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Abstract  

In response to escalating global security demands and the rapid advancement of digital 
technologies, international airports are under increasing pressure to modernize their security 
infrastructure without compromising operational efficiency. Abu Dhabi International Airport, 
as a leading aviation hub in the Middle East, provides a strategic context for evaluating the 
transformative potential of Artificial Intelligence (AI) in enhancing security performance. 
This study examines the impact of AI-based security technologies on performance efficiency 
at Abu Dhabi International Airport, with a focus on the mediating role of technology adoption. 
Using Partial Least Squares Structural Equation Modelling (PLS-SEM), the research analyses 
data collected from airport security personnel to assess both the direct and indirect effects of 
AI implementation on operational performance. The findings reveal that AI-based security 
technologies significantly enhance both technology adoption and performance efficiency. 
Additionally, technology adoption is found to mediate the relationship between AI 
technologies and performance outcomes, suggesting that the success of AI implementation 
depends not only on the technology itself but also on user acceptance and integration. The 
model demonstrates strong reliability, validity, and moderate explanatory and predictive 
power. These results underscore the importance of aligning technological advancements with 
employee readiness and adoption strategies to achieve operational excellence in high-security 
environments like international airports. 
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1. Introduction  

The aviation industry is experiencing a significant transformation through the integration of 
Artificial Intelligence (AI), particularly in the domains of security performance, operational 
efficiency, and service quality. At the forefront of this evolution is Abu Dhabi International 
Airport, a leading aviation hub in the Middle East. As security threats grow increasingly 
complex and passenger expectations continue to rise, the adoption of AI technologies has 
become essential for delivering a safe, seamless, and high-quality travel experience (Ahmed, 
2025; Yiğitol, 2025). 

Despite global advancements in AI deployment, Abu Dhabi International Airport continues to 
face critical challenges due to the limited and uneven integration of these technologies. The 
airport remains susceptible to issues such as security breaches, smuggling activities, and 
operational delays. Legacy systems and manual processes hinder the airport’s capacity to 
respond to evolving threats in real time, thereby compromising both its security standards and 
operational efficiency (Chiang, 2025; Otieno, 2025). 

AI technologies present advanced, data-driven solutions to these challenges. Tools such as 
intelligent surveillance systems, biometric verification, and anomaly detection enhance 
situational awareness and enable early identification of potential threats (Fan et al., 2025; 
Muhammad et al., 2025). For instance, facial recognition and fingerprint scanning streamline 
check-in and boarding processes, reduce human error, and accelerate passenger flow (Jain et 
al., 2025; Balasubramaniam et al., 2025). Machine learning algorithms embedded within 
anomaly detection systems identify suspicious behaviours, allowing security personnel to 
take proactive measures in real time (Khan & Khan, 2025). 

Beyond security, AI significantly contributes to improving efficiency by automating 
screening processes, particularly in the analysis of X-ray images for luggage inspection. This 
reduces passenger wait times and alleviates congestion at checkpoints without compromising 
accuracy. Additionally, predictive analytics supports operational planning by forecasting 
potential disruptions and optimizing resource allocation based on real-time and historical data 
(Zong & Guan, 2025; Ahmed, 2025). These AI-driven capabilities generate cost savings 
while boosting overall performance outcomes (MoghadasNian & Mojavezi, 2025). 

AI technologies also play an important role in enhancing service quality. AI-powered 
chatbots provide real-time assistance to passengers, reducing the dependency on human staff 
and improving customer satisfaction. The seamless integration of AI into security and service 
functions helps reduce the physical and psychological stress often associated with airport 
screening, thereby enriching the overall passenger experience (Ogunwobi, 2025). 

However, the integration of AI is not without ethical and regulatory concerns. Since these 
systems process vast volumes of personal and behavioural data, issues related to privacy, data 
protection, and algorithmic fairness must be addressed. Abu Dhabi International Airport has 
acknowledged these challenges by aligning its AI deployment with international and national 
regulations, thereby reinforcing public trust in its systems (Önday, 2025). 

Globally, airports and airlines have been rapidly adopting AI to improve operations. For 
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example, British Airways at Heathrow Airport uses AI for dynamic flight scheduling and 
resource optimization, while Harry Reid International Airport has implemented AI-powered 
screening systems that integrate with advanced CT scanners to detect prohibited items 
automatically, thereby improving both security and throughput (Yiğitol, 2025). Although the 
benefits of AI in aviation are widely recognized, there remains a lack of focused academic 
research exploring how AI specifically influences performance efficiency in airports such as 
Abu Dhabi International Airport. Existing literature has tended to address AI’s role in aviation 
broadly, without examining its combined effect on security outcomes, operational processes, 
and passenger experiences within a cohesive framework (Kim & Kim, 2025). 

This study addresses that research gap by investigating the impact of AI-based security 
technologies on performance efficiency at Abu Dhabi International Airport, with a particular 
focus on the mediating role of technology adoption. It evaluates how biometric security, 
predictive analytics, and intelligent surveillance technologies contribute to security 
enhancement, operational optimization, and improved passenger experiences. Furthermore, 
the study explores the ethical and regulatory implications of AI deployment in airport security, 
offering insights for both local stakeholders and international aviation authorities seeking to 
implement AI-based systems for sustainable security and operational excellence. 

2. Literature Review  

This literature review synthesizes scholarly and industry-based research to inform the 
development of a conceptual framework assessing the impact of AI-based security 
technologies on performance efficiency at Abu Dhabi International Airport. It critically 
explores the influence of three core AI-driven technologies: biometric security, predictive 
analytics, and intelligent surveillance, in reshaping airport security operations and driving 
enhanced performance outcomes (Ahmed, 2025; Fan et al., 2025; Önday, 2025). 

These technologies have emerged as essential components in the modernization of airport 
security infrastructure. Biometric systems enhance identity verification accuracy and expedite 
passenger processing, leveraging AI tools such as facial recognition and fingerprint analysis 
to automate routine procedures (Jain et al., 2025; Balasubramaniam et al., 2025). Predictive 
analytics facilitates proactive threat detection and intelligent resource planning by processing 
vast amounts of historical and real-time data through machine learning and deep learning 
algorithms (Zong & Guan, 2025; Ahmed, 2025). At the same time, intelligent surveillance 
integrates computer vision and IoT technologies to enable real-time monitoring, behavioral 
analysis, and automated incident response (Fan et al., 2025; Muhammad et al., 2025). 

Collectively, these technologies are designed to optimize airport operations by increasing 
detection accuracy, minimizing delays, and streamlining service delivery. These outcomes 
directly support performance efficiency, the dependent variable in this study, which 
encompasses operational speed, accuracy, and overall service quality (Kim & Kim, 2025; 
Otieno, 2025; MoghadasNian & Mojavezi, 2025). 

Furthermore, the review highlights the mediating role of technology adoption, which 
significantly affects the extent to which AI technologies deliver measurable improvements. 
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As supported by prior research, the successful implementation of AI systems is influenced not 
only by technical performance but also by the level of organizational readiness and user 
acceptance (Yiğitol, 2025). Key factors such as system integration, staff training, acceptance, 
and usage rates determine whether AI solutions are effectively embedded into daily 
operations and achieve their intended outcomes. These core constructs, including AI-based 
security technologies, technology adoption, and performance efficiency, form the foundation 
of the proposed conceptual framework and are further examined in the following subsections. 

2.1 Impact of AI-Based Security Technologies  

This study identifies three core AI-based security technologies that play a pivotal role in 
strengthening airport security and enhancing operational efficiency: biometric security, 
predictive analytics, and intelligent surveillance. These technologies represent the cutting 
edge of AI innovation in the aviation sector and are increasingly adopted for their ability to 
improve threat detection, streamline security procedures, and enable real-time, data-driven 
decision-making (Ahmed, 2025; Fan et al., 2025; Önday, 2025). 

Each of these AI applications functions as an independent variable in this research, with a 
direct influence on airport performance efficiency. Their implementation contributes to faster 
processing times, heightened accuracy in risk identification, and more adaptive security 
responses (Chiang, 2025; Jain et al., 2025; Zong & Guan, 2025). The following subsections 
provide a comprehensive overview of each technology and its practical application within the 
airport security environment, forming the conceptual foundation for the study’s analytical 
framework. 

2.1.1 Biometric Security AI-Technology   

Biometric security plays a critical role in modern airport operations by enabling accurate, 
automated identification of passengers. Technologies such as facial recognition, fingerprint 
and iris scanning, and biometric-enabled boarding gates are increasingly adopted to 
streamline check-in, immigration, and boarding processes. These systems significantly 
improve both security precision and passenger flow efficiency (Önday, 2025; Jain et al., 
2025). 

The effectiveness of biometric applications is powered by advanced AI technologies, notably 
Machine Learning, Deep Learning, and Computer Vision. Machine learning algorithms 
analyse biometric patterns and continuously refine identity verification processes, while deep 
learning enhances the precision of facial recognition systems through high-dimensional data 
analysis (Khan & Khan, 2025; Balasubramaniam et al., 2025). Computer vision supports 
real-time image and video interpretation, enabling swift and accurate biometric matching 
across large volumes of passengers. In addition, AI-driven anomaly detection strengthens 
system integrity by identifying fraudulent identities or unusual behaviours that may pose 
security threats (Ogunwobi, 2025). 

Together, these AI-driven innovations contribute to more reliable, efficient, and secure airport 
environments, reinforcing the integrity of passenger verification processes while promoting 
seamless travel experiences. 
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2.1.2 Predictive Analytics AI-Technology  

Predictive analytics is a key component in enhancing airport security by enabling proactive 
risk management and data-driven operational decision-making. In airport environments, it is 
utilized to forecast security threats, analyse passenger behaviours, and optimize the allocation 
of personnel and technological resources. By anticipating potential disruptions before they 
occur, predictive analytics improves security responsiveness and supports uninterrupted 
airport operations (Ahmed, 2025; Yiğitol, 2025). 

This capability is underpinned by several advanced AI technologies, including Machine 
Learning, Deep Learning, Reinforcement Learning, and the Internet of Things (IoT). Machine 
learning and deep learning algorithms process vast amounts of historical and real-time data to 
detect subtle patterns and generate accurate forecasts. Reinforcement learning contributes by 
enabling adaptive strategies based on trial-and-error learning from environmental interactions, 
especially in complex security scenarios (Zong & Guan, 2025). Meanwhile, IoT devices 
enhance situational awareness by continuously collecting and transmitting operational and 
environmental data across airport systems. 

These AI-driven technologies elevate predictive analytics from a reactive tool to a strategic 
asset in airport security. Intelligent forecasting enables authorities to anticipate emerging 
threats and operational bottlenecks, while anomaly detection ensures rapid identification of 
irregular patterns in passenger behaviour or system performance (Ahmed, 2025; Zong & 
Guan, 2025). Behaviour modelling supports more nuanced risk assessments, and real-time 
data-driven decision-making allows for agile, context-aware responses to dynamic airport 
conditions (Yiğitol, 2025). As a result, predictive analytics plays an indispensable role in 
creating a more secure, efficient, and resilient airport ecosystem. 

2.1.3 Intelligent Surveillance AI-Technology  

Intelligent surveillance has become a cornerstone of next-generation airport security systems, 
offering real-time monitoring, automated threat detection, and enhanced perimeter control. 
These systems go beyond traditional CCTV by incorporating AI capabilities to detect 
suspicious behaviours, unauthorized access, and unattended objects, thereby enabling faster 
and more accurate security responses (Fan et al., 2025). 

This advancement is made possible through the integration of Computer Vision, Machine 
Learning, Internet of Things (IoT), and Robotics. Computer vision enables video feeds to be 
analysed in real time, identifying objects, facial features, or unusual movements. Machine 
learning algorithms continuously improve detection accuracy by learning from surveillance 
data and adapting to new patterns. IoT devices, such as smart sensors and connected cameras, 
facilitate the seamless collection and transmission of surveillance data across various airport 
zones. Robotics contributes through the deployment of autonomous patrol systems, which 
can monitor restricted areas and respond to incidents with minimal human intervention 
(Muhammad et al., 2025). Leveraging these AI technologies, intelligent surveillance systems 
significantly enhance the airport’s ability to maintain situational awareness, prevent 
intrusions, and ensure the safety of passengers, staff, and infrastructure. 
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2.2 Airport AI-Performance Efficiency  

Performance efficiency in the airport context refers to the speed, accuracy, and effectiveness 
with which airport operations and security procedures are conducted. It encompasses key 
outcomes such as reduced passenger processing times, enhanced accuracy in security 
screening, minimized operational delays, and overall improvement in service quality. These 
performance metrics are critical to maintaining high levels of passenger satisfaction, seamless 
airline coordination, and a strong reputation for safety and reliability (Kim & Kim, 2025; 
Otieno, 2025). 

The integration of artificial intelligence technologies particularly in biometric identification, 
predictive analytics, and intelligent surveillance has emerged as a major driver of 
performance efficiency in modern airports. For instance, AI-powered identity verification 
systems streamline check-in and boarding processes by significantly reducing queuing times. 
Predictive analytics enable airport authorities to anticipate passenger flow patterns and 
operational disruptions, allowing for the timely deployment of resources (Chiang, 2025). 
Furthermore, intelligent surveillance systems powered by AI enhance situational awareness 
and enable rapid response to security threats, thereby minimizing operational standstills and 
improving overall safety (MoghadasNian & Mojavezi, 2025). 

Collectively, these technological advancements optimize airport workflows, reduce reliance 
on manual interventions, and support the delivery of a seamless, secure, and customer-centric 
travel experience. Enhancing performance efficiency through AI not only reinforces the 
airport’s competitive edge but also aligns with broader strategic objectives such as 
operational resilience, sustainability, and service excellence in the global aviation industry. 

2.3 Mediating Role of AI-Technology Adoption  

Technology adoption serves as a crucial mediating variable in the relationship between 
AI-based security technologies and performance efficiency at Abu Dhabi International 
Airport. The effectiveness of AI solutions such as biometric security, predictive analytics, and 
intelligent surveillance depends not only on their technical sophistication but also on the 
degree to which these technologies are successfully adopted by airport personnel, systems, 
and processes (Ahmed & Sandhu, 2025; Jalil et al., 2025). 

Key dimensions of technology adoption include system integration, staff acceptance, 
adequacy of training, and actual usage rates. High levels of adoption indicate a well-executed 
implementation strategy, where AI technologies are embedded into routine airport workflows 
and supported by personnel who are confident and capable of using them. Conversely, poor 
adoption often results in underutilized tools, process inefficiencies, and limited gains in 
performance (Liu, 2025). 

In the specific context of Abu Dhabi International Airport, technology adoption plays a 
central role in bridging the gap between innovation and operational outcomes. It transforms 
AI from a theoretical solution into a practical tool for achieving measurable improvements in 
security, efficiency, and service delivery. When staff attitudes toward AI are positive and 
supported by training and readiness, the likelihood of effective usage increases significantly, 
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enhancing the overall impact of AI deployment (Emon & Khan, 2025; Liu, 2025). 

Ultimately, the adoption of AI technologies serves as the mechanism through which digital 
transformation efforts are translated into sustainable improvements in airport performance. It 
ensures that AI investments lead not only to enhanced technological capacity but also to 
tangible value in daily operations, contributing to long-term organizational success (Ahmed 
& Sandhu, 2025; Jalil et al., 2025). 

2.4 Formulation of the Conceptual Framework  

The conceptual framework presented in Figure 1 shows the conceptual framework illustrating 
the mediating role of technology adoption in the relationship between AI-based security 
technologies and performance efficiency at Abu Dhabi International Airport. This framework 
integrates perspectives from established organizational and technological theories to explain 
how the successful implementation and internalization of AI tools contribute to measurable 
improvements in airport operations (Xiong et al., 2025; Suradi, 2025). 

At the core of the model are three AI-based security technologies: biometric security, 
predictive analytics, and intelligent surveillance, which serve as the independent variables. 
These technologies have been widely recognized for their potential to enhance security 
protocols, automate routine tasks, and support real-time decision-making in complex 
environments such as airports. However, consistent with the 
Technology-Organization-Environment (TOE) framework, the presence of these technologies 
alone is insufficient to ensure performance gains. Instead, organizational and environmental 
factors play a critical role in shaping the extent and effectiveness of AI adoption (Suradi, 
2025). 

To address this, the model introduces technology adoption as a mediating variable, capturing 
how AI tools are integrated into daily operations. This construct is grounded in the 
Technology Acceptance Model (TAM), which posits that user perceptions of usefulness and 
ease of use influence their willingness to engage with new technologies (Wang et al., 2025; 
Al-Momani & Ramayah, 2025). In this study, technology adoption is assessed through key 
indicators such as system integration, staff acceptance, training adequacy, and actual usage 
rates. These indicators reflect both the organizational readiness and the behavioral 
dimensions necessary to translate technological capacity into operational efficiency. 

The dependent variable, performance efficiency, reflects the expected improvements in 
operational outcomes resulting from successful AI adoption. These include reduced passenger 
processing times, improved accuracy in threat detection, minimized delays, and enhanced 
overall service quality. Importantly, the model's focus on internal capability and strategic 
alignment resonates with the Resource-Based View (RBV) of the firm, which emphasizes that 
sustainable competitive advantage arises not merely from acquiring external resources, but 
from effectively integrating them with internal competencies and routines (Malhotra et al., 
2025; Sandeep et al., 2025). 

This conceptual model synthesizes insights from TAM, TOE, and RBV to provide a 
comprehensive, theory-driven explanation of how AI technologies can transform airport 
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operations. It suggests that while AI tools hold transformative potential, their full impact is 
realized only when mediated by effective organizational adoption and alignment practices. 
This integrated approach provides a practical framework for understanding the dynamics of 
digital transformation in airport security operations and offers strategic guidance for 
enhancing performance in similar aviation contexts (Xiong et al., 2025). 

 

Figure 1. Established Conceptual Model 

 

3. Methodology  

This study employs a quantitative research design grounded in the established conceptual 
framework, which guided both the data collection and modelling procedures. A structured 
questionnaire survey was developed to measure the key constructs defined in the framework. 
The survey instrument was organized into sections corresponding to the independent 
variables (AI-based security technologies), the mediating variable (technology adoption), and 
the dependent variable (performance efficiency). Items were rated using a five-point Likert 
scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree), consistent with established 
norms in behavioural and social science research (Cohen, 1988). 

The target population consisted of airport security professionals employed at Abu Dhabi 
International Airport. To ensure relevant expertise, the study targeted individuals with a 
minimum of two years of full-time experience in roles involving the implementation or use of 
AI-based security technologies. A simple random sampling method was adopted to ensure a 
representative and unbiased sample of the estimated population of 3,700 eligible 
professionals. Ultimately, 351 valid responses were collected and used for analysis. 

The data were analysed using Partial Least Squares Structural Equation Modelling 
(PLS-SEM) through SmartPLS software. PLS-SEM was chosen over covariance-based SEM 
(CB-SEM) due to several reasons. First, PLS-SEM is particularly suitable for exploratory 
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research and theory development, which aligns with the study’s aim of proposing and 
empirically testing a new conceptual framework in the under-researched context of AI 
adoption in airport security (Hair et al., 2017; Sarstedt et al., 2020). Second, PLS-SEM is 
robust with smaller to medium sample sizes and is ideal for models involving multiple 
constructs and mediation effects, as in this study (Hair et al., 2019; Memon et al., 2021). 
Third, the approach is favoured when the primary objective is prediction and explanation of 
variance in key dependent variables, which fits the focus on performance efficiency (Zeng et 
al., 2021). Moreover, PLS-SEM accommodates non-normal data distributions and allows for 
formative and reflective constructs, offering modelling flexibility that is essential in 
real-world organizational research (Henseler, Ringle, & Sarstedt, 2015). 

The analysis followed a two-stage approach. The first stage involved assessing the 
measurement model to establish the reliability and validity of each construct. Internal 
consistency was evaluated through Cronbach’s alpha and composite reliability, while 
convergent validity was measured via average variance extracted (AVE). Discriminant 
validity was confirmed using the Heterotrait-Monotrait ratio (HTMT), which is recognized as 
a robust criterion in variance-based SEM (Henseler et al., 2015). 

In the second stage, the structural model was assessed to determine the significance of 
hypothesized relationships, the magnitude of path coefficients, and the model’s predictive 
relevance using R² and Q² statistics. The model was refined iteratively until acceptable levels 
of fit, reliability, and validity were achieved, ensuring a robust empirical representation of the 
conceptual framework (Aburumman et al., 2022; Hair et al., 2019). 

Integrating PLS-SEM as the primary analytical technique, this study ensures methodological 
rigor and generates meaningful insights into the mediating role of technology adoption in the 
relationship between AI-based security innovations and airport performance outcomes. 

4. Results of Analysis  

The results of the PLS-SEM analysis are structured into two major stages: the outer model 
evaluation (measurement model) and the inner model evaluation (structural model). The outer 
model focuses on assessing the quality of the measurement instruments by examining the 
relationships between latent constructs and their associated observed indicators. This includes 
comprehensive testing of construct reliability using Cronbach’s Alpha and Composite 
Reliability (CR) (Hair et al., 2019), evaluation of convergent validity through Average 
Variance Extracted (AVE) (Henseler, Ringle, & Sarstedt, 2015), and assessment of 
discriminant validity using both the Fornell-Larcker criterion and the Heterotrait-Monotrait 
(HTMT) ratio (Aburumman et al., 2022; Henseler et al., 2015). 

Once the outer model satisfied the required validity and reliability standards, attention shifted 
to the inner model to test the hypothesized relationships between the constructs. This stage 
examined the path coefficients, t-values, and p-values to determine the significance and 
strength of each proposed relationship (Sarstedt et al., 2020). Additionally, the coefficient of 
determination (R²) was evaluated to assess the model's explanatory power, while 
Stone-Geisser’s Q² values were used to test predictive relevance (Hair et al., 2019; Zeng et al., 
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2021). The model also examined mediation effects, particularly the role of technology 
adoption in the relationship between AI-based security technologies and performance 
efficiency (Sarstedt et al., 2020). 

4.1 PLS Algorithm and Outer Model Evaluation  

The Partial Least Squares Structural Equation Modelling (PLS-SEM) algorithm was applied 
using SmartPLS software to estimate the path coefficients and assess the measurement (outer) 
model. This evaluation focused on examining the relationships between observed indicators 
and their corresponding latent constructs. PLS-SEM was selected for its robustness in 
modelling complex relationships involving latent variables and its suitability for exploratory 
research and predictive modelling (Hair et al., 2017; Hair et al., 2019). It is especially 
beneficial in contexts where the primary goal is theory development and where data 
distributions may not meet strict normality assumptions (Memon et al., 2021; Zeng et al., 
2021). 

The outer model assessment began with analysing indicator loadings, all of which exceeded 
the recommended threshold of 0.70. This indicates that each indicator strongly contributed to 
its respective construct (Hair et al., 2019). Construct reliability was then evaluated using both 
Cronbach’s Alpha and Composite Reliability (CR), with all constructs demonstrating values 
above 0.70, confirming adequate internal consistency (Hair et al., 2017). 

Convergent validity was assessed through Average Variance Extracted (AVE), with all 
constructs achieving AVE scores above 0.50, thereby indicating that a substantial proportion 
of indicator variance was captured by the underlying construct (Henseler, Ringle, & Sarstedt, 
2015). To evaluate discriminant validity, both the Fornell-Larcker criterion and the 
Heterotrait-Monotrait (HTMT) ratio were employed. The Fornell-Larcker criterion confirmed 
that the square root of each construct’s AVE was greater than its correlation with any other 
construct. Additionally, HTMT values for all construct pairs remained below the conservative 
threshold of 0.85, supporting strong discriminant validity (Henseler et al., 2015; Aburumman 
et al., 2022). 

These assessments demonstrate that the measurement model meets the key criteria for 
reliability, convergent validity, and discriminant validity, thereby ensuring that the constructs 
used in the study are both statistically sound and conceptually distinct. Figure 2 shows the 
conceptual model after the PLS algorithm procedure was completed, depicting the 
standardized path coefficients and the structural relationships among the latent variables 
(Sarstedt et al., 2020). 
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Figure 2. The model after PLS Algorithm procedure 

 

Figure 2 illustrates the structural model output after applying the PLS algorithm. The model 
includes three latent constructs: AI-Based Security Technologies (AIST), Technology 
Adoption (TA), and Performance Efficiency (PE). The path coefficients indicate that AIST 
has a significant positive effect on both TA (0.619) and PE (0.227), while TA also positively 
influences PE (0.525), suggesting a mediating role. The R² values show that AIST explains 
38.3% of the variance in TA and, together with TA, explains 47.5% of the variance in PE. 
Indicator loadings for all constructs exceed the recommended threshold of 0.70, supporting 
the reliability and validity of the measurement model. 

 

Table 1. Construct reliability and convergent validity   

Constructs Cronbach’s alpha Average variance extracted (AVE) 
AI-Based Security Technologies (AIST)  0.835 0.752 
Performance Efficiency (PE)  0.878 0.733 
Technology Adoption (TA)  0.875 0.728 

 

Table 1 presents the results for construct reliability and convergent validity of the 
measurement model. The Cronbach’s alpha values for all constructs, AI-Based Security 
Technologies (AIST) (0.835), Performance Efficiency (PE) (0.878), and Technology 
Adoption (TA) (0.875), exceed the recommended threshold of 0.70, indicating strong internal 
consistency reliability. Additionally, the Average Variance Extracted (AVE) values for all 
constructs are above the acceptable benchmark of 0.50, with AIST at 0.752, PE at 0.733, and 
TA at 0.728. These results confirm satisfactory convergent validity, showing that the 
indicators effectively represent their respective constructs. 
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Table 2. Heterotrait-Monotrait (HTMT) ratios  

 
AI-Based Security 
Technologies (AIST) 

Performance 
Efficiency (PE) 

Technology 
Adoption (TA) 

AI-Based Security Technologies 
(AIST)  

   

Performance Efficiency (PE)  0.645   
Technology Adoption (TA)  0.724 0.757  

 

Table 2 presents the Heterotrait-Monotrait (HTMT) ratios used to assess discriminant validity 
among the constructs in the model. All HTMT values fall below the recommended threshold 
of 0.85, indicating that the constructs are empirically distinct from one another. Specifically, 
the HTMT value between AI-Based Security Technologies (AIST) and Performance 
Efficiency (PE) is 0.645, between AIST and Technology Adoption (TA) is 0.724, and between 
PE and TA is 0.757. These results confirm that discriminant validity is established within the 
measurement model. 

 

Table 3. Fornell-Larcker criterion 

 AI-Based Security 
Technologies (AIST) 

Performance 
Efficiency (PE) 

Technology 
Adoption (TA) 

AI-Based Security 
Technologies (AIST)  

0.867   

Performance Efficiency (PE)  0.552 0.856  
Technology Adoption (TA)  0.619 0.666 0.853 

 

Table 3 presents the Fornell-Larcker criterion results, which are used to assess discriminant 
validity by comparing the square root of the Average Variance Extracted (AVE) for each 
construct with the correlations between constructs. For discriminant validity to be established, 
the square root of each construct's AVE (shown on the diagonal) should be greater than its 
correlations with other constructs (off-diagonal values). As shown, the square root of AVE for 
AI-Based Security Technologies (AIST) is 0.867, which is higher than its correlations with 
Performance Efficiency (0.552) and Technology Adoption (0.619). Similarly, Performance 
Efficiency (PE) has a square root AVE of 0.856, exceeding its correlations with AIST (0.552) 
and TA (0.666). Finally, Technology Adoption (TA) has a square root AVE of 0.853, which is 
greater than its correlations with AIST (0.619) and PE (0.666). These results confirm that all 
constructs exhibit satisfactory discriminant validity according to the Fornell-Larcker 
criterion. 

4.2 PLS Algorithm and Model Fit  

The model fit was evaluated at the construct level using two key indicators: R² (coefficient of 
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determination) and f² (effect size). The R² value represents the proportion of variance in an 
endogenous construct that can be explained by its associated exogenous variables. It provides 
a measure of the model’s explanatory power (Hair et al., 2019; Sarstedt et al., 2020). The f² 
value was used to assess the effect size of each exogenous construct by measuring its 
individual contribution to the R² value of the corresponding endogenous construct. According 
to Cohen (1988), f² values of 0.02, 0.15, and 0.35 represent small, medium, and large effects 
respectively.  

 

Table 4. R-square values 

 R-square  
Performance Efficiency (PE)  0.475  
Technology Adoption (TA)  0.383  

 

Table 4 presents the R² (R-square) values, which indicate the proportion of variance in the 
endogenous constructs explained by their respective predictor variables. The R² value for 
Technology Adoption (TA) is 0.383, meaning that 38.3% of the variance in TA is explained 
by AI-Based Security Technologies (AIST). The R² value for Performance Efficiency (PE) is 
0.475, indicating that 47.5% of the variance in PE is jointly explained by AIST and TA. 
According to commonly accepted thresholds, these values suggest a moderate level of 
explanatory power, confirming that the model has a reasonable ability to predict the 
endogenous constructs. 

 

Table 5. f-square values 

 
AI-Based Security 
Technologies (AIST)  

Performance 
Efficiency (PE)  

Technology 
Adoption (TA)  

AI-Based Security Technologies (AIST)   0.061 0.622 
Performance Efficiency (PE)     
Technology Adoption (TA)   0.324  

 

Table 5 presents the f² effect size values, which indicate the magnitude of the impact that one 
latent construct has on another within the structural model. According to Cohen's (1988) 
guidelines, f² values of 0.02, 0.15, and 0.35 represent small, medium, and large effects, 
respectively. In this model, AI-Based Security Technologies (AIST) has a large effect on 
Technology Adoption (TA) with an f² value of 0.622, and a small effect on Performance 
Efficiency (PE) with a value of 0.061. Additionally, Technology Adoption (TA) shows a 
medium effect on Performance Efficiency (PE) with an f² value of 0.324. These results 
suggest that AIST strongly influences the adoption of technology, and both AIST and TA play 
meaningful roles in enhancing performance efficiency. 
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4.3 Bootstrapping and Hypothesis Testing 

Bootstrapping is a critical procedure in Partial Least Squares Structural Equation Modelling 
(PLS-SEM) that is used to assess the statistical significance of both direct and indirect 
relationships within the structural model. This non-parametric resampling method generates a 
large number of subsamples typically 5,000 or more, by randomly drawing observations from 
the original dataset with replacement (Hair et al., 2017; Sarstedt et al., 2020). Each subsample 
is used to re-estimate the model, allowing for the computation of standard errors, confidence 
intervals, and p-values for each path coefficient. 

The technique is particularly useful in evaluating complex models with latent constructs, as it 
does not rely on the assumption of normal data distribution. In the present study, 
bootstrapping was employed to test the hypothesized relationships between AI-based security 
technologies, the mediating variable of technology adoption, and the outcome variable, 
performance efficiency. The statistical outputs from this process including t-statistics, 
p-values, and confidence intervals that indicate whether the hypothesized paths are 
statistically significant. 

 

 

Figure 3. Graphical output of the bootstrapping procedure 

 

Figure 3 illustrates that AI-based security technologies (AIST) have a significant direct effect 
on both technology adoption (TA) and performance efficiency (PE), with TA also showing a 
strong direct influence on PE. All path relationships and indicators are statistically significant 
(p < 0.001), confirming both direct and mediated effects within the model. 

 

Table 6. Path strength and level of significance  

Direct relationship  Path strength   P values 
AI-Based Security Technologies (AIST) -> Performance Efficiency (PE) 0.227  0.001  
AI-Based Security Technologies (AIST) -> Technology Adoption (TA)  0.619  0.000  
Technology Adoption (TA) -> Performance Efficiency (PE)  0.525  0.000  
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Table 6 presents the results of the structural model analysis, highlighting the path strength 
and level of significance for the direct relationships between the key constructs. The findings 
indicate that AI-based security technologies (AIST) have a significant positive effect on both 
performance efficiency (PE) (path coefficient = 0.227, p = 0.001) and technology adoption 
(TA) (path coefficient = 0.619, p = 0.000). Additionally, technology adoption (TA) has a 
strong and significant positive effect on performance efficiency (PE) (path coefficient = 0.525, 
p = 0.000). All relationships are statistically significant at the 0.01 level, indicating strong 
support for the proposed model. 

 

Table 7. Path strength and level of significance  

Indirect relationship  Path coefficient   P values  
AI-Based Security Technologies (AIST) -> Technology Adoption (TA) -> 
Performance Efficiency (PE)  

0.325  0.000  

 

Table 7 presents the result of the indirect relationship analysis, specifically examining the 
mediating effect of technology adoption (TA) on the relationship between AI-based security 
technologies (AIST) and performance efficiency (PE). The path coefficient for the indirect 
effect is 0.325, with a p-value of 0.000, indicating a statistically significant mediation. This 
suggests that technology adoption plays a crucial role in strengthening the influence of 
AI-based security technologies on performance efficiency, confirming its role as a significant 
mediating variable in the conceptual model. 

4.4 Blindfolding and Predicative Relevance   

Predictive relevance evaluates a model’s capacity to forecast the values of endogenous 
constructs accurately. In Partial Least Squares Structural Equation Modeling (PLS-SEM), this 
is assessed using the blindfolding procedure, which involves the systematic omission and 
prediction of data points to estimate how well the model performs on new or missing data 
(Hair et al., 2019; Memon et al., 2021). 

Two main parameters are generated through this technique: Cross-Validated Communality 
(CCVC) and Cross-Validated Redundancy (CCVR). The CCVC focuses on the quality of the 
measurement model by assessing how well each construct’s indicators can be reconstructed. 
The CCVR, in contrast, evaluates the predictive relevance of the structural model by 
incorporating both measurement and structural components (Sarstedt et al., 2020; 
Aburumman et al., 2022). 
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Table 8. CCVR values of the model 

 SSO  SSE  Q² (=1-SSE/SSO)  
AI-Based Security Technologies (AIST)  1194.000 1194.000 0.000 
Performance Efficiency (PE)  1592.000 1051.239 0.340 
Technology Adoption (TA)  1592.000 1155.117 0.274 

 

Table 8 presents the Cross-Validated Redundancy (Q²) values obtained through blindfolding 
to assess the model’s predictive relevance. The Q² value for Performance Efficiency (PE) is 
0.340, and for Technology Adoption (TA) is 0.274, both exceeding zero, indicating 
satisfactory predictive relevance for these constructs. In contrast, the Q² value for AI-Based 
Security Technologies (AIST) is 0.000, suggesting no predictive relevance for this exogenous 
construct, which is expected as predictive relevance primarily applies to endogenous 
constructs. 

 

Table 9. CCVM values of the model 

 SSO SSE Q² (=1-SSE/SSO) 
AI-Based Security Technologies (AIST)  1194.000 617.014 0.483 
Performance Efficiency (PE)  1592.000 731.536 0.540 
Technology Adoption (TA)  1592.000 742.390 0.534 

 

Table 9 displays the Cross-Validated Communality (Q²) values, which measure the quality of 
the measurement model in predicting the indicators of each construct. The Q² values for 
Performance Efficiency (PE) (0.540), Technology Adoption (TA) (0.534), and AI-Based 
Security Technologies (AIST) (0.483) are all well above zero, indicating strong communality 
and confirming that the model has good predictive accuracy at the indicator level for all 
constructs. 

Based on Table 8 and Table 9, it can be concluded that the model demonstrates satisfactory 
predictive relevance and communality for its key endogenous constructs. Specifically, the Q² 
values from Table 8 show that Performance Efficiency (0.340) and Technology Adoption 
(0.274) possess acceptable levels of predictive relevance, while AI-Based Security 
Technologies, being an exogenous construct, understandably shows no predictive relevance 
(Q² = 0.000). 

Additionally, the high Q² values in Table 9 for AI-Based Security Technologies (0.483), 
Performance Efficiency (0.540), and Technology Adoption (0.534) indicate that the model 
also has strong predictive accuracy at the indicator level. Overall, the results support the 
model’s robustness in predicting and explaining the variance in the observed data. 
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4.5 Validated Framework and Discussion 

This section presents the validated framework developed from the modelling analysis of the 
conceptual framework, based on the empirical data processed using SmartPLS software, as 
illustrated in Figure 4. 

 

 

Figure 4. Validated framework 

 

The validated conceptual framework illustrated in Figure 4 captures the structural 
relationship among AI-Based Security Technologies, Technology Adoption, and Performance 
Efficiency within the operational context of Abu Dhabi International Airport. This framework 
demonstrates both direct and indirect pathways, reinforcing the pivotal role of technology 
adoption in mediating the relationship between AI deployment and improved performance 
outcomes. 

AI-Based Security Technologies, including biometric verification, intelligent surveillance, 
and predictive analytics, are shown to have a direct positive effect on Performance Efficiency, 
with a standardized path coefficient (β = 0.227). This finding is consistent with previous 
studies highlighting the ability of AI tools to streamline airport operations and improve threat 
detection and passenger flow (Jain et al., 2025; Ahmed, 2025; Yiğitol, 2025). These 
technologies independently contribute to faster screening, enhanced situational awareness, 
and optimized resource allocation, supporting findings from Otieno (2025) and Kim & Kim 
(2025), who emphasized AI’s role in enhancing terminal efficiency and customer satisfaction. 

Importantly, the model also confirms a significant indirect pathway from AI-Based Security 
Technologies to Performance Efficiency through the mediating role of Technology Adoption 
(β = 0.325). This aligns with earlier research by Emon and Khan (2025), Liu (2025), and 
Ahmed & Sandhu (2025), who demonstrated that user acceptance, readiness, and 
organizational integration significantly determine the extent to which AI technologies can 
deliver intended outcomes. The mediation effect underscores that technological innovation 
alone does not guarantee performance improvement; it must be supported by organizational 
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systems, adequate training, and a culture that promotes adoption. 

Furthermore, the inclusion of Technology Adoption as a mediating construct is grounded in 
both the Technology Acceptance Model (TAM) and the 
Technology-Organization-Environment (TOE) framework. These theories posit that 
perceived usefulness, ease of use, and organizational readiness shape adoption behavior, 
which in turn influences performance (Wang et al., 2025; Al-Momani & Ramayah, 2025; 
Suradi, 2025). The Resource-Based View (RBV) also supports this conclusion by asserting 
that sustainable competitive advantages stem not merely from acquiring advanced 
technologies but from how well they are integrated with internal capabilities and human 
capital (Malhotra et al., 2025; Sandeep et al., 2025). 

This validated framework provides empirical evidence that effective performance outcomes 
in AI-driven security environments are best achieved through a dual approach: deploying 
advanced AI technologies and cultivating strong adoption mechanisms. These results 
contribute to the growing literature on digital transformation in airport operations by 
integrating technology and human-centric implementation strategies into a unified 
explanatory model. 

5. Conclusion and Implications  

This study examined the impact of AI-Based Security Technologies (AIST) on 
employee-related performance outcomes, specifically Technology Adoption (TA) and 
Performance Efficiency (PE), at Abu Dhabi International Airport using Partial Least Squares 
Structural Equation Modelling (PLS-SEM). The empirical results confirm that AIST 
significantly and positively influences both TA and PE. Moreover, TA has a substantial direct 
effect on PE and also serves as a significant mediating variable, enhancing the impact of 
AIST on performance outcomes. These findings highlight the importance of promoting user 
readiness and effective integration when implementing AI-based solutions in operational 
settings. 

The measurement model demonstrated strong psychometric properties, with all constructs 
exceeding the recommended thresholds for indicator reliability, internal consistency 
(Cronbach’s alpha), convergent validity (AVE), and discriminant validity (Fornell-Larcker 
and HTMT criteria). The structural model exhibited moderate explanatory power, with R² 
values of 0.383 for TA and 0.475 for PE, and predictive relevance confirmed by Q² values 
above the 0.20 benchmark. Effect size analysis indicated that AIST had a large effect on TA, 
a small but meaningful effect on PE, and that TA exerted a medium effect on PE. 

The practical implications of this study suggest that organizations, particularly those 
operating in high-security environments such as airports, should not only invest in advanced 
AI technologies but also focus on adoption strategies. These include providing targeted 
training, enhancing employee engagement, and ensuring organizational readiness to 
incorporate AI tools into core operational processes. Such measures are essential to convert 
technological investment into measurable performance outcomes. 

From a theoretical perspective, the study contributes to the literature on AI implementation by 
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establishing Technology Adoption as a key mediating variable. It supports the integration of 
models such as the Technology Acceptance Model (TAM), the 
Technology-Organization-Environment (TOE) framework, and the Resource-Based View 
(RBV), offering a comprehensive understanding of how AI technologies influence 
organizational outcomes when combined with human and process factors. 

Future research should explore additional mediating or moderating variables, such as 
organizational culture, digital literacy, or trust in AI systems, to expand the model’s 
explanatory capacity. Validation across different sectors and geographical contexts would also 
enhance the generalizability and practical utility of the findings. 
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