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Abstract 

Several stock exchanges are subject to some authorities’ regulations, constraints and 

limitations such as price limits. In this paper, we address the issue of microstructure effects 

due to price limits. In particular, stocks returns show a non-normal behavior in the case of 

price limits. This non-normality could be coming from a change in investors' behavior, 

valuation effect, or a change in the stock returns statistical properties, value effect. In order 

to analyze this joint-hypothesis, we defined a new normality test that takes into account the 

truncation effect, the Truncated Jacobi-Bellman (TJB) test. Our results show that the Value 

effect has a limited explanation of the stock return behavioral change. 

Keywords: Price limits, Truncated time series, Truncated normal distribution, JB test, 

Maximum likelihood estimator 

1. Introduction 

To limit asset prices volatility, many stock exchanges impose daily price limits, i.e. today's 

prices trade within a certain range of yesterday's closing prices. There is a long-haul debate 
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surrounding the usefulness of price limits which dragged the financial community for decades. 

On one hand, Price Limit Advocates claim that price limits decrease stock price volatility, 

counter overreaction, and does not interfere with trading activity. On the other hand, Price 

Limit Critics advance that price limits cause negative effects such as higher volatility levels 

on subsequent days (volatility spillover hypothesis), preventing prices from efficiently 

reaching their equilibrium level (delayed price discovery hypothesis), and interfering with 

trading due to limitations imposed by price limits (trading interference hypothesis). 

Many academics demonstrated an interest to study several phenomena related to price limits. 

Kim and Rhee (1997) stated that price limits prevent stock prices from falling below or rising 

above predetermined boundaries. This enables them to control a potential volatility by 

establishing constraints and providing time for rational reassessment during panic times. 

They check whether price limits increase volatility levels on the upcoming days, if they do 

not allow prices to reach their equilibrium levels and whether they interfere with trading 

because of the limitations they impose. Their study is conducted on the Tokyo stock 

exchange price limits system. The authors used daily stock price between 1989 and 1992 and 

then compared stocks reaching price limits to those that almost attained their limits on 

volatility, price continuation, and reversal and trading activities levels. The findings have 

suggested that volatility does not return to a normal level as fast as those who did not attain 

the price limit. In addition, price continuation occurs more frequently when the price limits 

are reached. Finally, it is documented that price limits cause trading activities to increase. 

These results had the literature questioning the effectiveness of price limits in reducing 

volatility. 

Chen et al (2005) checked the effectiveness of the price limits system in the Shanghai and the 

Shenzhen stock exchanges, more specially the A shares, by testing the volatility spillover 

hypothesis of Fama (1989), the delayed price discovery hypothesis of Fama (1989) and the 

trading interference hypothesis of Lauterbach and Ben-Zion (1993). Moreover, a test was 

conducted to determine if stocks, that hit the price limits, have certain attributes such as being 

volatile, actively trading, or having small capitalization, etc. To do so, they used Chinese a 

share individual stock prices and volume between December 1996 and December 2003. The 

findings indicated that the effect of price limits is asymmetric for the upwards and 

downwards movement and different for the bullish and bearish sample periods. During the 

bullish periods, price limits significantly reduce the stock volatility for the downwards 

movement mainly. It is the opposite case for the bearish sample period. Moreover, actively 

traded stock hits the price limits more frequently, especially the lower boundary when the 

market is bearish while stock with high book to market hit the upper limit more often. Lastly, 

a lack of evidence indicates that price limits interfere negatively with the trading process. 

Wang et al (2014) studied the effects of price limits on the Chinese stock market during 

periods of global instability. The purpose was to examine the characteristics of stocks that hit 

the price limits more frequently during periods of turmoil. Specially, these periods are the 

Asian financial crisis of 1997 and the global financial crisis of 2008. To do so, they tackled 

volatility spillovers, delayed price discovery and trading interference with such periods using 

daily A-share stock prices and trading volume from the Shanghai stock exchange and the 
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Shenzhen stock exchange. The findings are quite interesting. First, the price limits 

mechanism increased the volatility significantly, especially in the downward movement, 

during the global financial crisis. Secondly, they found that the efficient price discovery was 

delayed by price limits. Moreover, throughout the upward movement, price limits interfere in 

the trading activity one day after the stock hits the limit. Lastly, actively traded stocks in the 

property and industrial sectors which are highly and positively correlated with the market 

reach the price limits frequently. 

Errais and Bahri (2016) claim that for investors trading across assets and countries with 

different price limits, volatility estimates (measured by standard deviation) are biased. This 

biasness is because price limits are imposed. In situations like these, equilibrium prices are 

unobservable and observed prices are truncated. Their methodology consists in using 

Censored Stochastic Volatility model (CSV) and optional pricing. The findings show that the 

returns of stocks traded on markets with price limits exhibit an option lookalike payoff. 

Consequently, when options are inexistent in a market, traders gain options payoff as well as 

the regular linear payoff observed in stocks. 

Mathematically, if we denote today's price by    
   we can write: 

                     (1) 

By simply dividing p
0

t by p
0

t-1 from (1) we can notice that the returns are limited as well: 

                           (2) 

If we suppose that these limits are symmetric and time independent, there exists a limit 

      such as: 

dt=1-l , ut=1+l 

With this configuration, one can think about censored time series to model    
   as   

  being 

a stochastic process with a finite support. We will see in this paper that the observed returns 

   
   have similar but not identical features to truncated time series when we establish its link 

with the shadowing returns. Thus the price limits don't boil down to truncating or censoring a 

time series. 

The purpose of this paper is to address the following questions: How does limited price rules 

influence both traders' decision making and valuation of assets? How can we model the 

observed returns to link them with equilibrium prices? To do so, this paper first analyzes the 

impact of price limits requirements on the behavior of stock returns and on decision 

parameters estimation (mean, variance, covariance etc...). Second, it proposes an estimation 

methodology to reconstruct the unobserved returns density function. 

The remainder of the paper is organized as follows: Section two will discuss the impact of 

price limitations on the stock return behavior. Section 3 sets up the theoretical background of 

censored and truncated time series. Section 4 will present an estimation methodology of 
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shadowing returns density function based on maximum entropy methods and kernel 

estimation. Section 5 analyzes the relevant normality tests for truncated times series. Section 

6 runs empirical examples from the Tunisian Stock Exchange. Section 7 concludes. 

2. Impact of Price Limits on the Behavior of Stock Returns 

The impacts of price limits on the behavior of stock returns can be divided into two major 

effects: 

Valuation effect: imposing price limits on future returns influences the present value of the 

asset. If we suppose that there is a stochastic discount factors series     , the unconditional 

equilibrium prices      and the conditional equilibrium prices      can be defined as: 

                         (3) 

                         (4) 

with: 

    : Cash flow series generated by the asset. 

  ̅  : Cash flow series generated by the asset when price limits are imposed. 

Value effect: Equation (4) does not guarantee that    is in the price limit range. If we 

suppose that    at time t is known, we can define the observed price    
   as follows: 

                  (5) 

Equation (5) means that the observed price is the most accepted price close to the shadowing 

price. This is true if we suppose that the investor will execute the price pt. With minor 

manipulations we can reformulate (5) to get a more explicit relationship between   
 

 and   : 

                      (6) 

From (6), we can define the observed return as:  
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                  (7) 

If we have    
  

    
    , we cannot guarantee that   

     as     
  can be different from 

    . 

To make the treatment simpler, we will suppose that price limits are time independent and 

symmetric, thus, we will have        and       . The following example will help 

illustrating the difference between a simple censored series and the process described by (7) 

Example 1.  

Suppose the following configuration: 

 

According to (6): 

 

 

For 

 

for 

 

From the example above we can conclude that 
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Proposition 1.  

If     
        Then 

 

Proof: If     
        then     

  
    

    
 ⇔          

      
      

 . Thus, using 7 we have: 

 

Proposition (2) allows us to make a link between the process of observed returns      and 

censored and truncated variables. 

3. Truncation 

Truncation and censoring are sampling-related phenomena. Truncation occurs when the 

sample is drowning from a non-fully representative subpopulation, while censoring occurs 

when a group of values is replaced by a unique value. Greene (2003) used the example of 

studies of income based on incomes above or below some poverty line to explain the 

difference between the two phenomena: Truncation occurs when we totally neglect 

observations that are out of the subpopulation studied i.e. observations with income higher or 

lower than the chosen poverty line while censoring occurs when we replace these 

observations by higher than/lower than the chosen poverty line. 

3.1 A Brief History 

The early statistical treatment of truncation dates to 1897. The year in which Galton (1997) 

published his An Examination into The Registered Speeds of American Trotting Horses, with 

remarks on their value as hereditary data. In the article, the author studied the speed of 

trotting horses from samples published by The American Trotting Association. However, the 

association did not report the speed of unsuccessful trotters, that is, the horses with a speed 

below a certain threshold. This is what is called in modern econometrics' language a left 

truncation. Galton (1997) considered that his sample is normal  and used the sample 

mode as an estimator for  . Then he used sample inter-quartile to estimate the standard 

deviation. This procedure was judged satisfactory of the author's needs. 

Pearson (1902) criticized this procedure and proposed the use of fitting parabolas to the 

logarithms of the sample frequencies, however, the results were slightly different from those 

found by Galton (1997). Later, Pearson continued his investigation on the truncated normal 

samples. Pearson and Lee (1908) used the method of moments to derive estimators of the 

mean and standard deviation of left truncated normal distribution. Fisher (1931) used the 

maximum likelihood method to estimate the normal distribution parameters. 
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The treatment of censored samples was on standby until 1937. Bliss and Stevens (1937) 

derived maximum likelihood equations to estimate normal parameters for singly and doubly 

truncated. 

Further development of statistical methods on how to deal with truncated and censored 

samples were continued with many other scholars such as Cohen, Saw, Whitten, etc... 

3.2 Parallel Truncation 

This subsection will focus on parallel truncation that is when we truncate the distribution 

from above and below: 

 

3.2.1 Effects of Truncation on Distribution Moments and Characteristics 

The study of truncated moments may be of negligible importance in inferring the full 

population moments if we have no or limited information on the population distribution. In 

fact, the mean of any continuous random variable on a finite support is finite even if this 

random variable is the truncation of a random variable that has an infinite or even undefined 

mean. To spot this, the Cauchy distribution can be used because it has an undefined mean. 

There are two main reasons for exploring some properties of the truncated Cauchy 

distribution: the first reason is that the Cauchy distribution is amongst the few stable 

distributions that has a density function. The second reason is that the presence of fat tails in 

returns distribution (Lux (1998), Tsay (2005), etc...) which is captured with the Cauchy 

distribution. 

Example 2.  

Let               , We have 

 

Where 

 

Now we can calculate for example the mean of the truncated variable: 

 R 
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Figure 1. (-5, 5)-Truncated              PDF 

 

Figure 2. (-5, 5)-Truncated             PDF 

However, having a prior knowledge of the full population distribution may lead to a complete 

knowledge of its moments from the truncated ones. For instance, this is the cause for normal 

random variables. 

Example 3.  

Let         , We have 

             (8) 

Where  ̅  
   

 
,  ̅  

   

 
,    : the standard normal density function and     The standard 

normal cumulative density function 

Similarly to the untruncated normal distribution, we can relate the truncated moments with a 

recursive formula (Orjebin, 2014): 
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              (9) 

With 

 

 

Figure 3. (-5, 5)-Truncated        PDF 

 

Figure 4. (-5, 5)-Truncated        PDF 

4. Estimation Approach 

In this section, we will develop parametric method to estimate a reconstruction of the parent 

distribution of returns. We will limit our focus on the special case of log normal returns. 

Based on the obtained results in section 2, some restrictions of the data should be imposed in 

order to obtain a truncated or censored sample. However, this article will focus on using the 

truncation method and leave the case of censoring for further investigation. 

From the results obtained in section, we should proceed to some restrictions of the data in 

order to obtain a truncated or censored sample. However, in this article we will focus only on 
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using truncation method and leave the case of censoring for further investigations. In this 

section we will restrict the full sample   to   define as follows: 

 

We can easily see that in the restricted sample the observed returns coincide with shadowing 

returns. It's thus a truncated sample of the shadowing price. 

The general hypothesis retained here is that      is an iid sample of the variable        . 

statistically speaking, the object of this section is to estimate the distribution of R.  

The log-normality of returns is an assumption that is commonly used in financial literature 

(Tsay, 2005). It combines two important features: 

 It has a bijective link with normal distribution : This makes the switch between the two 

distributions quite easy and direct 

 It can model the boundedness from below of gross returns  

The first step is to log-transform the observed return to obtain      which is now an i.i.d 

sample of         where                            . 

As R is considered here to follow a log normal distribution, r will follow a normal distribution 

with mean and standard deviation  order to estimate the population parameters, we will 

only need the first and second order moments estimators. However, we will need the third 

and fourth moments estimators in order to test the hypothesis of log-normality. 

From 8, we have 

 

Cohen (1950) and Cohen (1959) used two ways for estimating the moments of normal 

distribution from truncated samples using the method of maximum likelihood then the 

method of moments. 

4.1 The MLE Estimator 

By using the results found in (8) we can deduce directly the likelihood function: 

 

By applying the log we can find: 
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As we can see, log-likelihood is more complex than its equivalent in the case of no truncation. 

This is due to the presence of the term        ̅)-    ̅   which incorporates   and  . By 

taking the derivative we obtain: 

 

The maximum likelihood estimator of   and  , denoted  ̂ and  ̂, can be obtained by 

equating the gradient to 0. 

            (10) 

However the nonlinearity of the system of equations obtained due to the presence of 
   ̅      ̅ 

   ̅      ̅ 
 

makes the solution quite complex and needs a numeric computational assistance. ¡ 

Cohen and Whitten (1988) gave an approach to find a solution and provided tables for this 

task. However we will use a non-linear optimization algorithm directly in the empirical part. 

4.2 The Case of Symmetric Truncation 

If  ̅  
∑  

 
 

   

 
, we consider  ̂   ̅, and we get 

 

As  ̅ and  ̅ becomes symmetric around 0 and thus( ̅)     ̅ . 

Equation 10 becomes: ¡ 
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, 

Note 1. The statistical literature produced other estimators for the truncated normal 

distribution parameters based on the method of moments. However many studies confirmed 

its higher bias and lower efficiency compared to the MLE method. 

5. Testing for Truncated Normality 

To an extent, the observer can only view a specific range of the population which leads to 

truncated samples. In manufacturing for example, at the end of manufacturing lines, products 

that passed some quality check will only be observed. This fact will imply some deviation of 

stochastic characteristics of studied sample from its population (mean, standard deviation, 

distribution, etc...). Thus, using the usual statistical technics may lead to a misleading 

conclusion such as: misspecification of moments or rejecting/accepting normality. 

The econometric literature has produced a normality test within a range, however the 

Jarque-Bera continued to be the most used test. The idea of this test is related to the fact that 

all normal distributions have the same skewness and excess kurtosis of zero, which is a 

distinguishing fact from other distributions of the Pearson family. 

5.1 The Classic Jarque-Bera Test 

Appendix 3 discussed the effects of truncation on the first and second moments of normal 

variable which becomes lower as the truncation range grows wider and in case of symmetric 

truncation around the mean. We can intuitively extend this result to higher order moments 

and in particular skewness and kurtosis. A truncated normal sample, on a large truncation 

range (compared to its standard deviation) can pass the JB test. 

We have assessed the efficiency of the JB test through a series of simulations. In symmetric 

case 

Table 1. Acceptance rate of H0 of JB test for a sample following    
       at 5% 

Size 

l 10 100 1000 

1 0.998 0.8293 0.0000 

2 0.996 0.9991 0.0001 
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3 0.993 0.9928 0.9547 

4 0.989 0.9610 0.9640 

5 0.990 0.9563 0.9519 

6 0.990 0.9550 0.9512 

7 0.988 0.9555 0.9497 

8 0.990 0.9604 0.9498 

9 0.990 0.9629 0.9494 

10 0.989 0.9599 0.9501 

Table 2. Acceptance rate of H0 of JB test for a sample following     
        at 5% 

Size 

l 10 100 1000 

1 0.985 0.530 0.000 

2 0.994 0.952 0.038 

3 0.994 0.974 0.954 

4 0.993 0.960 0.957 

5 0.99 0.96 0.952 

6 0.991 0.963 0.959 

7 0.992 0.974 0.956 

8 0.992 0.949 0.038 

9 0.986 0.538 0.000 

10 0.956 0.04 0.000 

 



International Journal of Accounting and Financial Reporting 

ISSN 2162-3082 

2019, Vol. 9, No. 3 

http://ijafr.macrothink.org 123 

In conclusion, a symmetrically truncated normal sample has a great chance of passing the JB 

test of normality, only if the sample size remains small or medium, or, if the truncation range 

exceeds 6 times the standard deviation. Unlike range, asymmetry does not have a monotone 

impact on the chance of passing the JB test. 

The next subsection will see the attempt to modify the ordinary JB test to enhance its 

efficiency in detecting normality in truncated samples. 

5.2 The Truncated Pearson Distribution 

This subsection will focus on the truncation of Pearson distributions. 

Let   a random variable following a Pearson distribution      (where     ), and let 

       denote its distribution density function. We have 

                       (11) 

Let X the truncation of   on         and         its distribution function. We have: 

                      (12) 

We can see that for        ,        verifies the differential equation 11 and we can write 

 

Solving this equation gives 

             (13) 

As        is a PDF, we find that 

 

Let 

 

We can rewrite 13 as follows: 
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5.3 The LM Test Methodology 

5.3.1 The LM Test Statistic 

Let      be the log-likelihood function of a     vector of parameters and let      and 

     respectively the score and information matrix defined as follows: 

 

 

Let  ̃ be the maximum likelihood estimator of  subject to  vectors of constraints 

      . If we consider the Lagrangian function 

 

Where   is     vector of Lagrange multipliers, the first order conditions for  ̃ are: 

 

Where 

 

The test statistic is given by 

 

The LM statistic is asymptotically efficient and follows a    h, while using only the 

estimates of the parameter under the null hypothesis (unlike the LR test) 

5.4 Testing Normality From Truncated Sample 

5.4.1 The Normal Distribution as a Special Case of Pearson Distribution 

Let          the        PDF, we have 

Thus, the normal distribution is a special case of Pearson distribution with             . 

This idea was based on the Jacque-Bera test of normality using the LM methodology. 

However, the JB test statistics is unable to be taken into consideration due to the effect of 

truncation on population moments. 

As established above, truncation does not change the parameters of the distribution, but it 

changes the PDF thus the likelihood function. Because the LM test is based on the 
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log-likelihood function, it's expected that the test statistic will change in the case of truncation. 

The Truncated Jarque-Bera (TJB) test that is being developed here is based on the LM 

methodology. 

5.4.2 The TJB Test Statistic 

Let               a sequence of iid random variable distributed according to a truncated 

Pearson distribution: 

Let            and             

 

Thus the hypothesis test 

We have 

The log-likelihood function is thus: 

 

We should note here that: 

 

For    ̃, we have: 

             (14) 

The result found in 14, implies the following: 

~ 

With  ̂ and  ̂ are the MLE estimators respectively of   and    
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The derivation of the TJB statistic is done as follows: 

1. Calculate the ML estimator of  

2. Calculate  ̃ 

3. Calculate  ̃    ̃    ̃  
    ̃    

4. Calculate the TJB statistic by matrix operations using results form 2 and 3 

5. Calculate the associated p-value using the       distribution 

The detailed calculations and algorithm are given in appendix A. 

5.4.3 Convergence Issues 

In order to assess the effect of size, truncation range and centricity on the TJB statistic 

convergence, we have conducted several simulations (with 100,000 repetition each). The 

results are resumed below 

Impact of sample size 

 

Figure 5. TJB statistic distribution for different sample sizes (simulated from    
      ) 

compared to       distribution 

We can remark here the slow convergence of the TJB statistic to the       distribution. 

However, more than 70% of trials passes the truncated normality test using the p-values of 

the asymptotic distribution. 

The impact of truncation range 
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Figure 6. TJB statistic distribution for different truncation ranges (simulated from        

truncated to the range) compared to       distribution 

We can remark here that the speed of convergence of the TJB statistic to the       

distribution increases with the range length (while maintaining the centricity i.e. the mean being 

the center of the range). For the range [-10,10] (and similarly for [-100,100]), about 90% of 

trials passes the truncated normality test using the p-values of the asymptotic distribution. 

The impact of centricity 

 

Figure 7. TJB statistic distribution for different truncation ranges (simulated from a 1000 size 

sample of    
      ) compared to       distribution 

We can remark here that the speed of convergence is extremely sensitive to the position of   

in the truncated range, in fact, for the same sample size and range. For the range [-10,10] (and 

similarly for [-10,10]), about 90% of trials passes the truncated normality test using the 

p-values of the asymptotic distribution when   is the center of the range versus only 13% 

when   is at one extremity of the range. 

Remark 1. The slow convergence of the TJB statistic to       distribution can be overcame 

by creating specific distribution tables. However, a substantial statistical power loss may arise 

as the truncated normal distribution in tight ranges becomes very similar to the other 

truncated fat tailed symmetric distribution such as the Cauchy distribution: 
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Figure 8. [-1, 1] truncated Normal and Cauchy distributions 

6. Application to the Tunisian Stock Exchange 

Owned by the 23 brokers, the TSE is positioned in the heart of the Tunisian financial system 

which contains the brokers that represent the trading monopoles, the financial market council 

as the legal authority supervising the financial system of the country and the guarantee funds 

which job is to protect investors from various risks. The Tunis Stock Exchange is made of the 

principal market which contains the listed big companies, the alternative market in which 

small and medium size firms are listed, the bond marketand the hors cote market (designed 

for unlisted firms that desiring financing). 

The normal trading hours start at 9 am and end at 2 pm, with a pre-opening session from 9 to 

10 am and a pre-closing session from 2 to 2:05 pm. Trading has to be within a 3% window of 

the previous closing price. Once the price of a stock hits this limit, its trading is stopped for 

15 minutes. As a result, the ceiling and floor are increased by an extra 1.5% until the limit of 

6.09%of yesterday's closing price is reached. 

6.1 A First Look to the Data 

The 17 stocks included in the empirical study were chosen based on two criteria: 

 Liquidity: The stocks with high liquidity have more tendency to hit the limit barriers due 

to higher volume of transactions 

 Date of introduction: As the empirical study was done in 2017, only the stocks that were 

introduced before 2013 were considered to provide 1000 data points. 

The sample covers the period 2013 - 2017. 
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6.1.1 Log-Returns Distribution 
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6.1.2 Log-Returns Main Statistics 

We display below the main statistics of the selected stocks along with the JB statistic. 

Table 3. Main statistics of daily log-returns 

 Mean SD Skewness Kurtosis 

ASSAD 0 0.003 0.290 5.331 

GIF 0 0.016 0.381 4.361 

WIFACK LEASING 0 0.005 0.141 4.473 

ESSOUKNA 0 0.006 0.334 4.102 

SITS 0 0.006 0.393 4.592 

ADWYA 0 0.006 0.185 4.989 

SOPAT 0 0.008 0.922 8.122 

TPR 0 0.004 0.413 6.730 

ARTES 0 0.004 -0.075 8.377 

POULINA 0 0.006 0.142 5.339 
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CIMENTS DE 

BIZERTE 

0 0.007 0.317 3.420 

SERVICOM 0 0.009 0.283 3.496 

ASSURANCE SALIM 0 0.008 -0.078 3.036 

TUNIS RE 0 0.007 0.467 5.274 

CARTHAGE CEMENT 0 0.007 0.561 5.155 

ENNAKL 

AUTOMOBILE 

0 0.006 0.196 5.955 

MODERN LEASING 0 0.008 0.187 3.216 

6.2 Use of Truncation Method 

Table 4. MLE estimation results for daily log-returns 

 ^ ^ 

ASSAD 0 0.000 

GIF 0 0.000 

WIFACK LEASING 0 0.001 

ESSOUKNA 0 0.001 

SITS 0 0.000 

ADWYA 0 0.000 

SOPAT 0 0.000 

TPR 0 0.000 

ARTES 0 0.000 

POULINA 0 0.000 
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CIMENTS DE BIZERTE 0 0.000 

SERVICOM 0 0.001 

ASSURANCE SALIM 0 0.001 

TUNIS RE 0 0.001 

CARTHAGE CEMENT 0 0.000 

ENNAKL AUTOMOBILE 0 0.001 

MODERN LEASING 0 0.001 

The extreme values obtained here are mainly caused by the numerical computation of ML 

estimators of    and    (a detailed assessment is given in appendix B). This is solved by 

using the symmetric truncation ML estimator as in TJB0 statistic (The use of sample mean 

and variance will have a small bias as it was remarked that the log(Return) mean is close to 

the center of truncation range ([log(1-0.069),log(1+0.069)]) which is large compared to the 

sample standard deviation. 

Table 5. Three tests results for daily log-returns normality 

Stocks JB TJB TJB0 

ASSAD 198.029 0.000000e+00 184.526 

GIF 90.109 2.478479e+13 74.669 

WIFACK LEASING 69.154 5.469668e+08 65.618 

ESSOUKNA 54.181 4.317395e+09 38.794 

SITS 106.459 9.070122e+10 84.347 

ADWYA 141.890 2.389226e+14 135.475 

SOPAT 1017.540 0.000000e+00 893.870 

TPR 490.258 3.305068e+10 463.010 

ARTES 972.870 2.321727e+12 964.586 
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POULINA 186.480 3.581983e+09 181.708 

CIMENTS DE BIZERTE 17.487 2.901209e+09 5.089 

SERVICOM 19.164 7.813152e+10 8.039 

ASSURANCE SALIM 0.667 0.000000e+00 0.018 

TUNIS RE 216.365 7.964002e+10 183.074 

CARTHAGE CEMENT 203.430 2.774102e+12 158.154 

ENNAKL AUTOMOBILE 292.572 7.272689e+13 284.540 

MODERN LEASING 5.971 8.005355e+10 1.365 

The   ̃ was significantly smaller for all the 17 daily log-returns. This mean that the modified 

JB test statistic succeeded in capturing the impact of truncation on the skewness and kurtosis. 

However no other daily log-return succeeded the   ̃test than the ones that already passed the 

JB test. 

7. Conclusion 

This paper addressed the issue of microstructure effects due to price limits. In particular, 

stocks returns showed a non-normal behavior in the case of price limits. This non-normality 

could potentially be coming from a change in investors behavior, valuation effect, a change in 

the stock returns statistical properties, value effect. Both effects occur as a consequence to 

price limitations: Unconditional equilibrium prices shadowed prices is unobservable by 

agents due to the fact that the asset valuation will be guided by the limited future prices 

assumption and the conditional equilibrium prices shadowing prices which are not observed 

by agents because they can only transact within a limited range. Thus, the estimation of the 

fair value of the asset will be complex and the existing trading strategies that focus only on 

observed prices will be inefficient. In order to analyze this joint-hypothesis, a new normality 

test is defined and takes into account the truncation effect, the TJB test. 

Our results demonstrated that most daily stock returns studied in this paper failed to pass the 

JB and TJB test. Hence the first hypothesis was confirmed as the stock returns are not normal. 

Additionally, a discovery was made: in the case of log-normal daily returns (and potentially 

other thin tailed distributions) taking into account the effect of truncation is of limited interest 

if the truncation range is wide enough and symmetric around the mean. 

Lastly, our results demonstrated a weak Value effect. This allowed us to think that the main 

behavior discrepancy comes from Valuation effect. We do think that the price limits set a 

psychological barrier for stock exchange agents for what they believe is a 'fair price'. Further 

studies are needed to analyze this behavior. 
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Appendix 

1. Calculation of the LM Statistic 

We have for         : 

 

In order to calculate the LM statistic we need to derive the gradient and hessian of F and G 

and some moments of     
   ̃   ̃   

1.1 Calculation of Gradient and Hessian of      ̃  

We have: 

 

1.1.1 Case         

 

 

1.1.2 Case      

 

with 
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1.1.3 Case      

Let 

 

We can prove that   is a neighborhood of           . For 

 

We have: 

 

 

1.2 Calculation of Gradient and Hessian of    ̃  

We have: 
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Let 

 

Where 

 

Let us denote now 

 

We can prove that        is a neighborhood of            . 

For 

 

Thus, 

 

This implies that for a , 

 

If a and b are both finite, we can write, for           

 

As  ̃         , we have 

 

With a similar construction, we can prove that 

 

As all      ̃  and        ̃  are polynomial of x, it is possible to find an explicit formulae for 

     ̃  and        ̃ . However these formulae are very complicated, we will use an integration 

algorithm to calculate the LM statistic. 

1.3 Moments of Truncated Normal Distribution 

Like the case of normal distribution, the moments of truncated normal distribution can be 

given in a recursive formula. Let    denote the k-th moment of an     
        : 
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Where       
 and       

 denotes respectively the PDF and CDF of           . We have: 

 

where Li is defined as follows: 

 

With 

. 

1.4 Calculation Script (R Language) 

Algorithm 1 

LMT_trunorm <- function(data, b0, b1, down = min(data), up = max(data)) 

{ library(tmvtnorm) N = length(data) if (is.na(b0) || is.na(b1)) { mle.fit <- mle.tmvnorm(data, 

down, up) if (is.na(b0)) { b0 = mle.fit@coef[[1]] } 

if (is.na(b1)) { b1 = mle.fit@coef[[2]] ^ 2 } } 

F1 <- function(i, x, b0, b1) { switch(i + 1, 

(x - b0) / b1, 

(x - b0) / (2 * b1 ^ 2), 

(2 * x ^ 3 - 3 * b0 * x ^ 2 + b0 ^ 3) / (6 * b1 ^ 2), 

(3 * x ^ 4 - 4 * b0 * x ^ 3 + b0 ^ 4) / (12 * b1 ^ 2) 

) 

} 

g <- function(x, b0, b1) { exp((-b0 ^ 2 + 2 * b0 * x - x ^ 2) / (2 * b1)) 

} 

G <- function(down, up, b0, b1) { integrate(function(x) g(x, b0, b1), down, up)$value 

} 

g1 <- function(i, down, up, b0, b1) { integrate(function(x) F1(i, x, b0, b1) * g(x, b0, b1), 
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down, up)$value } 

F2 <- function(i, j, x, b0, b1) { min = min(i, j) max = i + j - min switch(min+1, 

switch(max+1, 

1 / b1, 

- (x - b0) / (b1 ^ 2), 

(b0 ^ 2 - x ^ 2) / (3 * b1 ^ 2), 

(b0 ^ 3 - b0 * x ^ 3) / (3 * b1 ^ 2) 

), 

switch(max+1, 

NULL, 

- (x - b0) / (4 * b1 ^ 3), 

- (2 * x ^ 3 - 3 * b0 * x ^ 2 + b0 ^ 3) / (12 * b1 ^ 3), 

- (3 * x ^ 4 - 4 * b0 * x ^ 3 + b0 ^ 4) / (24 * b1 ^ 3) 

), 

switch(max + 1, 

NULL, 

NULL, 

- (3 * x ^ 4 - 4 * b0 * x + b0 ^ 4) / (24 * b1 ^ 3), 

- (2 * x ^ 5 - 3 * b0 * x ^ 4 + b0 ^ 3 * x ^ 2) / (3 * b1 ^ 3) 

), 

- (5 * x ^ 6 - 6 * b0 * x ^ 5 + b0 ^ 6) / (15 * b1 ^ 3) 

) 

} 

G2 <- function(i, j, down, up, b0, b1) { integrate(function(x)(F1(i, x, b0, b1) * F1(j, x, b0, b1) 

+ F2(i, j, 

x, b0, b1)) * g(x, b0, b1), down, up)$value 

} 

MCSim_trunor <- function(Fun, down, up, b0, b1) { X <- rtmvnorm(100000, b0, sqrt(b1), 

down, up) 

lapply(X, Fun) return(mean(x)) 
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} 

Exp_F2 <- function(i, j, down, up, b0, b1) { 

MCSim_trunor(function(x) F2(i, j, x, b0, b1), down, up, b0, b1) 

} 

D = c() 

I = Matrix(nrow=4, ncol=4) for (i in seq(0, 3)) { 

D[i + 1] <- sum(apply(as.matrix(Data) ,2, function(x) F1(i, x, b0, b1))) - N * g1(i, down, up, 

b0, b1) / G(down, up, b0, b1) for (j in seq(0, i)) { 

print(paste("i",i,",j",j)) 

I[i+1, j+1] = N * (Exp_F2(i, j, down, up, b0, b1) - (G2(i, j, down, up, b0, b1) * G(down, up, 

b0, b1) - g1(j, down, up, b0, b1) * g1(i, down, up, b0, b1)) / G(down, up, b0, b1) ^ 2) if (i != j) 

{ I[j+1, i+1] = I[i+1, j+1] } 

} 

} 

LMstat <- t(D)%*%inv(as.matrix(I))%*%D 

test_res <- c(LMstat,qchisq(.99, df=2),qchisq(.95, df=2),qchisq(.90, 

df=2)) names(test_res) <- c("LM statistic", "99%", "95%", "90%") return(test_res) 

} 

2. Assessment of MLE of Truncated Normal Distribution 

2.1 Simulation Methodology 

The simulation object is to assess the MLE estimator (distribution, bias, etc...). The algorithm 

detailed below made 100,000 iterations of estimating the normal parameters of 10, 100 and 

1000 (-1,1)truncated standard normal variables. As there is no computational formula to 

calculate the MLE estimators directly, we are in fact assessing the practicality of the use of 

the MLE method and not its theoretical qualities. 

The baseline is the case of    
      , then we change each time the truncation range in order 

to study its impact on the MLE performance 

2.2 Calculation Script (R Language) 

Algorithm 2 

install.packages("tmvtnorm") library("tmvtnorm") 

#set the distribution parameters 

lower = d upper = u mu = m sigma = s 



International Journal of Accounting and Financial Reporting 

ISSN 2162-3082 

2019, Vol. 9, No. 3 

http://ijafr.macrothink.org 142 

#set the simulation parameters and variables repetion = 100000 

mu_mle = sigma_mle = matrix(nrow = 1, ncol = 3) 

for (i in seq(1,repetion)) { 

for (size in seq(1:3)) { 

#Create a sample of (lower,upper)-truncated normal(mu,sigma) X <- rtmvnorm(n=10^size, 

mu, sigma, lower, upper) method <- "BFGS" 

#Estimate the parameters of the created sample using MLE mle.fit1 <- mle.tmvnorm(X, 

lower=lower, upper=upper) #Extract the estimated variables for each sample size 

mu_mle[size] <- mle.fit1@coef[1] sigma_mle[size] <- mle.fit1@coef[2] 

} 

#Append the estimated variables to the corresponding csv file for further treatments 

write.table(mu_mle, file="mu_mle.csv", append = TRUE, col.names = FALSE, sep = ",") 

write.table(sigma_mle, file="sigma_mle.csv", append = TRUE, col.names = FALSE, sep = 

",") 

} 
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