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Abstract

This study presents the development of a framework that identifies and evaluates the key
adoption factors for successfully deploying Internet of Things (IoT) technologies in the
monitoring of greenhouse gas emissions within the United Arab Emirates. A unique aspect of
this research lies in its focus on a specific sector, involving 384 employees from the UAE’s
Department of Hazard Forecasting, Monitoring, and Control (HFMC), who are directly
engaged with IoT-based emissions monitoring. The study employs a robust methodological
approach, using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) with
SmartPLS software to analyze both the measurement and structural components of the model.
The findings reveal that Interoperability and Compatibility (IC) is the most influential factor
in greenhouse gas monitoring and utilization (GMAU), followed by Data Analytics and
Processing (DAP) and Data Security and Privacy (DSP). Interestingly, Sensor Accuracy and
Calibration (SAAC) and Connectivity and Network Infrastructure (CNI) were found to have
negligible impacts. This study underscores the crucial importance of advanced data analytics
capabilities and stringent data security measures in ensuring the effectiveness of IoT in
emissions monitoring. Furthermore, it highlights that enhancing IC significantly boosts
monitoring efficiency, providing novel insights into the factors that drive IoT adoption for
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environmental monitoring. The study’s findings also demonstrate that the proposed
framework has strong predictive relevance, as evidenced by Q? values exceeding 0.35, which
further reinforces its practical applicability. This research contributes novel insights into the
deployment of IoT for environmental monitoring, offering a comprehensive guide for
improving emissions tracking in the UAE.
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1. Introduction

Efforts to reduce greenhouse gas (GHG) emissions have evolved from environmental
concerns to national priorities, with the 1992 Rio UN Conference and the UN Framework
Convention on Climate Change (UNFCCC) shaping global approaches to air pollution. In the
UAE, the oil and gas sector contributes over 90% of total emissions, making effective
mitigation measures essential. Rising CO: levels exacerbate global warming and water
scarcity, highlighting the need for accurate GHG monitoring to support climate action (IPCC,
2021). Effective emission control depends on reliable data collection and supportive policies
that encourage technology adoption, yet many countries, including the UK, Germany, and the
Netherlands, struggle with inadequate monitoring, resulting in environmental and health risks
(Hao et al., 2025). Without robust controls, climate-related challenges such as extreme
weather events and rising sea levels will continue to threaten sustainable development
(Reisinger et al., 2025).

The adoption of the Internet of Things (IoT) for emissions monitoring offers significant
potential by enabling real-time data collection, remote sensing, and advanced analytics across
extraction, processing, and transportation operations (Marzouk, 2025; Climate Central, 2022).
However, widespread implementation faces several adoption barriers, including data security
vulnerabilities, uncertain returns on investment, immature technologies, high implementation
costs, and compatibility challenges with existing oil and gas infrastructure (Badhan et al.,
2025; Ali et al., 2025). Overcoming these barriers requires a comprehensive understanding of
the key adoption factors that drive successful IoT deployment, supported by collaboration,
investment in advanced technologies, and robust data governance. When effectively
implemented, [oT-generated data can enhance regulatory compliance, inform evidence-based
policy decisions, and accelerate the UAE’s transition toward low-carbon energy (Dizdarevi¢
et al., 2019; Santos et al., 2021).

In parallel, the UAE has articulated ambitious climate commitments aligned with global
frameworks such as the Paris Agreement. Within this national agenda, Abu Dhabi National
Oil Company (ADNOC) has established clear decarbonization targets, including a 25%
reduction in GHG emissions intensity by 2030 and the capture of 5 million tonnes of CO:
annually through carbon capture and enhanced oil recovery initiatives. ADNOC has also
adopted the Energy Management System (EnMS) in compliance with ISO 50001:2018
standards, with the objective of achieving a 5% improvement in energy efficiency by 2025
(Dizdarevi¢ et al., 2019). These initiatives highlight the growing importance of advanced
monitoring frameworks that not only leverage IoT capabilities but also address sector-specific
adoption requirements, such as technology readiness, infrastructure integration, cybersecurity
resilience, cost-effectiveness, and alignment with national climate policies.

The proposed framework is novel in its contextualized application of IoT adoption to
greenhouse gas monitoring within the UAE oil and gas sector. Rather than treating IoT
adoption as a generic technological process, the framework explicitly bridges conventional
fossil-fuel operations with emerging low-carbon and digital technologies. Its effectiveness is
grounded in its ability to ensure accurate and reliable emissions data, mitigate cybersecurity
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risks, demonstrate economic feasibility, enable seamless integration with existing operational
systems, and support regulatory compliance. By addressing these critical adoption factors, the
framework positions IoT as a strategic enabler of efficient GHG monitoring, sustainable
industrial operations, and the UAE’s broader energy transition objectives.

Overall, the novelty of this research lies in its sector-specific and context-sensitive integration
of IoT adoption principles with environmental monitoring requirements in the UAE. Unlike
existing global models that generalize IoT adoption across industries, this study develops a
tailored framework that integrates environmental, technological, and policy dimensions
unique to the UAE oil and gas industry. In doing so, it bridges the gap between theoretical
technology adoption models and their practical application in real-world emission control
systems, offering both academic contributions and actionable insights for industry
stakeholders and policymakers.

2. Formulation of Theoretical Framework

The theoretical framework for this study is grounded in Everett Rogers’ Diffusion of
Innovations (DOI) theory, which provides a structured lens for understanding how new
technologies, such as IoT for greenhouse gas (GHG) monitoring, are adopted within
organizations and society (Rogers, Singhal, & Quinlan, 2014). Building on this foundation,
the framework identifies five key adoption factors that critically influence the successful
implementation of loT-based GHG monitoring in the UAE: Sensor Accuracy and Calibration,
Data Security and Privacy, Connectivity and Network Infrastructure, Interoperability and
Compatibility, and Data Analytics and Processing.

These factors were selected based on their relevance to the UAE’s environmental and
technological context, where oil and gas operations, infrastructure constraints, and regulatory
requirements create unique adoption challenges. The dependent variable in this study is the
effectiveness of GHG monitoring, reflecting the ability to produce accurate, reliable, and
actionable environmental data, as illustrated in Figure 1.

Sensor Accuracy and
Calibration

Data Security and

Privacy
Connectivity and | . GHG Monitoring in

Network Infrastructure UAE

Interoperability and
Compatibility

Data Analytics and
Processing

Figure 1. Theoretical framework
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The novelty of this framework lies in its contextualized adaptation of the DOI theory to the
UAE, a region characterized by specific environmental, technological, and regulatory
dynamics. Unlike prior studies that examine IoT adoption in general industrial or
environmental contexts, this framework integrates five interrelated factors that collectively
address the technical, organizational, and policy dimensions of IoT implementation for GHG
monitoring. This approach offers a localized and holistic perspective, providing insights into
both the enablers and barriers to effective technology adoption in the UAE.

Methodologically, the study advances existing literature by combining DOI theory with
quantitative validation using Partial Least Squares Structural Equation Modeling (PLS-SEM).
This hybrid approach strengthens theoretical rigor while offering robust empirical evidence
on the practical viability and performance of loT-based environmental monitoring systems.

The practical value of the framework is reflected in its capacity to inform decision-making
and implementation strategies. By emphasizing critical elements such as sensor reliability,
cybersecurity robustness, network infrastructure readiness, system interoperability, and
advanced data analytics, the framework ensures that IoT deployments generate accurate,
secure, and actionable environmental data. This, in turn, supports evidence-based
policymaking and regulatory compliance, while enhancing the UAE’s ability to achieve its
GHG reduction targets and broader sustainability objectives. Overall, the framework
effectively bridges the gap between theoretical models of technology adoption and real-world
implementation, offering meaningful contributions to academic discourse as well as
actionable guidance for industry practitioners and policymakers.

3. Modelling of Theoretical Framework

To evaluate the theoretical framework, a questionnaire survey was conducted with 384
employees from the UAE’s Department of Hazard Forecasting, Monitoring, and Control
(HFMC). The respondents were selected based on their involvement in loT-based greenhouse
gas emission monitoring. The collected data was analysed using SmartPLS software, which
applies Structural Equation Modelling (SEM) and the Partial Least Squares (PLS) technique.
Batra, (2025) recommended this method as it is more suitable for theory development than
theory confirmation. The modelling analysis followed several steps. First, the measurement
model was assessed to ensure construct reliability and validity (Gaskin et al., 2025).

Second, the structural model was evaluated to test the hypothesized relationships between the
independent variables, which include sensor accuracy and calibration, data security and
privacy, connectivity and network infrastructure, interoperability and compatibility, and data
analytics and processing, with the dependent variable, Greenhouse Gas (GHG) Monitoring
(Troiville et al., 2025). Finally, the goodness-of-fit indices were reviewed to validate the
overall model fit (Costa et al., 2025). This comprehensive analysis provided a strong
framework for understanding the factors influencing the successful implementation of IoT in
greenhouse gas emission monitoring in the UAE (Fonseca Vargas & Gabardo-Martins, 2025).

537 http://ijssr.macrothink.org



ISSN 2327-5510

\ M ac rot h i n k International Journal of Social Science Research
A Institute ™ 2025, Vol. 13, No. 3

chn

82 omm  PRE

® ]
Dar par? Dary Dapd Daps

Figure 2. The model after path analysis

Figure 2 shows that IC has the strongest positive effect on GMAU (B = 0.534), followed by
DAP (p =0.229), DSP (B =0.181), and CNI (B = 0.104). SAAC has a slight negative effect (§
=—0.040). All constructs are measured by high-loading indicators (>0.80), confirming strong
reliability and convergent validity. The model highlights IC as the most critical predictor of
GMAU.

3.1 Construct Reliability and Validity

Construct reliability assesses the internal consistency of the items that measure a particular
construct, often evaluated using indicators such as Cronbach’s Alpha and Composite
Reliability. Cronbach’s Alpha values above 0.70 indicate acceptable reliability, while values
above 0.80 are considered good. Construct validity, on the other hand, examines whether the
items truly represent the construct they are intended to measure. This is typically assessed
through Convergent Validity and Discriminant Validity. Convergent Validity is indicated by
Average Variance Extracted (AVE) values exceeding 0.50, meaning that more than half of the
variance in the indicators is accounted for by the latent construct (Faishal et al., 2025;
Gradillas & Thomas, 2025). The results of construct reliability and validity are presented in
Table 1.
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Table 1. Results of construct reliability and validity

Constructs  Cronbach’s Alpha  Composite Reliability =~ Average Variance Extracted (AVE)

CNI 0.867 0.904 0.653
DAP 0.881 0.914 0.68

DSP 0.892 0.921 0.699
IC 0.898 0.925 0.712
GMAU 0.898 0.924 0.709
SAAC 0.882 0.914 0.681

The reliability and wvalidity of the constructs were assessed using Cronbach’s Alpha,
Composite Reliability, and Average Variance Extracted (AVE). Connectivity and Network
Infrastructure (CNI) exhibited a Cronbach’s Alpha of 0.867, a Composite Reliability of 0.904,
and an AVE of 0.653, indicating strong reliability and validity. Similarly, Data Analytics and
Processing (DAP) demonstrated a Cronbach’s Alpha of 0.881, a Composite Reliability of
0.914, and an AVE of 0.68, confirming its robustness. For Data Security and Privacy (DSP),
the Cronbach’s Alpha was 0.892, Composite Reliability was 0.921, and AVE was 0.699,
reflecting excellent reliability and validity. Interoperability and Compatibility (IC) had a
Cronbach’s Alpha of 0.898, a Composite Reliability of 0.925, and an AVE of 0.712,
signifying high internal consistency. Greenhouse Gas Monitoring and Use (GMAU) recorded
a Cronbach’s Alpha of 0.898, Composite Reliability of 0.924, and AVE of 0.709, further
supporting strong reliability. Sensor Accuracy and Calibration (SAAC) showed a Cronbach’s
Alpha of 0.882, Composite Reliability of 0.914, and an AVE of 0.681, confirming robust
measurement properties. Since all constructs exceeded the Composite Reliability threshold of
0.70 and the AVE threshold of 0.50, the results validate the measurement model’s strength.

3.2 Discriminant Validity

Discriminant Validity ensures that the constructs are distinct and not highly correlated with
each other, often verified through the Fornell-Larcker criterion or the Heterotrait-Monotrait
Ratio (HTMT) (Batra, 2025). The results of Fornell-Larker test are presented in Table 2.

Table 2. Fornell-Larcker

Construct CNI DAP DSP IC GMAU SAAC
CNI 0.808
DAP 0.703 0.824
DSP 0.715 0.637 0.836
IC 0.701 0.71 0.717 0.844
GMAU 0.652 0.707 0.69 0.809 0.842
SAAC 0.655 0.644 0.731 0.662 0.602 0.825
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Table 2 presents the Fornell-Larcker criterion values to assess the discriminant validity of the
constructs. The Connectivity and Network Infrastructure (CNI) construct has a square root of
the AVE value of 0.808. Data Analytics and Processing (DAP) shows an AVE value of 0.824,
with a correlation of 0.703 with CNI. For Data Security and Privacy (DSP), the AVE value is
0.836, correlating with CNI at 0.715 and DAP at 0.637. Interoperability and Compatibility
(IC) exhibit an AVE value of 0.844, with correlations of 0.701 with CNI, 0.710 with DAP,
and 0.717 with DSP. The Greenhouse Gas Monitoring and Use (GMAU) construct has an
AVE value of 0.842, correlating with CNI at 0.652, DAP at 0.707, DSP at 0.690, and IC at
0.809. Lastly, Sensor Accuracy and Calibration (SAAC) show an AVE value of 0.825, with
correlations of 0.655 with CNI, 0.644 with DAP, 0.731 with DSP, 0.662 with IC, and 0.602
with GMAU. These results demonstrate that each construct is distinct, indicating good
discriminant validity. The results of Heterotrait-Monotrait Ratio are presented in Table 3.

Table 3. Results of Heterotrait-Monotrait Ratio (HTMT)

Construct CNI DAP DSP IC GMAU  SAAC
CNI

DAP 0.804

DSPp 0.812 0.720

IC 0.794 0.800 0.801

GMAU 0.733 0.792 0.769  0.899

SAAC 0.751 0.732 0.822  0.745 0.677

Table 3 shows the results of the Heterotrait-Monotrait ratio (HTMT) test for determining
discriminant validity among constructs. Greenhouse Gas Monitoring and Use (GMAU) and
Interoperability and Compatibility (IC) have the highest correlation (HTMT = 0.899). Data
Security and Privacy (DSP) has a substantial association with Connectivity and Network
Infrastructure (CNI) at 0.812, Data Analytics and Processing (DAP) at 0.72, and IC at 0.801.
Data Analytics and Processing (DAP) also shows associations with CNI (0.804) and IC (0.8).
Sensor Accuracy and Calibration (SAAC) correlate with CNI (0.751), DAP (0.732), DSP
(0.822), IC (0.745), and GMAU (0.677). Overall, these HTMT values show adequate
discriminant validity, as they are below the threshold of 0.90 for the majority.

3.3 Path Strength

In structural equation modelling (SEM), the path strength, also known as the path coefficient,
assesses the link between two variables in the model. A larger path coefficient shows that one
variable has a stronger influence on the other. The significance level of a model reveals the
statistical validity of the hypothesised relationships, which is typically measured using
p-values. A p-value of less than 0.05 normally indicates that the path is statistically significant,
confirming that the observed link is unlikely to have occurred by coincidence (Batra, 2025).
Table 4 shows the results of path strength generated from hypothesis testing on the model.
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Table 4. Results of path strength

Paths Original Sample (O) T Statistics >1.96 Remark

CNI -> GMAU 0.014 0.195 Not significant
DAP -> GMAU 0.229 2.930 Significant
DSP -> GMAU 0.181 2.327 Significant

IC -> GMAU 0.534 7.193 Significant
SAAC -> GMAU -0.040 0.578 Not significant

Table 4 displays the connections between the model’s constructs found by hypothesis testing.
Sensor Accuracy and Calibration (SAAC) and Connectivity and Network Infrastructure (CNI)
are the two minor pathways that lead to GMAU. The other three routes are given a great deal
of weight. The most robust of the three routes is Interoperability and Compatibility (IC) to
GMAU, with a path strength of 0.534. After that, Data Analytics and Processing (DAP) is
transmitted towards GMAU with a path strength of 0.229. Data Security and Privacy (DSP)
have a path strength of 0.181 and is associated with GMAU. Increasing the interoperability
and compatibility of greenhouse gas monitoring systems can significantly improve their
effectiveness.

To ensure the successful implementation of Internet of Things-based greenhouse gas
monitoring systems, strict data security and privacy protocols must be implemented, as well
as a strong emphasis on strong data analytics and processing. This is necessary to guarantee
the success of the implementation. The findings indicate that these essential aspects must be
considered to ensure that the Internet of Things (IoT) technology used in environmental
monitoring operations in the United Arab Emirates is both effective and reliable.

3.4 Model Fitness

The R square value is a measure of the fitness of a model, and it indicates the proportion of
the variance in dependent variables that can be accounted for by independent variables. In
structural equation modelling (SEM), the R? value is a metric frequently used to evaluate the
model’s fit. This evaluation ensures that the model is accurate. One indication of this is a
higher R? value, which indicates a better fit between the model and the data and an increase
in the power of explanation (Troiville et al., 2025). An illustration of the value of the model’s
R? can be found in Table 5.

Table 5. R square value of the model

Dependent construct R Square
GMAU 0.703

Table 5 shows a R? value of 0.703 for Greenhouse Gas Monitoring and Use (GMAU),
indicating that the model explains around 70.3% of the variance. The results indicate that the
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model’s GMAU explanatory powers are strong.

Fit indices of the saturated model, such as SRMR, d ULS, d G, Chi-Square, and NFI, are
also used to evaluate how well the proposed model fits the data. The indicators displayed
offer a thorough assessment of model performance (Batra, 2025). The model’s fit indices are
displayed in Table 6.

Table 6. Fit indices of the saturated model

Indices Saturated Model Estimated Model
SRMR 0.052 0.052

d ULS 1.249 1.249

d G 0.706 0.706

Chi-Square 1590.84 1590.84

NFI 0.829 0.829

The model fitness indices in Table 6 show that the values of the Saturated Model and the
Estimated Model are the same. A Standardised Root Mean Square Residual (SRMR) value of
0.052 indicates a robust fit. The difference between the d ULS value of 1.249 and the d G
value of 0.706 is significant. The Chi-Square score of 1590.84 and the NFI of 0.829 both
show that the model fits the data well. The similar values in the two models validate the
robustness of the model fit.

3.5 Model Predictive Relevance

Batra, (2025) utilize Cross-Validated Redundancy (CVR) to assess the model’s ability to
predict endogenous constructs through the Q? value, while Construct Cross-Validated
Communality (CVC) evaluates the shared characteristics of each construct to ensure that
indicators effectively measure their respective latent components (Fonseca Vargas &
Gabardo-Martins, 2025). Both metrics provide essential insights into the model’s robustness
and measurement accuracy. A high Q? value in CVR signifies strong predictive relevance,
confirming the model’s capability to forecast future data points accurately. Similarly, a high
Q? value in CVC indicates that a substantial portion of variance in the indicators is explained
by their corresponding latent constructs, reflecting high communality and strong
measurement quality.

542 http://ijssr.macrothink.org



A ISSN 2327-5510
Institute™ 2025, Vol. 13, No. 3

Table 7. Results of Construct Cross Validated Communality (CVR)

A\ M ac rot h i n k International Journal of Social Science Research

Constructs SSO SSE Q? (=1-SSE/SS0O)
Constructs SSO SSE  Q?(=1-SSE/SSO)

Independent CNI 1990 1990

Independent DAP 1990 1990

Independent DSP 1990 1990

Dependent GMAU 1990 1018.261 0.488
Independent IC 1990 1990

The dependent construct in Table 7, Greenhouse Gas Monitoring and Use (GMAU), has an
SSO of 1990 and an SSE of 1018.261, yielding a Q* value of 0.488. The model demonstrates
a reasonable level of predictive relevance for the GMAU construct, as evidenced by a Q?
value exceeding 0.35, which suggests sufficient predictive capability. The score indicates that
the model accounts for approximately 48.8% of the variance in GMAU, demonstrating its
effectiveness in forecasting outcomes related to this dependent variable.

Table 8. Results of Construct Cross Validated Communality (CVC)

Constructs SSO SSE Q? (=1-SSE/SSO)
Independent CNI 1990 1048.902 0.473
Independent DAP 1990 971.505 0.512
Independent DSP 1990 912.077 0.542
Dependent GMAU 1990 883.721 0.556
Independent IC 1990 875.612 0.560
Independent SAAC 1990 960.813 0.517

Table 8 presents the Q? values for each construct, demonstrating their predictive relevance.
The Connectivity and Network Infrastructure (CNI) construct has a Q? score of 0.473, with a
Sum of Squares Observed (SSO) of 1990 and a Sum of Squares Error (SSE) of 1048.902,
indicating moderate predictive relevance. The Data Analytics and Processing (DAP) construct
shows a Q2 value of 0.512, an SSO of 1990, and an SSE of 971.505, suggesting slightly
higher predictive importance. The Data Security and Privacy (DSP) construct exhibits a Q?
score of 0.542, with an SSO of 1990 and an SSE of 912.077, highlighting considerable
predictive significance. The dependent construct, Greenhouse Gas Monitoring and Use
(GMAU), demonstrates strong predictive relevance with a Q? value of 0.556, an SSO of 1990,
and an SSE of 883.721. Similarly, the Interoperability and Compatibility (IC) construct
displays excellent predictive significance with a Q? score of 0.560, an SSO of 1990, and an
SSE of 875.612.

Overall, the validated model demonstrates strong explanatory and predictive capabilities,
accounting for 70.3% of the variance in greenhouse gas monitoring effectiveness. The Q?
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values above 0.35 confirm the model’s predictive relevance, while the SRMR value of 0.052
indicates a robust fit between the hypothesized and observed data. Collectively, these metrics
confirm that the proposed IoT adoption framework is not only statistically sound but also
practically effective in guiding environmental monitoring strategies in the UAE.

4. Validated Framework

According to Saunders, a validated framework is developed after the theoretical or
conceptual framework has been validated with empirical evidence (Gradillas & Thomas,
2025). It relies on data collected from observations, surveys, experiments, or other empirical
methods. Specifically, the validated framework focuses on testing the relationships and
hypotheses defined in the theoretical or conceptual framework using actual data, with a
particular emphasis on evidence derived from real-world observations. Consequently, based
on the hypothesis testing results in the path strength section, the validated framework for this
study is illustrated in Figure 3.

Sensor Accuracy and Not significant
Calibration [SAAC]

Data Security and Significant, 0.181
Privacy [DSP]

— e
i UAE [GMAU]
—_—

Interoperability and
Compatibility [IC] Significant, 0.534

Data Analytics and Significant, 0.229
Processing [DAP]

Figure 3. The validated framework

The validated framework highlights significant relationships in greenhouse gas monitoring in
the UAE. Significant paths, represented by blue lines, indicate that Data Security and Privacy
(DSP), Interoperability and Compatibility (IC), and Data Analytics and Processing (DAP)
have a strong impact on Greenhouse Gas Monitoring (GMAU), with path coefficients of
0.181, 0.534, and 0.229, respectively. In contrast, non-significant paths, represented by red
lines, include the relationships between Sensor Accuracy and Calibration (SAAC),
Connectivity and Network Infrastructure (CNI), and GMAU. This validated framework
aligns with and contrasts previous research, offering valuable insights.

The study confirms that DSP, IC, and DAP are critical factors in greenhouse gas monitoring,
while SAAC and CNI do not significantly impact GMAU. Prior studies, such as those by
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(Salim et al., 2025) and (Samha et al., 2025), emphasize the importance of robust data
security and privacy measures in environmental monitoring. These studies found that
effective data security policies enhance data reliability and trustworthiness. Consistently, the
current framework establishes a strong link between DSP and GMAU, reinforcing the role of
data security in greenhouse gas monitoring.

Similarly, (Adeoye, 2025) and (Harum et al, 2024) highlight interoperability and
compatibility as essential in IoT systems, noting that seamless integration enhances data
collection and processing. The current framework validates this, showing a significant
positive impact of IC on GMAU, underscoring the need for efficient system integration.
Additionally, studies by (Baharon et al., 2024) and (Vij & Goyal, 2025) stress the role of
advanced data analytics in environmental monitoring, demonstrating that sophisticated
analytics improve data accuracy and generate meaningful insights. This study supports these
findings, confirming a strong relationship between DAP and GMAU, highlighting the
necessity of advanced data processing in emission monitoring.

Previous research, including (Pandian & Disney, 2025) and (Aldawsari, 2025), has suggested
that sensor accuracy is crucial for reliable data collection in environmental monitoring.
However, the present framework finds no significant impact of SAAC on GMAU, suggesting
that while sensor precision is important, other factors such as DSP, IC, and DAP may have a
more substantial influence in the UAE’s specific context. Similarly, studies by (Dritsas &
Trigka, 2025) and (Maraveas, Loukatos, & Arvanitis, 2025) emphasize the importance of
network infrastructure in loT-based systems for real-time data transmission. In contrast, this
framework finds CNI to be an insignificant factor in GMAU, potentially due to specific
implementation conditions in the UAE.

As compared with prior researches, the study identifies key areas for optimizing greenhouse
gas monitoring. DSP, IC, and DAP are critical factors, while SAAC and CNI have a lower
impact. This contributes to existing knowledge by assessing these factors in the UAE’s
unique setting and providing insights for resource allocation, system integration, and
decision-making to enhance environmental monitoring efforts.

5. Discussion

An unexpected until now theoretically meaningful finding of this study is the lack of a
statistically significant effect of Sensor Accuracy and Calibration (SAAC) and Connectivity
and Network Infrastructure (CNI) on the adoption of IoT-based greenhouse gas (GHQG)
monitoring systems. While prior studies frequently identify these factors as critical
technological enablers of IoT adoption (Atzori et al., 2010; Gubbi et al., 2013), their
insignificance in the present model can be explained by contextual characteristics specific to
the UAE’s technological, regulatory, and institutional environment.

5.1 Sensor Accuracy and Calibration (SAAC)

In many emerging or less technologically mature contexts, sensor accuracy and calibration
are regarded as major adoption barriers due to inconsistent standards, limited technical
expertise, and fragmented maintenance practices (Kumar et al., 2019; Li et al., 2020).
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However, in the UAE context, sensor accuracy appears to function as a baseline requirement
rather than a differentiating adoption determinant. Large industrial emitters particularly in the
oil, gas, and energy sectors that operate under stringent regulatory regimes and internationally
recognized compliance standards, such as ISO 14064 and other environmental reporting
frameworks.

As a result, organizations tend to procure certified, vendor-managed sensor solutions with
standardized calibration protocols embedded within service-level agreements. This
institutionalization of accuracy and calibration minimizes performance variability and
reduces managerial concern over technical reliability. Consequently, decision-makers are
more likely to focus on strategic and organizational factors, including regulatory compliance,
perceived usefulness, and organizational readiness, rather than sensor-level technical
characteristics.

From a theoretical perspective, this finding aligns with Diffusion of Innovations (DOI) theory,
which posits that once an innovation attribute becomes standardized and widely accepted, its
influence on adoption decisions diminishes (Rogers, 2003). In this sense, SAAC operates as a
hygiene factor which is necessary for operational functionality but insufficient to motivate
adoption independently.

5.2 Connectivity and Network Infrastructure (CNI)

Similarly, the insignificance of CNI can be attributed to the UAE’s highly advanced and
reliable digital infrastructure ecosystem. The country has invested extensively in nationwide
broadband connectivity, 5G networks, cloud computing platforms, and industrial IoT
ecosystems, particularly in strategically important sectors (Al-Fuqaha et al., 2015; Khan et al.,
2022). For most organizations included in this study, connectivity is already robust,
ubiquitous, and centrally managed, thereby eliminating it as a perceived adoption barrier.

Moreover, many GHG monitoring initiatives in the UAE operate within centralized or hybrid
system architectures, where data collection, transmission, and analytics are managed through
secure enterprise platforms rather than decentralized or ad hoc networks. In such
environments, connectivity challenges are abstracted away from operational users and
handled at the organizational or governmental level. As noted by Porter and Heppelmann
(2014), when digital infrastructure becomes embedded and invisible to users, it loses salience
as an adoption determinant.

Accordingly, adoption decisions are driven less by infrastructural readiness and more by
organizational alignment, regulatory pressures, and value realization, which is consistent with
the significant effects observed for regulatory compliance and perceived usefulness in the
model.

5.3 Infrastructure Maturity and Centralized Governance

The findings indicate that the UAE has reached a stage of digital and infrastructural maturity
in which foundational technological elements such as sensor accuracy and network
connectivity no longer explain variation in adoption behaviour. Instead, loT adoption for
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GHG monitoring is shaped by institutional forces, governance structures, and strategic
priorities, reflecting a transition from technology-centric to organization-centric adoption
dynamics.

This observation is consistent with prior research suggesting that in digitally advanced
environments, innovation adoption is increasingly influenced by organizational capabilities
and institutional legitimacy rather than basic technical feasibility (Zhu et al., 2006; Venkatesh
et al.,, 2012). Therefore, this study contributes to the literature by demonstrating that IoT
adoption determinants are context-dependent and evolve alongside national digital
ecosystems.

5.4 Theoretical Implications (Addition)

These results extend Diffusion of Innovations theory by illustrating that the relative
importance of technological attributes is contingent upon ecosystem maturity. In advanced
digital contexts, adoption decisions shift away from technical characteristics toward
organizational readiness and institutional alignment, suggesting the need for DOI-based
models to more explicitly account for environmental and governance-level moderators.

5.5 Practical and Policy Implications

For policymakers, the findings suggest that sustained investment in standardization,
certification, and centralized infrastructure governance has effectively reduced technical
adoption barriers. Future policy initiatives should therefore prioritize data interoperability,
analytics capability, and cross-organizational integration, rather than further infrastructure
expansion (OECD, 2021).

For industry practitioners, the results imply that competitive advantage in IoT-enabled GHG
monitoring is more likely to arise from effective data utilization, organizational capabilities,
and compliance integration, rather than incremental improvements in sensor precision or
network performance.

5.6 Limitations and Future Research

Although SAAC and CNI were not significant in this study, future research could examine
their roles in small and medium-sized enterprises (SMEs) or in less regulated sectors, where
infrastructure maturity and standardization may be lower. Cross-country comparative studies
would further help identify the boundary conditions under which technological factors regain
explanatory power.

6. Conclusion

This study presents the development of a validated framework designed to identify the key
factors influencing the effective integration of IoT into the UAE’s greenhouse gas (GHG)
emission monitoring system. The framework was initially crafted using data from 384
employees at the UAE’s Department of Hazard Forecasting, Monitoring, and Control
(HFMC). The model’s measurement and structural components were rigorously evaluated
using SmartPLS software, confirming that the model met fitness standards and was
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statistically sound.

The novelty of this research lies in its empirical validation of the factors that significantly
impact GHG monitoring in the UAE, with specific emphasis on Data Security and Privacy
(DSP), Interoperability and Compatibility (IC), and Data Analytics and Processing (DAP).
These factors were found to have a substantial effect on the effectiveness of IoT-based
monitoring systems. The study highlights the critical role of these factors in driving
successful IoT adoption, offering new insights into how they contribute to improving the
UAE’s GHG monitoring capabilities.

The validated framework developed in this study provides a practical tool for stakeholders,
assisting in resource allocation, system integration, and informed decision-making aimed at
enhancing environmental monitoring programs. By addressing key barriers and drivers
identified through rigorous testing, the framework contributes to advancing the UAE’s efforts
in reducing GHG emissions and improving environmental sustainability. Furthermore, the
findings offer a foundation for future research and policy-making that can support loT-driven
innovation in climate change mitigation efforts globally.

References

Adeoye, S. (2025). Internet of Things (IoT): A vision, architectural elements and future
directions.  Cognizance Journal of Multidisciplinary  Studies, 5(1), 316-338.
https://doi.org/10.47760/cognizance.2025.v05101.027

Al-Fugaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of
Things: A survey on enabling technologies, protocols, and applications. [EEE
Communications Surveys & Tutorials, 17(4), 2347-2376.
https://doi.org/10.1109/COMST.2015.2444095

Aldawsari, H. (2025). A blockchain-based approach for secure energy-efficient loT-based
wireless sensor networks for smart cities. Alexandria Engineering Journal, 126, 1-7.
https://doi.org/10.1016/j.aej.2025.04.052

Ali, T. E., Ali, F. 1., Daki¢, P., & Zoltan, A. D. (2025). Trends, prospects, challenges, and
security in the healthcare internet of things. Computing, 107(1), 28.
https://doi.org/10.1007/s00607-024-01352-4

Atzori, L., lera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer
Networks, 54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010

Badhan, A., Kaur, P.,, Kumar, A., & Mishra, V. P. (2025). Leveraging Al and IoT for smart
transportation in the UAE: Challenges, opportunities, and strategic roadmap (pp. 364-369).
2025 8th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE.
https://doi.org/10.1109/ICOEI65986.2025.11013108

Baharon, M. R., Yahaya, S. H., AlShannaq, O., Mohd Shah, H. N., & MacDermott, A. (2024).
Secure industrial IoT data aggregation in the manufacturing industry using lightweight
homomorphic encryption scheme. Journal of Advanced Manufacturing Technology (JAMT),

548 http://ijssr.macrothink.org



A ISSN 2327-5510
Institute™ 2025, Vol. 13, No. 3

18(3), 207-218.

A\ M ac rot h i n k International Journal of Social Science Research

Batra, S. (2025). Exploring the application of PLS-SEM in construction management
research: A bibliometric and meta-analysis approach. Engineering, Construction and
Architectural Management, 32(4), 2697-2727. https://doi.org/10.1108/ECAM-04-2023-0316

Climate Central. (2022). Soaring CO: raising global temperatures, another record set this
year, 2022. Chief Meteorologist Steve LaPointe. Retrieved from
https://cbs6albany.com/weather/weather-extra/gallery/soaring-co2-raising-global-temperature
s-another-record-set-this-year-2022?photo=3

Costa, M. L., Donate Beby, B., Cabrera Lanzo, N., & Maina, M. F. (2025). Understanding Al
adoption among secondary education teachers: A PLS-SEM approach. Computers and
Education: Artificial Intelligence, 100416. https://doi.org/10.1016/j.caecai.2025.100416

Dizdarevi¢, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (2019). A survey of communication
protocols for internet of things and related challenges of fog and cloud computing integration.
ACM Computing Surveys, 51(6), 1-29. https://doi.org/10.1145/3292674

Dritsas, E., & Trigka, M. (2025). Federated learning for IoT: A survey of techniques,

challenges, and applications. Journal of Sensor and Actuator Networks, 14(1), 9.
https://doi.org/10.3390/jsan14010009

Faishal, M., Mohamad, E., Asih, H. M., Abdul Rahman, A. A., & Adiyanto, O. (2025). Halal
principle and operational performance of MSMEs industries: Mediating role of lean six sigma
and sustainability. Journal of Advanced Manufacturing Technology (JAMT), 19(1), 81-98.

Fonseca Vargas, A. A., & Gabardo-Martins, L. A. R. I. S. S. A. (2025). The state of the art on
structural equation modeling. TPM: Testing, Psychometrics, Methodology in Applied
Psychology, 32(1).

Gaskin, J. E., Lowry, P. B., Rosengren, W., & Fife, P. T. (2025). Essential validation criteria
for rigorous covariance-based structural equation modelling. Information Systems Journal.
https://doi.org/10.1111/isj.12598

Gradillas, M., & Thomas, L. D. W. (2025). Distinguishing digitization and digitalization: A
systematic review and conceptual framework. Journal of Product Innovation Management,
42(1), 112—143. https://doi.org/10.1111/jpim.12690

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer Systems,
29(7), 1645-1660. https://doi.org/10.1016/j.future.2013.01.010

Hao, J., Liu, Z., Hu, B., Wang, D., Rangarajan, S., Wang, Y., Wang, C., et al. (2025).
Long-term exposure to outdoor fine particulate and physical activity with mortality and
cardiovascular events: An analysis of the Prospective Urban Rural Epidemiology
(PURE)-China cohort study. The Lancet Regional Health-Western Pacific, 59.
https://doi.org/10.1016/j.lanwpc.2025.101584

549 http://ijssr.macrothink.org



A ISSN 2327-5510
Institute™ 2025, Vol. 13, No. 3

Harum, N., Emran, N. A., Md Fauadi, M. H. F., Hamid, E., Khambari, M. N. M., Ridzuan, M.
M., & Kchouri, M. (2024). An automated data logger system for real-time monitoring and
anomaly detection in industrial IoT environment. Journal of Advanced Manufacturing
Technology (JAMT), 18(3).

A\\ M ac rot h i n k International Journal of Social Science Research

IPCC. (2021). Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press. Retrieved from
https://www.ipcc.ch/report/ar6/wgl/

Maraveas, C., Loukatos, D., & Arvanitis, K. G. (2025). Intelligent sensors: Wireless sensor
networks and Internet of Things. In Nature-Derived Sensors (pp. 295-339). Elsevier.
https://doi.org/10.1016/B978-0-443-22002-9.00009-9

Marzouk, O. A. (2025). Summary of the 2023 report of TCEP (tracking clean energy progress)
by the International Energy Agency (IEA), and proposed process for computing a single
aggregate rating. E3S Web of Conferences, 601, 00048. EDP Sciences.
https://doi.org/10.1051/e3sconf/202560100048

Pandian, P., & Disney, A. (2025). Integrating Al with IoT: Challenges and solutions. In
Merging Artificial Intelligence with the Internet of Things (pp. 1-32). IGI Global Scientific
Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch001

Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming
competition. Harvard Business Review, 92(11), 64—88.

Reisinger, A., Fuglestvedt, J. S., Pirani, A., Geden, O., Jones, C. D., Maharaj, S., Poloczanska,
E. S., et al. (2025). Overshoot: A conceptual review of exceeding and returning to global

warming of 1.5°C. Annual Review of Environment and Resources, 50.
https://doi.org/10.1146/annurev-environ-111523-102029

Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press.

Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An
integrated approach to communication theory and research (pp. 432—448). Routledge.

Salim, S., Moustafa, N., & Turnbull, B. (2025). Privacy preservation of Internet of
Things-integrated social networks: A survey and future challenges. International Journal of
Web Information Systems. https://doi.org/10.1108/IJWIS-04-2024-0120

Samha, A. K., Alshammri, G. H., Pani, N. K., Misra, Y., & Kolluru, V. R. (2025).
Privacy-preserving wireless sensor networks for e-healthcare applications. International
Journal of Cooperative Information Systems, 34(02), 2450006.
https://doi.org/10.1142/S0218843024500060

Santos, R., Sgouridis, S., & Alhajaj, A. (2021). Potential of CO:-enhanced oil recovery
coupled with carbon capture and storage in mitigating greenhouse gas emissions in the UAE.
International Journal of Greenhouse Gas Control, 111, 103485.
https://doi.org/10.1016/j.ijggc.2021.103485

550 http://ijssr.macrothink.org



ISSN 2327-5510

\ M ac rot h i n k International Journal of Social Science Research
A Institute ™ 2025, Vol. 13, No. 3

Troiville, J., Moisescu, O. 1., & Radomir, L. (2025). Using necessary condition analysis to
complement multigroup analysis in partial least squares structural equation modeling.
Journal of Retailing and Consumer Services, 82, 104018.
https://doi.org/10.1016/j.jretconser.2024.104018

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information
technology. MIS Quarterly, 36(1), 157—178. https://doi.org/10.2307/41410412

Vij, A., & Goyal, A. (2025). Enhancing decision-making in IoT ecosystems with big data
analytics and Hadoop frameworks. Cuestiones de Fisioterapia, 54(2), 1334-1350.

Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in
different countries. Management Science, 52(10), 1557-1576.
https://doi.org/10.1287/mnsc.1050.0487

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to
the journal.

This is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

551 http://ijssr.macrothink.org



