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Abstract

In response to escalating global security demands and the rapid advancement of digital
technologies, international airports are under increasing pressure to modernize their security
infrastructure without compromising operational efficiency. Abu Dhabi International Airport,
as a leading aviation hub in the Middle East, provides a strategic context for evaluating the
transformative potential of Artificial Intelligence (Al) in enhancing security performance.
This study examines the impact of Al-based security technologies on performance efficiency
at Abu Dhabi International Airport, with a focus on the mediating role of technology adoption.
Using Partial Least Squares Structural Equation Modelling (PLS-SEM), the research analyses
data collected from airport security personnel to assess both the direct and indirect effects of
Al implementation on operational performance. The findings reveal that Al-based security
technologies significantly enhance both technology adoption and performance efficiency.
Additionally, technology adoption is found to mediate the relationship between Al
technologies and performance outcomes, suggesting that the success of Al implementation
depends not only on the technology itself but also on user acceptance and integration. The
model demonstrates strong reliability, validity, and moderate explanatory and predictive
power. These results underscore the importance of aligning technological advancements with
employee readiness and adoption strategies to achieve operational excellence in high-security
environments like international airports.
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1. Introduction

The aviation industry is experiencing a significant transformation through the integration of
Artificial Intelligence (Al), particularly in the domains of security performance, operational
efficiency, and service quality. At the forefront of this evolution is Abu Dhabi International
Airport, a leading aviation hub in the Middle East. As security threats grow increasingly
complex and passenger expectations continue to rise, the adoption of Al technologies has
become essential for delivering a safe, seamless, and high-quality travel experience (Ahmed,
2025; Yigitol, 2025).

Despite global advancements in Al deployment, Abu Dhabi International Airport continues to
face critical challenges due to the limited and uneven integration of these technologies. The
airport remains susceptible to issues such as security breaches, smuggling activities, and
operational delays. Legacy systems and manual processes hinder the airport’s capacity to
respond to evolving threats in real time, thereby compromising both its security standards and
operational efficiency (Chiang, 2025; Otieno, 2025).

Al technologies present advanced, data-driven solutions to these challenges. Tools such as
intelligent surveillance systems, biometric verification, and anomaly detection enhance
situational awareness and enable early identification of potential threats (Fan et al., 2025;
Muhammad et al., 2025). For instance, facial recognition and fingerprint scanning streamline
check-in and boarding processes, reduce human error, and accelerate passenger flow (Jain et
al., 2025; Balasubramaniam et al., 2025). Machine learning algorithms embedded within
anomaly detection systems identify suspicious behaviours, allowing security personnel to
take proactive measures in real time (Khan & Khan, 2025).

Beyond security, Al significantly contributes to improving efficiency by automating
screening processes, particularly in the analysis of X-ray images for luggage inspection. This
reduces passenger wait times and alleviates congestion at checkpoints without compromising
accuracy. Additionally, predictive analytics supports operational planning by forecasting
potential disruptions and optimizing resource allocation based on real-time and historical data
(Zong & Guan, 2025; Ahmed, 2025). These Al-driven capabilities generate cost savings
while boosting overall performance outcomes (MoghadasNian & Mojavezi, 2025).

Al technologies also play an important role in enhancing service quality. Al-powered
chatbots provide real-time assistance to passengers, reducing the dependency on human staff
and improving customer satisfaction. The seamless integration of Al into security and service
functions helps reduce the physical and psychological stress often associated with airport
screening, thereby enriching the overall passenger experience (Ogunwobi, 2025).

However, the integration of Al is not without ethical and regulatory concerns. Since these
systems process vast volumes of personal and behavioural data, issues related to privacy, data
protection, and algorithmic fairness must be addressed. Abu Dhabi International Airport has
acknowledged these challenges by aligning its Al deployment with international and national
regulations, thereby reinforcing public trust in its systems (Onday, 2025).

Globally, airports and airlines have been rapidly adopting Al to improve operations. For
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example, British Airways at Heathrow Airport uses Al for dynamic flight scheduling and
resource optimization, while Harry Reid International Airport has implemented Al-powered
screening systems that integrate with advanced CT scanners to detect prohibited items
automatically, thereby improving both security and throughput (Yigitol, 2025). Although the
benefits of Al in aviation are widely recognized, there remains a lack of focused academic
research exploring how Al specifically influences performance efficiency in airports such as
Abu Dhabi International Airport. Existing literature has tended to address Al’s role in aviation
broadly, without examining its combined effect on security outcomes, operational processes,
and passenger experiences within a cohesive framework (Kim & Kim, 2025).

This study addresses that research gap by investigating the impact of Al-based security
technologies on performance efficiency at Abu Dhabi International Airport, with a particular
focus on the mediating role of technology adoption. It evaluates how biometric security,
predictive analytics, and intelligent surveillance technologies contribute to security
enhancement, operational optimization, and improved passenger experiences. Furthermore,
the study explores the ethical and regulatory implications of Al deployment in airport security,
offering insights for both local stakeholders and international aviation authorities seeking to
implement Al-based systems for sustainable security and operational excellence.

2. Literature Review

This literature review synthesizes scholarly and industry-based research to inform the
development of a conceptual framework assessing the impact of Al-based security
technologies on performance efficiency at Abu Dhabi International Airport. It critically
explores the influence of three core Al-driven technologies: biometric security, predictive
analytics, and intelligent surveillance, in reshaping airport security operations and driving
enhanced performance outcomes (Ahmed, 2025; Fan et al., 2025; Onday, 2025).

These technologies have emerged as essential components in the modernization of airport
security infrastructure. Biometric systems enhance identity verification accuracy and expedite
passenger processing, leveraging Al tools such as facial recognition and fingerprint analysis
to automate routine procedures (Jain et al., 2025; Balasubramaniam et al., 2025). Predictive
analytics facilitates proactive threat detection and intelligent resource planning by processing
vast amounts of historical and real-time data through machine learning and deep learning
algorithms (Zong & Guan, 2025; Ahmed, 2025). At the same time, intelligent surveillance
integrates computer vision and IoT technologies to enable real-time monitoring, behavioral
analysis, and automated incident response (Fan et al., 2025; Muhammad et al., 2025).

Collectively, these technologies are designed to optimize airport operations by increasing
detection accuracy, minimizing delays, and streamlining service delivery. These outcomes
directly support performance efficiency, the dependent variable in this study, which
encompasses operational speed, accuracy, and overall service quality (Kim & Kim, 2025;
Otieno, 2025; MoghadasNian & Mojavezi, 2025).

Furthermore, the review highlights the mediating role of technology adoption, which
significantly affects the extent to which Al technologies deliver measurable improvements.
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As supported by prior research, the successful implementation of Al systems is influenced not
only by technical performance but also by the level of organizational readiness and user
acceptance (Yigitol, 2025). Key factors such as system integration, staff training, acceptance,
and usage rates determine whether Al solutions are effectively embedded into daily
operations and achieve their intended outcomes. These core constructs, including Al-based
security technologies, technology adoption, and performance efficiency, form the foundation
of the proposed conceptual framework and are further examined in the following subsections.

2.1 Impact of Al-Based Security Technologies

This study identifies three core Al-based security technologies that play a pivotal role in
strengthening airport security and enhancing operational efficiency: biometric security,
predictive analytics, and intelligent surveillance. These technologies represent the cutting
edge of Al innovation in the aviation sector and are increasingly adopted for their ability to
improve threat detection, streamline security procedures, and enable real-time, data-driven
decision-making (Ahmed, 2025; Fan et al., 2025; Onday, 2025).

Each of these Al applications functions as an independent variable in this research, with a
direct influence on airport performance efficiency. Their implementation contributes to faster
processing times, heightened accuracy in risk identification, and more adaptive security
responses (Chiang, 2025; Jain et al., 2025; Zong & Guan, 2025). The following subsections
provide a comprehensive overview of each technology and its practical application within the
airport security environment, forming the conceptual foundation for the study’s analytical
framework.

2.1.1 Biometric Security Al-Technology

Biometric security plays a critical role in modern airport operations by enabling accurate,
automated identification of passengers. Technologies such as facial recognition, fingerprint
and iris scanning, and biometric-enabled boarding gates are increasingly adopted to
streamline check-in, immigration, and boarding processes. These systems significantly
improve both security precision and passenger flow efficiency (Onday, 2025; Jain et al.,
2025).

The effectiveness of biometric applications is powered by advanced Al technologies, notably
Machine Learning, Deep Learning, and Computer Vision. Machine learning algorithms
analyse biometric patterns and continuously refine identity verification processes, while deep
learning enhances the precision of facial recognition systems through high-dimensional data
analysis (Khan & Khan, 2025; Balasubramaniam et al., 2025). Computer vision supports
real-time image and video interpretation, enabling swift and accurate biometric matching
across large volumes of passengers. In addition, Al-driven anomaly detection strengthens
system integrity by identifying fraudulent identities or unusual behaviours that may pose
security threats (Ogunwobi, 2025).

Together, these Al-driven innovations contribute to more reliable, efficient, and secure airport
environments, reinforcing the integrity of passenger verification processes while promoting
seamless travel experiences.
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2.1.2 Predictive Analytics AI-Technology

Predictive analytics is a key component in enhancing airport security by enabling proactive
risk management and data-driven operational decision-making. In airport environments, it is
utilized to forecast security threats, analyse passenger behaviours, and optimize the allocation
of personnel and technological resources. By anticipating potential disruptions before they
occur, predictive analytics improves security responsiveness and supports uninterrupted
airport operations (Ahmed, 2025; Yigitol, 2025).

This capability is underpinned by several advanced Al technologies, including Machine
Learning, Deep Learning, Reinforcement Learning, and the Internet of Things (IoT). Machine
learning and deep learning algorithms process vast amounts of historical and real-time data to
detect subtle patterns and generate accurate forecasts. Reinforcement learning contributes by
enabling adaptive strategies based on trial-and-error learning from environmental interactions,
especially in complex security scenarios (Zong & Guan, 2025). Meanwhile, IoT devices
enhance situational awareness by continuously collecting and transmitting operational and
environmental data across airport systems.

These Al-driven technologies elevate predictive analytics from a reactive tool to a strategic
asset in airport security. Intelligent forecasting enables authorities to anticipate emerging
threats and operational bottlenecks, while anomaly detection ensures rapid identification of
irregular patterns in passenger behaviour or system performance (Ahmed, 2025; Zong &
Guan, 2025). Behaviour modelling supports more nuanced risk assessments, and real-time
data-driven decision-making allows for agile, context-aware responses to dynamic airport
conditions (Yigitol, 2025). As a result, predictive analytics plays an indispensable role in
creating a more secure, efficient, and resilient airport ecosystem.

2.1.3 Intelligent Surveillance Al-Technology

Intelligent surveillance has become a cornerstone of next-generation airport security systems,
offering real-time monitoring, automated threat detection, and enhanced perimeter control.
These systems go beyond traditional CCTV by incorporating Al capabilities to detect
suspicious behaviours, unauthorized access, and unattended objects, thereby enabling faster
and more accurate security responses (Fan et al., 2025).

This advancement is made possible through the integration of Computer Vision, Machine
Learning, Internet of Things (IoT), and Robotics. Computer vision enables video feeds to be
analysed in real time, identifying objects, facial features, or unusual movements. Machine
learning algorithms continuously improve detection accuracy by learning from surveillance
data and adapting to new patterns. loT devices, such as smart sensors and connected cameras,
facilitate the seamless collection and transmission of surveillance data across various airport
zones. Robotics contributes through the deployment of autonomous patrol systems, which
can monitor restricted areas and respond to incidents with minimal human intervention
(Muhammad et al., 2025). Leveraging these Al technologies, intelligent surveillance systems
significantly enhance the airport’s ability to maintain situational awareness, prevent
intrusions, and ensure the safety of passengers, staff, and infrastructure.
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2.2 Airport Al-Performance Efficiency

Performance efficiency in the airport context refers to the speed, accuracy, and effectiveness
with which airport operations and security procedures are conducted. It encompasses key
outcomes such as reduced passenger processing times, enhanced accuracy in security
screening, minimized operational delays, and overall improvement in service quality. These
performance metrics are critical to maintaining high levels of passenger satisfaction, seamless
airline coordination, and a strong reputation for safety and reliability (Kim & Kim, 2025;
Otieno, 2025).

The integration of artificial intelligence technologies particularly in biometric identification,
predictive analytics, and intelligent surveillance has emerged as a major driver of
performance efficiency in modern airports. For instance, Al-powered identity verification
systems streamline check-in and boarding processes by significantly reducing queuing times.
Predictive analytics enable airport authorities to anticipate passenger flow patterns and
operational disruptions, allowing for the timely deployment of resources (Chiang, 2025).
Furthermore, intelligent surveillance systems powered by Al enhance situational awareness
and enable rapid response to security threats, thereby minimizing operational standstills and
improving overall safety (MoghadasNian & Mojavezi, 2025).

Collectively, these technological advancements optimize airport workflows, reduce reliance
on manual interventions, and support the delivery of a seamless, secure, and customer-centric
travel experience. Enhancing performance efficiency through AI not only reinforces the
airport’s competitive edge but also aligns with broader strategic objectives such as
operational resilience, sustainability, and service excellence in the global aviation industry.

2.3 Mediating Role of Al-Technology Adoption

Technology adoption serves as a crucial mediating variable in the relationship between
Al-based security technologies and performance efficiency at Abu Dhabi International
Airport. The effectiveness of Al solutions such as biometric security, predictive analytics, and
intelligent surveillance depends not only on their technical sophistication but also on the
degree to which these technologies are successfully adopted by airport personnel, systems,
and processes (Ahmed & Sandhu, 2025; Jalil et al., 2025).

Key dimensions of technology adoption include system integration, staff acceptance,
adequacy of training, and actual usage rates. High levels of adoption indicate a well-executed
implementation strategy, where Al technologies are embedded into routine airport workflows
and supported by personnel who are confident and capable of using them. Conversely, poor
adoption often results in underutilized tools, process inefficiencies, and limited gains in
performance (Liu, 2025).

In the specific context of Abu Dhabi International Airport, technology adoption plays a
central role in bridging the gap between innovation and operational outcomes. It transforms
Al from a theoretical solution into a practical tool for achieving measurable improvements in
security, efficiency, and service delivery. When staff attitudes toward Al are positive and
supported by training and readiness, the likelihood of effective usage increases significantly,
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enhancing the overall impact of Al deployment (Emon & Khan, 2025; Liu, 2025).

Ultimately, the adoption of Al technologies serves as the mechanism through which digital
transformation efforts are translated into sustainable improvements in airport performance. It
ensures that Al investments lead not only to enhanced technological capacity but also to
tangible value in daily operations, contributing to long-term organizational success (Ahmed
& Sandhu, 2025; Jalil et al., 2025).

2.4 Formulation of the Conceptual Framework

The conceptual framework presented in Figure 1 shows the conceptual framework illustrating
the mediating role of technology adoption in the relationship between Al-based security
technologies and performance efficiency at Abu Dhabi International Airport. This framework
integrates perspectives from established organizational and technological theories to explain
how the successful implementation and internalization of Al tools contribute to measurable
improvements in airport operations (Xiong et al., 2025; Suradi, 2025).

At the core of the model are three Al-based security technologies: biometric security,
predictive analytics, and intelligent surveillance, which serve as the independent variables.
These technologies have been widely recognized for their potential to enhance security
protocols, automate routine tasks, and support real-time decision-making in complex
environments such as airports. However, consistent with the
Technology-Organization-Environment (TOE) framework, the presence of these technologies
alone is insufficient to ensure performance gains. Instead, organizational and environmental
factors play a critical role in shaping the extent and effectiveness of Al adoption (Suradi,
2025).

To address this, the model introduces technology adoption as a mediating variable, capturing
how Al tools are integrated into daily operations. This construct is grounded in the
Technology Acceptance Model (TAM), which posits that user perceptions of usefulness and
ease of use influence their willingness to engage with new technologies (Wang et al., 2025;
Al-Momani & Ramayah, 2025). In this study, technology adoption is assessed through key
indicators such as system integration, staff acceptance, training adequacy, and actual usage
rates. These indicators reflect both the organizational readiness and the behavioral
dimensions necessary to translate technological capacity into operational efficiency.

The dependent variable, performance efficiency, reflects the expected improvements in
operational outcomes resulting from successful Al adoption. These include reduced passenger
processing times, improved accuracy in threat detection, minimized delays, and enhanced
overall service quality. Importantly, the model's focus on internal capability and strategic
alignment resonates with the Resource-Based View (RBV) of the firm, which emphasizes that
sustainable competitive advantage arises not merely from acquiring external resources, but
from effectively integrating them with internal competencies and routines (Malhotra et al.,
2025; Sandeep et al., 2025).

This conceptual model synthesizes insights from TAM, TOE, and RBV to provide a
comprehensive, theory-driven explanation of how Al technologies can transform airport
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operations. It suggests that while Al tools hold transformative potential, their full impact is
realized only when mediated by effective organizational adoption and alignment practices.
This integrated approach provides a practical framework for understanding the dynamics of
digital transformation in airport security operations and offers strategic guidance for
enhancing performance in similar aviation contexts (Xiong et al., 2025).

Technology Adoption

Indirect * System integration Indirect
* Staff acceptance
* Training adequacy
* Actual usage rates

Mediator

Performance Efficiency
* Reduced processing times,
Direct > * Greater accuracy in threat
identification,
* Fewer delays,
Enhanced service delivery

Al-based security
technologies

* Biometric security

* Predictive Analytics

* Intelligent surveillance

Independent variable Dependent variable

IMPACT OF Al SECURITY TECHNOLOGY ON PERFORMANCE
EFFICIENCY IN ABU DHABI AIRPORT

Figure 1. Established Conceptual Model

3. Methodology

This study employs a quantitative research design grounded in the established conceptual
framework, which guided both the data collection and modelling procedures. A structured
questionnaire survey was developed to measure the key constructs defined in the framework.
The survey instrument was organized into sections corresponding to the independent
variables (Al-based security technologies), the mediating variable (technology adoption), and
the dependent variable (performance efficiency). Items were rated using a five-point Likert
scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree), consistent with established
norms in behavioural and social science research (Cohen, 1988).

The target population consisted of airport security professionals employed at Abu Dhabi
International Airport. To ensure relevant expertise, the study targeted individuals with a
minimum of two years of full-time experience in roles involving the implementation or use of
Al-based security technologies. A simple random sampling method was adopted to ensure a
representative and unbiased sample of the estimated population of 3,700 eligible
professionals. Ultimately, 351 valid responses were collected and used for analysis.

The data were analysed using Partial Least Squares Structural Equation Modelling
(PLS-SEM) through SmartPLS software. PLS-SEM was chosen over covariance-based SEM
(CB-SEM) due to several reasons. First, PLS-SEM is particularly suitable for exploratory
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research and theory development, which aligns with the study’s aim of proposing and
empirically testing a new conceptual framework in the under-researched context of Al
adoption in airport security (Hair et al., 2017; Sarstedt et al., 2020). Second, PLS-SEM is
robust with smaller to medium sample sizes and is ideal for models involving multiple
constructs and mediation effects, as in this study (Hair et al., 2019; Memon et al., 2021).
Third, the approach is favoured when the primary objective is prediction and explanation of
variance in key dependent variables, which fits the focus on performance efficiency (Zeng et
al., 2021). Moreover, PLS-SEM accommodates non-normal data distributions and allows for
formative and reflective constructs, offering modelling flexibility that is essential in
real-world organizational research (Henseler, Ringle, & Sarstedt, 2015).

The analysis followed a two-stage approach. The first stage involved assessing the
measurement model to establish the reliability and validity of each construct. Internal
consistency was evaluated through Cronbach’s alpha and composite reliability, while
convergent validity was measured via average variance extracted (AVE). Discriminant
validity was confirmed using the Heterotrait-Monotrait ratio (HTMT), which is recognized as
a robust criterion in variance-based SEM (Henseler et al., 2015).

In the second stage, the structural model was assessed to determine the significance of
hypothesized relationships, the magnitude of path coefficients, and the model’s predictive
relevance using R? and Q? statistics. The model was refined iteratively until acceptable levels
of fit, reliability, and validity were achieved, ensuring a robust empirical representation of the
conceptual framework (Aburumman et al., 2022; Hair et al., 2019).

Integrating PLS-SEM as the primary analytical technique, this study ensures methodological
rigor and generates meaningful insights into the mediating role of technology adoption in the
relationship between Al-based security innovations and airport performance outcomes.

4. Results of Analysis

The results of the PLS-SEM analysis are structured into two major stages: the outer model
evaluation (measurement model) and the inner model evaluation (structural model). The outer
model focuses on assessing the quality of the measurement instruments by examining the
relationships between latent constructs and their associated observed indicators. This includes
comprehensive testing of construct reliability using Cronbach’s Alpha and Composite
Reliability (CR) (Hair et al., 2019), evaluation of convergent validity through Average
Variance Extracted (AVE) (Henseler, Ringle, & Sarstedt, 2015), and assessment of
discriminant validity using both the Fornell-Larcker criterion and the Heterotrait-Monotrait
(HTMT) ratio (Aburumman et al., 2022; Henseler et al., 2015).

Once the outer model satisfied the required validity and reliability standards, attention shifted
to the inner model to test the hypothesized relationships between the constructs. This stage
examined the path coefficients, t-values, and p-values to determine the significance and
strength of each proposed relationship (Sarstedt et al., 2020). Additionally, the coefficient of
determination (R?) was evaluated to assess the model's explanatory power, while
Stone-Geisser’s Q? values were used to test predictive relevance (Hair et al., 2019; Zeng et al.,
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2021). The model also examined mediation effects, particularly the role of technology

adoption in the relationship between Al-based security technologies and performance
efficiency (Sarstedt et al., 2020).

4.1 PLS Algorithm and Outer Model Evaluation

The Partial Least Squares Structural Equation Modelling (PLS-SEM) algorithm was applied
using SmartPLS software to estimate the path coefficients and assess the measurement (outer)
model. This evaluation focused on examining the relationships between observed indicators
and their corresponding latent constructs. PLS-SEM was selected for its robustness in
modelling complex relationships involving latent variables and its suitability for exploratory
research and predictive modelling (Hair et al., 2017; Hair et al.,, 2019). It is especially
beneficial in contexts where the primary goal is theory development and where data

distributions may not meet strict normality assumptions (Memon et al., 2021; Zeng et al.,
2021).

The outer model assessment began with analysing indicator loadings, all of which exceeded
the recommended threshold of 0.70. This indicates that each indicator strongly contributed to
its respective construct (Hair et al., 2019). Construct reliability was then evaluated using both
Cronbach’s Alpha and Composite Reliability (CR), with all constructs demonstrating values
above 0.70, confirming adequate internal consistency (Hair et al., 2017).

Convergent validity was assessed through Average Variance Extracted (AVE), with all
constructs achieving AVE scores above 0.50, thereby indicating that a substantial proportion
of indicator variance was captured by the underlying construct (Henseler, Ringle, & Sarstedt,
2015). To evaluate discriminant validity, both the Fornell-Larcker criterion and the
Heterotrait-Monotrait (HTMT) ratio were employed. The Fornell-Larcker criterion confirmed
that the square root of each construct’s AVE was greater than its correlation with any other
construct. Additionally, HTMT values for all construct pairs remained below the conservative
threshold of 0.85, supporting strong discriminant validity (Henseler et al., 2015; Aburumman
etal., 2022).

These assessments demonstrate that the measurement model meets the key criteria for
reliability, convergent validity, and discriminant validity, thereby ensuring that the constructs
used in the study are both statistically sound and conceptually distinct. Figure 2 shows the
conceptual model after the PLS algorithm procedure was completed, depicting the
standardized path coefficients and the structural relationships among the latent variables
(Sarstedt et al., 2020).
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Figure 2. The model after PLS Algorithm procedure

Figure 2 illustrates the structural model output after applying the PLS algorithm. The model
includes three latent constructs: Al-Based Security Technologies (AIST), Technology
Adoption (TA), and Performance Efficiency (PE). The path coefficients indicate that AIST
has a significant positive effect on both TA (0.619) and PE (0.227), while TA also positively
influences PE (0.525), suggesting a mediating role. The R? values show that AIST explains
38.3% of the variance in TA and, together with TA, explains 47.5% of the variance in PE.
Indicator loadings for all constructs exceed the recommended threshold of 0.70, supporting
the reliability and validity of the measurement model.

Table 1. Construct reliability and convergent validity

Constructs Cronbach’s alpha Average variance extracted (AVE)
Al-Based Security Technologies (AIST) 0.835 0.752
Performance Efficiency (PE) 0.878 0.733
Technology Adoption (TA) 0.875 0.728

Table 1 presents the results for construct reliability and convergent validity of the
measurement model. The Cronbach’s alpha values for all constructs, Al-Based Security
Technologies (AIST) (0.835), Performance Efficiency (PE) (0.878), and Technology
Adoption (TA) (0.875), exceed the recommended threshold of 0.70, indicating strong internal
consistency reliability. Additionally, the Average Variance Extracted (AVE) values for all
constructs are above the acceptable benchmark of 0.50, with AIST at 0.752, PE at 0.733, and
TA at 0.728. These results confirm satisfactory convergent validity, showing that the
indicators effectively represent their respective constructs.
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Table 2. Heterotrait-Monotrait (HTMT) ratios

Al-Based Security Performance Technology
Technologies (AIST) Efficiency (PE) Adoption (TA)
Al-Based Security Technologies
(AIST)
Performance Efficiency (PE) 0.645
Technology Adoption (TA) 0.724 0.757

Table 2 presents the Heterotrait-Monotrait (HTMT) ratios used to assess discriminant validity
among the constructs in the model. All HTMT values fall below the recommended threshold
of 0.85, indicating that the constructs are empirically distinct from one another. Specifically,
the HTMT value between Al-Based Security Technologies (AIST) and Performance
Efficiency (PE) is 0.645, between AIST and Technology Adoption (TA) is 0.724, and between
PE and TA is 0.757. These results confirm that discriminant validity is established within the
measurement model.

Table 3. Fornell-Larcker criterion

Al-Based Security Performance Technology
Technologies (AIST) Efficiency (PE) Adoption (TA)
Al-Based Security 0.867
Technologies (AIST)
Performance Efficiency (PE)  0.552 0.856
Technology Adoption (TA) 0.619 0.666 0.853

Table 3 presents the Fornell-Larcker criterion results, which are used to assess discriminant
validity by comparing the square root of the Average Variance Extracted (AVE) for each
construct with the correlations between constructs. For discriminant validity to be established,
the square root of each construct's AVE (shown on the diagonal) should be greater than its
correlations with other constructs (off-diagonal values). As shown, the square root of AVE for
Al-Based Security Technologies (AIST) is 0.867, which is higher than its correlations with
Performance Efficiency (0.552) and Technology Adoption (0.619). Similarly, Performance
Efficiency (PE) has a square root AVE of 0.856, exceeding its correlations with AIST (0.552)
and TA (0.666). Finally, Technology Adoption (TA) has a square root AVE of 0.853, which is
greater than its correlations with AIST (0.619) and PE (0.666). These results confirm that all
constructs exhibit satisfactory discriminant validity according to the Fornell-Larcker
criterion.

4.2 PLS Algorithm and Model Fit

The model fit was evaluated at the construct level using two key indicators: R? (coefficient of
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determination) and f* (effect size). The R? value represents the proportion of variance in an
endogenous construct that can be explained by its associated exogenous variables. It provides
a measure of the model’s explanatory power (Hair et al., 2019; Sarstedt et al., 2020). The f
value was used to assess the effect size of each exogenous construct by measuring its
individual contribution to the R? value of the corresponding endogenous construct. According
to Cohen (1988), > values of 0.02, 0.15, and 0.35 represent small, medium, and large effects
respectively.

Table 4. R-square values

R-square
Performance Efficiency (PE) 0.475
Technology Adoption (TA) 0.383

Table 4 presents the R? (R-square) values, which indicate the proportion of variance in the
endogenous constructs explained by their respective predictor variables. The R? value for
Technology Adoption (TA) is 0.383, meaning that 38.3% of the variance in TA is explained
by Al-Based Security Technologies (AIST). The R? value for Performance Efficiency (PE) is
0.475, indicating that 47.5% of the variance in PE is jointly explained by AIST and TA.
According to commonly accepted thresholds, these values suggest a moderate level of
explanatory power, confirming that the model has a reasonable ability to predict the
endogenous constructs.

Table 5. f-square values

Al-Based Security Performance Technology
Technologies (AIST) Efficiency (PE) Adoption (TA)
Al-Based Security Technologies (AIST) 0.061 0.622
Performance Efficiency (PE)
Technology Adoption (TA) 0.324

Table 5 presents the > effect size values, which indicate the magnitude of the impact that one
latent construct has on another within the structural model. According to Cohen's (1988)
guidelines, f* values of 0.02, 0.15, and 0.35 represent small, medium, and large effects,
respectively. In this model, Al-Based Security Technologies (AIST) has a large effect on
Technology Adoption (TA) with an f> value of 0.622, and a small effect on Performance
Efficiency (PE) with a value of 0.061. Additionally, Technology Adoption (TA) shows a
medium effect on Performance Efficiency (PE) with an > value of 0.324. These results
suggest that AIST strongly influences the adoption of technology, and both AIST and TA play
meaningful roles in enhancing performance efficiency.
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4.3 Bootstrapping and Hypothesis Testing

Bootstrapping is a critical procedure in Partial Least Squares Structural Equation Modelling
(PLS-SEM) that is used to assess the statistical significance of both direct and indirect
relationships within the structural model. This non-parametric resampling method generates a
large number of subsamples typically 5,000 or more, by randomly drawing observations from
the original dataset with replacement (Hair et al., 2017; Sarstedt et al., 2020). Each subsample
is used to re-estimate the model, allowing for the computation of standard errors, confidence
intervals, and p-values for each path coefficient.

The technique is particularly useful in evaluating complex models with latent constructs, as it
does not rely on the assumption of normal data distribution. In the present study,
bootstrapping was employed to test the hypothesized relationships between Al-based security
technologies, the mediating variable of technology adoption, and the outcome variable,
performance efficiency. The statistical outputs from this process including t-statistics,
p-values, and confidence intervals that indicate whether the hypothesized paths are
statistically significant.

TA_AUR TASA TASI TA_TA

oooo 0000 0000 454

0.383

Technology Adoption (TA)
0.000 0.000
PE_ESD
AIST_BS L 0.000 oE D
0.000_ N ~_oo00 T
ASTIS 0,000+ 0.001 v T0.000-p
0000 PE_GATI
b 0.000
AIST_PA . . Performance Efficiency (PE)
Al-Based Security Technologies (AIST) <y

PE_RPT

Figure 3. Graphical output of the bootstrapping procedure

Figure 3 illustrates that Al-based security technologies (AIST) have a significant direct effect
on both technology adoption (TA) and performance efficiency (PE), with TA also showing a
strong direct influence on PE. All path relationships and indicators are statistically significant
(p <0.001), confirming both direct and mediated effects within the model.

Table 6. Path strength and level of significance

Direct relationship Path strength P values
Al-Based Security Technologies (AIST) -> Performance Efficiency (PE) 0.227 0.001
Al-Based Security Technologies (AIST) -> Technology Adoption (TA) 0.619 0.000
Technology Adoption (TA) -> Performance Efficiency (PE) 0.525 0.000
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Table 6 presents the results of the structural model analysis, highlighting the path strength
and level of significance for the direct relationships between the key constructs. The findings
indicate that Al-based security technologies (AIST) have a significant positive effect on both
performance efficiency (PE) (path coefficient = 0.227, p = 0.001) and technology adoption
(TA) (path coefficient = 0.619, p = 0.000). Additionally, technology adoption (TA) has a
strong and significant positive effect on performance efficiency (PE) (path coefficient = 0.525,
p = 0.000). All relationships are statistically significant at the 0.01 level, indicating strong
support for the proposed model.

Table 7. Path strength and level of significance

Indirect relationship Path coefficient P values

Al-Based Security Technologies (AIST) -> Technology Adoption (TA) -> 0.325 0.000
Performance Efficiency (PE)

Table 7 presents the result of the indirect relationship analysis, specifically examining the
mediating effect of technology adoption (TA) on the relationship between Al-based security
technologies (AIST) and performance efficiency (PE). The path coefficient for the indirect
effect is 0.325, with a p-value of 0.000, indicating a statistically significant mediation. This
suggests that technology adoption plays a crucial role in strengthening the influence of
Al-based security technologies on performance efficiency, confirming its role as a significant
mediating variable in the conceptual model.

4.4 Blindfolding and Predicative Relevance

Predictive relevance evaluates a model’s capacity to forecast the values of endogenous
constructs accurately. In Partial Least Squares Structural Equation Modeling (PLS-SEM), this
is assessed using the blindfolding procedure, which involves the systematic omission and
prediction of data points to estimate how well the model performs on new or missing data
(Hair et al., 2019; Memon et al., 2021).

Two main parameters are generated through this technique: Cross-Validated Communality
(CCVC) and Cross-Validated Redundancy (CCVR). The CCVC focuses on the quality of the
measurement model by assessing how well each construct’s indicators can be reconstructed.
The CCVR, in contrast, evaluates the predictive relevance of the structural model by
incorporating both measurement and structural components (Sarstedt et al., 2020;
Aburumman et al., 2022).
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Table 8. CCVR values of the model

SSO SSE Q? (=1-SSE/SSO)
Al-Based Security Technologies (AIST) 1194.000 1194.000 0.000
Performance Efficiency (PE) 1592.000 1051.239  0.340
Technology Adoption (TA) 1592.000 1155.117 0.274

Table 8 presents the Cross-Validated Redundancy (Q?) values obtained through blindfolding
to assess the model’s predictive relevance. The Q? value for Performance Efficiency (PE) is
0.340, and for Technology Adoption (TA) is 0.274, both exceeding zero, indicating
satisfactory predictive relevance for these constructs. In contrast, the Q? value for Al-Based
Security Technologies (AIST) is 0.000, suggesting no predictive relevance for this exogenous
construct, which is expected as predictive relevance primarily applies to endogenous
constructs.

Table 9. CCVM values of the model

SSo SSE Q2 (=1-SSE/SSO)
Al-Based Security Technologies (AIST) 1194.000 617.014 0.483
Performance Efficiency (PE) 1592.000 731.536 0.540
Technology Adoption (TA) 1592.000 742390 0.534

Table 9 displays the Cross-Validated Communality (Q?) values, which measure the quality of
the measurement model in predicting the indicators of each construct. The Q? values for
Performance Efficiency (PE) (0.540), Technology Adoption (TA) (0.534), and Al-Based
Security Technologies (AIST) (0.483) are all well above zero, indicating strong communality
and confirming that the model has good predictive accuracy at the indicator level for all
constructs.

Based on Table 8 and Table 9, it can be concluded that the model demonstrates satisfactory
predictive relevance and communality for its key endogenous constructs. Specifically, the Q?
values from Table 8 show that Performance Efficiency (0.340) and Technology Adoption
(0.274) possess acceptable levels of predictive relevance, while Al-Based Security
Technologies, being an exogenous construct, understandably shows no predictive relevance
(Q*=0.000).

Additionally, the high Q? values in Table 9 for Al-Based Security Technologies (0.483),
Performance Efficiency (0.540), and Technology Adoption (0.534) indicate that the model
also has strong predictive accuracy at the indicator level. Overall, the results support the
model’s robustness in predicting and explaining the variance in the observed data.
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4.5 Validated Framework and Discussion

This section presents the validated framework developed from the modelling analysis of the
conceptual framework, based on the empirical data processed using SmartPLS software, as
illustrated in Figure 4.

e Technology Adoption
Indirect; beta=0.325 Indirect; beta=0.325
Mediator
i set?unty = Performance Efficiency
technologies Direct; beta = 0.227
Independent variable Dependent variable

IMPACT OF Al SECURITY TECHNOLOGY ON PERFORMANCE
EFFICIENCY IN ABU DHABI AIRPORT

Figure 4. Validated framework

The validated conceptual framework illustrated in Figure 4 captures the structural
relationship among Al-Based Security Technologies, Technology Adoption, and Performance
Efficiency within the operational context of Abu Dhabi International Airport. This framework
demonstrates both direct and indirect pathways, reinforcing the pivotal role of technology
adoption in mediating the relationship between AI deployment and improved performance
outcomes.

Al-Based Security Technologies, including biometric verification, intelligent surveillance,
and predictive analytics, are shown to have a direct positive effect on Performance Efficiency,
with a standardized path coefficient (B = 0.227). This finding is consistent with previous
studies highlighting the ability of Al tools to streamline airport operations and improve threat
detection and passenger flow (Jain et al.,, 2025; Ahmed, 2025; Yigitol, 2025). These
technologies independently contribute to faster screening, enhanced situational awareness,
and optimized resource allocation, supporting findings from Otieno (2025) and Kim & Kim
(2025), who emphasized Al’s role in enhancing terminal efficiency and customer satisfaction.

Importantly, the model also confirms a significant indirect pathway from Al-Based Security
Technologies to Performance Efficiency through the mediating role of Technology Adoption
(B = 0.325). This aligns with earlier research by Emon and Khan (2025), Liu (2025), and
Ahmed & Sandhu (2025), who demonstrated that user acceptance, readiness, and
organizational integration significantly determine the extent to which Al technologies can
deliver intended outcomes. The mediation effect underscores that technological innovation
alone does not guarantee performance improvement; it must be supported by organizational
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systems, adequate training, and a culture that promotes adoption.

Furthermore, the inclusion of Technology Adoption as a mediating construct is grounded in
both the Technology Acceptance Model (TAM) and the
Technology-Organization-Environment (TOE) framework. These theories posit that
perceived usefulness, ease of use, and organizational readiness shape adoption behavior,
which in turn influences performance (Wang et al., 2025; Al-Momani & Ramayah, 2025;
Suradi, 2025). The Resource-Based View (RBV) also supports this conclusion by asserting
that sustainable competitive advantages stem not merely from acquiring advanced
technologies but from how well they are integrated with internal capabilities and human
capital (Malhotra et al., 2025; Sandeep et al., 2025).

This validated framework provides empirical evidence that effective performance outcomes
in Al-driven security environments are best achieved through a dual approach: deploying
advanced Al technologies and cultivating strong adoption mechanisms. These results
contribute to the growing literature on digital transformation in airport operations by
integrating technology and human-centric implementation strategies into a unified
explanatory model.

5. Conclusion and Implications

This study examined the impact of Al-Based Security Technologies (AIST) on
employee-related performance outcomes, specifically Technology Adoption (TA) and
Performance Efficiency (PE), at Abu Dhabi International Airport using Partial Least Squares
Structural Equation Modelling (PLS-SEM). The empirical results confirm that AIST
significantly and positively influences both TA and PE. Moreover, TA has a substantial direct
effect on PE and also serves as a significant mediating variable, enhancing the impact of
AIST on performance outcomes. These findings highlight the importance of promoting user
readiness and effective integration when implementing Al-based solutions in operational
settings.

The measurement model demonstrated strong psychometric properties, with all constructs
exceeding the recommended thresholds for indicator reliability, internal consistency
(Cronbach’s alpha), convergent validity (AVE), and discriminant validity (Fornell-Larcker
and HTMT criteria). The structural model exhibited moderate explanatory power, with R?
values of 0.383 for TA and 0.475 for PE, and predictive relevance confirmed by Q? values
above the 0.20 benchmark. Effect size analysis indicated that AIST had a large effect on TA,
a small but meaningful effect on PE, and that TA exerted a medium effect on PE.

The practical implications of this study suggest that organizations, particularly those
operating in high-security environments such as airports, should not only invest in advanced
Al technologies but also focus on adoption strategies. These include providing targeted
training, enhancing employee engagement, and ensuring organizational readiness to
incorporate Al tools into core operational processes. Such measures are essential to convert
technological investment into measurable performance outcomes.

From a theoretical perspective, the study contributes to the literature on Al implementation by
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establishing Technology Adoption as a key mediating variable. It supports the integration of
models such as the Technology = Acceptance Model (TAM), the
Technology-Organization-Environment (TOE) framework, and the Resource-Based View
(RBV), offering a comprehensive understanding of how Al technologies influence
organizational outcomes when combined with human and process factors.

Future research should explore additional mediating or moderating variables, such as
organizational culture, digital literacy, or trust in Al systems, to expand the model’s
explanatory capacity. Validation across different sectors and geographical contexts would also
enhance the generalizability and practical utility of the findings.

References

Aburumman, O. J., Omar, K., Al Shbail, M., & Aldoghan, M. (2022, March). How to deal
with the results of PLS-SEM (pp. 1196-1206)? International conference on business and
technology. Cham: Springer International Publishing.

Ahmed, A., & Sandhu, K. Y. (2025). Artificial Intelligence to Business Performance: A
Mediation Model of Technology Adoption Readiness and Corporate Governance. Journal of
Asian Development Sudies, 14(2), 1563-1577.

Ahmed, W. (2025). Artificial Intelligence in Aviation: A Review of Machine Learning and
Deep Learning Applications for Enhanced Safety and Security. Intelligence, 3, 100013.

Al-Momani, A. A. M., & Ramayah, T. (2025). Analysing EHR technology adoption: a
comparative review of the technology acceptance model in different economic contexts. In
Intelligence-Driven Circular Economy: Regeneration Towards Sustainability and Social
Responsibility (Volume 1, pp. 327-344).

Balasubramaniam, S., Kadry, S., Prasanth, A., & Dhanaraj, R. K. (Eds.). (2025). Al Based
Advancements in Biometrics and Its Applications. CRC Press/Taylor & Francis Group.

Chiang, C. H. (2025). Al in airport operations: Enhancing competitiveness and satisfaction.
Enterprise Information Systems, 19(3—4), 2454003.

Cohen, J. (1988). Satistical Power Analysis for the Behavioural Sciences (2nd ed.).
Lawrence Erlbaum Associates.

Emon, M. M. H., & Khan, T. (2025). The mediating role of attitude towards the technology in
shaping artificial intelligence usage among professionals. Telematics and Informatics Reports,
17, 100188.

Fan, W. Q., Ismail, A. S., Mohammed, F., & Mukred, M. (2025). Al-driven smart city
security and surveillance system: A bibliometric analysis. In Current and Future Trends on Al
Applications (Volume 1, pp. 305-328). Springer Nature Switzerland.

Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or
CB-SEM: updated guidelines on which method to use. International Journal of Multivariate
Data Analysis, 1(2), 107-123.

305 http://ijssr.macrothink.org



ISSN 2327-5510

\\ M ac rot h i n k International Journal of Social Science Research
A Institute ™ 2025, Vol. 13, No. 3

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report
the results of PLS-SEM. European Business Review, 31(1), 2-24.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant
validity in variance-based structural equation modelling. Journal of the Academy of
Marketing Science, 43(1), 115-135.

Jain, M. C., Bhawani, M. H., & Saxena, M. A. (2025). Enhancing biometric security with
artificial intelligence: A cutting-edge approach. |JSAT-International Journal on Science and
Technology, 16(1).

Jalil, M. F., Lynch, P., Marikan, D. A. B. A., & Isa, A. H. B. M. (2025). The influential role of
artificial intelligence (AI) adoption in digital value creation for small and medium enterprises
(SMEs): does technological orientation mediate this relationship?. Al & SOCIETY, 40(3),
1875-1896.

Khan, F. A., & Khan, M. K. (2025). Generative Al and Deepfake Detection in Biometric
Systems. Cognitive Computation, 17(3), 112.

Kim, Y., & Kim, C. (2025). A Study on the Efficiency of Airport Considering User
Satisfaction. Journal of Korean Society for Quality Management, 53(2), 221-236.

Liu, N. (2025). Exploring the factors influencing the adoption of artificial intelligence
technology by university teachers: the mediating role of confidence and Al readiness. BMC
Psychology, 13(1), 311.

Malhotra, G., Dandotiya, G., Shaiwalini, S., Khan, A., & Homechaudhuri, S. (2025).
Benchmarking for organisational competitiveness: a resource-based view perspective.
Benchmarking: An International Journal, 32(3), 943-964.

Memon, M. A., Ramayah, T., Cheah, J. H., Ting, H., Chuah, F., & Cham, T. H. (2021).
PLS-SEM statistical programs: a review. Journal of Applied Sructural Equation Modelling,
5(1), 1-14.

MoghadasNian, S., & Mojavezi, S. (2025). KPI-driven decision making in airport services:
Enhancing operational efficiency, customer satisfaction, and sustainability.

Muhammad, S. K., Ansari, T. A., Shabbir, B., Almagharbeh, W. T., Rehman, A., Arjmand, R.,
& Ghulam, A. (2025). The role of artificial intelligence in public health surveillance: A
post-pandemic perspective. Insights-Journal of Life and Social Sciences, 3(3), 74—80.

Ogunwobi, E. (2025). Advancing Financial Security Using Behavioural Biometrics and
Al-Driven Authentication. International Journal of Research Publication and Reviews, 6(3),
720-727.

Onday, O. (2025). Al-Driven Security System for Biometric Surveillance. In Handbook of
Al-Driven Threat Detection and Prevention (pp. 290-307). CRC Press.

Otieno, S. (2025). Optimizing Airport Operations: A Study on Passenger Flow and Terminal
Efficiency. OTS Canadian Journal, 4(6), 86—96.

306 http://ijssr.macrothink.org



ISSN 2327-5510

\ M ac rot h i n k International Journal of Social Science Research
A Institute ™ 2025, Vol. 13, No. 3

Sandeep, M. M., Lavanya, V., & Balakrishnan, J. (2025). Leveraging Al in recruitment:
enhancing intellectual capital through resource-based view and dynamic capability
framework. Journal of Intellectual Capital, 26(2), 404-425.

Sarstedt, M., Hair Jr, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a
tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses!
International Journal of Market Research, 62(3), 288—299.

Suradi, A. (2025). A Theoretical Extension of Technology Organization Environment (TOE)
in E-Government: A Systematic Literature Review and Theory Evaluation. Journal of
Computer Science and Technology (JCS- TECH), 5(1), 29-36.

Wang, Z., Wang, Y., Zeng, Y., Su, J., & Li, Z. (2025). An investigation into the acceptance of
intelligent care systems: an extended technology acceptance model (TAM). Scientific Reports,
15(1), 17912.

Xiong, S. H., Deng, Y. J., Zhang, H., & Chen, Z. S. (2025). Charting the path forward: a
comprehensive barrier and solution analysis for digital transformation of small and
medium-sized airports. Enterprise Information Systems, 2510347.

Yigitol, B. (2025). Al, Robotics, and Autonomous Systems: Assessing Al Applications in
Aviation Industry. In Smart and Sustainable Operations Management in the Aviation Industry
(pp. 115-141). CRC Press.

Zeng, N., Liu, Y., Gong, P., Hertogh, M., & Konig, M. (2021). Do right PLS and do PLS right:
A critical review of the application of PLS-SEM in construction management research.
Frontiers of Engineering Management, 8(3), 356-369.

Zong, 7., & Guan, Y. (2025). Al-driven intelligent data analytics and predictive analysis in
Industry 4.0: Transforming knowledge, innovation, and efficiency. Journal of the Knowledge
Economy, 16(1), 864—903.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to
the journal.

This is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

307 http://ijssr.macrothink.org



