickness, mm 10.01 10.00 10.01 10.38 

root built-in angle of attack, deg 2.59 4.70 3.63 3.90 

tip built-in angle of attack, deg 8.41 8.59 10.33 10.50 

sweep angle, deg 0.20 26.95 8.43 11.30 

wing structural weight, kg 10,842 9,044 8,737 8,757 

fuel burn for target mission (1,000 nm), kg 13,572 3,294 3,712 3,660 

Noise at 1,000 m, SEL[dB] 66.41 67.00 66.71 66.73 

aerodynamic efficiency (cruise, M∞ = 0.8) 4.86 19.48 17.15 17.40 

aerodynamic efficiency (approach, M∞ = 0.3) 25.21 15.74 18.49 18.23 

max. normal stress, MPa 98.65 89.97 74.93 76.34 

max. shear stress, Mpa 98.63 99.91 99.96 99.79 

futter speed, m/s 327 >400 >400 >400 

divergence speed 348 >400 >400 >400 

 

Figure 2. Variation of aircraft life-cycle costs with respect to operating conditions. 

 

4.1 Optimal design of a bulk carrier aimed at minimum unit transportation cost 

In this section, the formulation for robust optimization is applied to the conceptual design of a 
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bulk carrier, subject to uncertain operating conditions (for more details on the topic, the 

interested reader is referred to Diez and Peri, 2009 and 2010). Specifically, the port handling 

rate (i.e., the capacity of loading and unloading goods, due to harbor facilities) is taken as a 

probabilistic parameter. Moreover, a uniform distribution from 1,000 ton/day per ship to 

11,000 ton/day per ship is assumed. The design variables used in the present application are 

indicated in Table 5.  

 

Table 5: Design variables vector (designer choices). 

variable lower bound upper bound 

length, m 100.00 600.00 

beam, m 10.00 100.00 

depth, m 5.00 30.00 

draft, m 5.00 30.00 

block coefficient 0.63 0.75 

cruise speed, kts 14.00 18.00 
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The model used for the bulk carrier conceptual design analysis is that used by Parsons and 

Scott (2004). The cost function addressed in this work is the unit transportation cost, whereas 

the design constraints pertain geometry, static stability, and model validity. The dimension 

constraints refer to the Capesize category (see again Table 5). The analysis model by Parsons 

and Scott (2004) is briefly recalled in Appendix 2.  

A deterministic particle swarm optimization (DPSO, see Campana et al., 2009, Pinto et al., 

2004, Kennedy and Eberhart, 1995) algorithm coupled with a penalty function method is 

used to solve the constrained minimization problem, minimizing the expected value of the 

unit transportation cost. The solution is compared with that obtained trough a “deterministic” 

standard approach (for which the uncertain parameter is taken equal to its mean value). Table 

6 contains the optimal solutions, whereas Figure 3 depicts the non-dimensional optimal 

variables (normalized so as -1 represents the variables lower bound and +1 the upper bound). 

Figure 4 presents a comparison between the “robust” and the “deterministic” solution 

performance in terms of unit transportation cost as a function of the uncertain parameter (port 

handling rate). Moreover, Figure 5 shows the difference between the “robust” and the 

“deterministic” solution performance, as a function of the port handling rate. It may be noted 

that, as the uncertain parameter has a uniform density function, the integral of the latter 

function represents the difference between “robust” and “deterministic” solution expectation 

of the transportation cost. It may be also noted how the robust configuration has a better 

overall behavior with respect to the deterministic (specialized) solution. The interested reader 

may found more results on Diez and Peri (2009 and 2010). 

 

Table 6:  Optimal parameters. 

variable/function 
deterministic 

solution 

robust 

solution 

length, m 182.79 165.70 

beam, m 30.60 27.75 

depth, m 15.89 14.25 

draft, m 11.90 10.76 

block coefficient 0.67 0.65 

cruise speed, kts 14.00 14.00 

Cost for expected port handl. rate 

Expected cost 

Cost standard deviation 

7.22 7.31 

8.63 8.50 

3.47 2.93 

 (optimization objectives highlighted in bold)  
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Figure 3. Adimensional optimal variables for standard-deterministic and robust optimization 

 

 

Figure 4. Comparison between deterministic and robust optimal solution permormances (unit 

transportation cost) as a function of the uncertain parameter (port handling rate). 
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Figure 5. Difference between robust and deterministic unit transportation cost as a function of 

the port handling rate. 

 

Concluding remarks 

A formulation for robust decision-making in optimal design subject to uncertainty has been 

presented and discussed. The decision problem is formulated so as to look for the Bayesian 

solution to the design problem. The design requirements are given, in the present formulation, 

in terms of probabilistic distribution of the operating scenario. Applications to the conceptual 

design of a mid range civil aircraft and of a bulk carrier, both under uncertain operating 

conditions, have been shown. The numerical results show how the present approach may 

increase the robustness of the overall performance when the uncertainty is taken into account 

in the design process. It is also shown how the robust formulation for optimal design leads to 

final solutions with minimum value for the expected loss or, in other words, minimum risk in 

a Bayesian sense. 
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Appendix 

Appendix 1. Multidisciplinary analysis tool for aircraft conceptual design 

In this appendix, we provide the reader with an idea of the overall algorithm used for the 

aircraft design optimization. The analysis modules included in the MDO to describe the 

complete mechanics of the aircraft deal with the structural dynamics, the aerodynamics, the 

aeroelasticity and the mechanics of flight. For the sake of compactness, the theoretical 

models underlying the algorithms implemented are only briefly outlined, and the interested 

reader is addressed to Morino et al. (2003), Morino et al. (2004), Iemma et al. (2005), and 

Iemma and Diez (2005).  

The model used for the structural analysis of the wing is that of a three-dimensional 

bending-torsional beam, with geometric and structural parameters varying in the spanwise 

direction. These include structural element geometric dimensions (rib area, spar and skin 

panel thickness, etc.), wing twist, mass properties plus bending and torsional moments of 

inertia. Clamped boundary conditions have been considered at root in order to take into 

account the wing-fuselage juncture. 

The solution of the structural problem is obtained using the modal approach. The 

approximate modes of vibration are evaluated by a finite-element model of the wing, and 

used to express the displacement field. The physical model used for the aerodynamics is that 

of compressible quasi-potential flows, enriched by a boundary-layer integral model to take 

into account the effects of viscosity, and provide an adequate estimate of the viscous drag. 

Under the assumption that the wake geometry remains fixed in a frame of reference 

connected with the wing, the numerical solution is obtained through a boundary elements 

method (BEM, see Morino, 1993, for details). The aeroelastic feedback generated by the 

interaction between unsteady aerodynamics and structural dynamics is also taken into 

account in the MDO formulation, through a suitable reduced order model (ROM). The 

aeroelastic stability analysis is reduced to the study of a root locus (see Morino et al., 1995, 

for details). The static longitudinal stability, an essential issue for aircraft, is satisfied by 

imposing that the derivative with respect to the angle of attack of pitch moment coefficient 

(evaluated with respect to the center of mass G) be less than zero. In order to evaluate fuel 

consumption, the mission profile considered in this work consists of: (i) take-off, (ii) climb, 

(iii) cruise, (iv) descent, and (v) landing. The relation between fuel burn, aircraft weight and 

range is addressed through the Breguet equation (see, e.g., Mair and Birdsall, 1992, and 

Raymer, 2006).  

The approach used for the aeroacoustic simulation is chosen taking into account several 

concurring factors. An accurate evaluation of the noise perceived at a specified location 

requires a prime-principle-based accurate modeling of several physical phenomena, which 

are extremely expensive to simulate (turbulence, shock waves, unsteady wakes, etc.). 

Considering that each analysis module can be called thousands of times during a complete 
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optimization process, it is apparent that a prime-principle-based simulation of the noise 

generation mechanisms would make the computational burden too heavy even for the most 

powerful computer systems. In addition, the noise prediction is not directly related to critical 

design issues such as safety, reliability, and performance. Moreover, in the formulation used, 

the optimization process is driven by the trend of the noise as a function of the design 

variables, rather than by its absolute value. For all these considerations, we can conclude that 

the requisite of high accuracy in noise prediction does not represent a critical issue, at least 

considering the aims of this work. Thus, within the optimization framework, we have 

preferred here to use efficient, well assessed algorithms based on empirical (or 

semi-empirical) models. Accordingly, the algorithm used for the evaluation of the noise 

emission is based on a Noise-Power-Distance table obtained from experimental data. 

Appendix 2. Bulk carrier conceptual design tool 

In this Appendix, the bulk carrier analysis tool used by Parsons and Scott (2004) is briefly 

recalled. 

  

Independent variables:  

L = length [m], B = beam [m], D = depth [m], T = draft [m], CB = block coefficient, Vk = 

speed [knots]. 

 

Model: 

annual cost = capital costs + running costs  + voyage costs  

capital costs = 0.2 ship cost  

ship cost  = 1.3 (2,000 Ws
0.85 

+ 3,500 Wo + 2,400 P
0.8

)  

steel weight = Ws = 0.034 L
1.7

 B
0.7

 D
0.4

 CB
0.5

  

outfit weight = Wo = L
0.8

 B
0.6

 D
0.3 

CB
0.1

  

machinery weight = Wm = 0.17 P
0.9

  

displacement = 1.025 L B T CB  

power = P = displacement
2/3

 Vk
3
/(a + b Fn)  

Froude number = Fn = V/(gL)
0.5

  

V = 0.5144 Vk m/s; g = 9.8065 m/s
2
  

a = 4,977.06 CB
2
  - 8,105.61 CB + 4,456.51  

b = - 10,847.2 CB
2
 + 12,817 CB - 6,960.32  

running costs = 40,000 DWT
0.3 

 

deadweight = DWT = displacement - light ship weight 

light ship weight = Ws + Wo + Wm 

voyage costs = (fuel cost + port cost) RTPA  

fuel cost = 1.05 daily consumption * sea days * fuel price  

daily consumption = 0.19 P 24/1,000 + 0.2  

sea days = round trip miles/24 Vk  

round trip miles = 5,000 (nm)  

fuel price = 100 (£/t)  

port cost = 6.3 DWT
0.8
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round trips per year = RTPA = 350/(sea days + port days)  

port days = 2[(cargo deadweight/handling rate) + 0.5]  

cargo deadweight = DWT - fuel carried - miscellaneous DWT  

fuel carried = daily consumption (sea days + 5)  

miscellaneous DWT = 2.0 DWT
0.5 

 

handling rate = 6,000 (t/day) 

annual cargo capacity = DWT * round trips per year 

unit transportation cost  = annual cost / annual cargo capacity 

vertical center of buoyancy = KB = 0.53 T  

metacentric radius = BMT =(0.085 CB - 0.002) B
2
/(T CB)  

vertical center of gravity = KG = 1.0 + 0.52 D  

 

Constraints used in this work:  

L/B  6  

L/D  15  

L/T  19  

T  0.45 DWT
0.31

  

T  0.7 D + 0.7  

25,000  DWT  500,000  

Fn  0.32  

GMT = KB + BMT – KG  0.07 B 

 

 

 

 


