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Abstract  

This study presents the development of a framework that identifies and evaluates the key 
adoption factors for successfully deploying Internet of Things (IoT) technologies in the 
monitoring of greenhouse gas emissions within the United Arab Emirates. A unique aspect of 
this research lies in its focus on a specific sector, involving 384 employees from the UAE’s 
Department of Hazard Forecasting, Monitoring, and Control (HFMC), who are directly 
engaged with IoT-based emissions monitoring. The study employs a robust methodological 
approach, using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) with 
SmartPLS software to analyze both the measurement and structural components of the model. 
The findings reveal that Interoperability and Compatibility (IC) is the most influential factor 
in greenhouse gas monitoring and utilization (GMAU), followed by Data Analytics and 
Processing (DAP) and Data Security and Privacy (DSP). Interestingly, Sensor Accuracy and 
Calibration (SAAC) and Connectivity and Network Infrastructure (CNI) were found to have 
negligible impacts. This study underscores the crucial importance of advanced data analytics 
capabilities and stringent data security measures in ensuring the effectiveness of IoT in 
emissions monitoring. Furthermore, it highlights that enhancing IC significantly boosts 
monitoring efficiency, providing novel insights into the factors that drive IoT adoption for 
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environmental monitoring. The study’s findings also demonstrate that the proposed 
framework has strong predictive relevance, as evidenced by Q² values exceeding 0.35, which 
further reinforces its practical applicability. This research contributes novel insights into the 
deployment of IoT for environmental monitoring, offering a comprehensive guide for 
improving emissions tracking in the UAE. 

Keywords: theoretical framework, validated framework, IoT, greenhouse gas emission 
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1. Introduction  

Efforts to reduce greenhouse gas (GHG) emissions have evolved from environmental 
concerns to national priorities, with the 1992 Rio UN Conference and the UN Framework 
Convention on Climate Change (UNFCCC) shaping global approaches to air pollution. In the 
UAE, the oil and gas sector contributes over 90% of total emissions, making effective 
mitigation measures essential. Rising CO₂ levels exacerbate global warming and water 
scarcity, highlighting the need for accurate GHG monitoring to support climate action (IPCC, 
2021). Effective emission control depends on reliable data collection and supportive policies 
that encourage technology adoption, yet many countries, including the UK, Germany, and the 
Netherlands, struggle with inadequate monitoring, resulting in environmental and health risks 
(Hao et al., 2025). Without robust controls, climate-related challenges such as extreme 
weather events and rising sea levels will continue to threaten sustainable development 
(Reisinger et al., 2025). 

The adoption of the Internet of Things (IoT) for emissions monitoring offers significant 
potential by enabling real-time data collection, remote sensing, and advanced analytics across 
extraction, processing, and transportation operations (Marzouk, 2025; Climate Central, 2022). 
However, widespread implementation faces several adoption barriers, including data security 
vulnerabilities, uncertain returns on investment, immature technologies, high implementation 
costs, and compatibility challenges with existing oil and gas infrastructure (Badhan et al., 
2025; Ali et al., 2025). Overcoming these barriers requires a comprehensive understanding of 
the key adoption factors that drive successful IoT deployment, supported by collaboration, 
investment in advanced technologies, and robust data governance. When effectively 
implemented, IoT-generated data can enhance regulatory compliance, inform evidence-based 
policy decisions, and accelerate the UAE’s transition toward low-carbon energy (Dizdarević 
et al., 2019; Santos et al., 2021). 

In parallel, the UAE has articulated ambitious climate commitments aligned with global 
frameworks such as the Paris Agreement. Within this national agenda, Abu Dhabi National 
Oil Company (ADNOC) has established clear decarbonization targets, including a 25% 
reduction in GHG emissions intensity by 2030 and the capture of 5 million tonnes of CO₂ 
annually through carbon capture and enhanced oil recovery initiatives. ADNOC has also 
adopted the Energy Management System (EnMS) in compliance with ISO 50001:2018 
standards, with the objective of achieving a 5% improvement in energy efficiency by 2025 
(Dizdarević et al., 2019). These initiatives highlight the growing importance of advanced 
monitoring frameworks that not only leverage IoT capabilities but also address sector-specific 
adoption requirements, such as technology readiness, infrastructure integration, cybersecurity 
resilience, cost-effectiveness, and alignment with national climate policies. 

The proposed framework is novel in its contextualized application of IoT adoption to 
greenhouse gas monitoring within the UAE oil and gas sector. Rather than treating IoT 
adoption as a generic technological process, the framework explicitly bridges conventional 
fossil-fuel operations with emerging low-carbon and digital technologies. Its effectiveness is 
grounded in its ability to ensure accurate and reliable emissions data, mitigate cybersecurity 
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risks, demonstrate economic feasibility, enable seamless integration with existing operational 
systems, and support regulatory compliance. By addressing these critical adoption factors, the 
framework positions IoT as a strategic enabler of efficient GHG monitoring, sustainable 
industrial operations, and the UAE’s broader energy transition objectives. 

Overall, the novelty of this research lies in its sector-specific and context-sensitive integration 
of IoT adoption principles with environmental monitoring requirements in the UAE. Unlike 
existing global models that generalize IoT adoption across industries, this study develops a 
tailored framework that integrates environmental, technological, and policy dimensions 
unique to the UAE oil and gas industry. In doing so, it bridges the gap between theoretical 
technology adoption models and their practical application in real-world emission control 
systems, offering both academic contributions and actionable insights for industry 
stakeholders and policymakers. 

2. Formulation of Theoretical Framework  

The theoretical framework for this study is grounded in Everett Rogers’ Diffusion of 
Innovations (DOI) theory, which provides a structured lens for understanding how new 
technologies, such as IoT for greenhouse gas (GHG) monitoring, are adopted within 
organizations and society (Rogers, Singhal, & Quinlan, 2014). Building on this foundation, 
the framework identifies five key adoption factors that critically influence the successful 
implementation of IoT-based GHG monitoring in the UAE: Sensor Accuracy and Calibration, 
Data Security and Privacy, Connectivity and Network Infrastructure, Interoperability and 
Compatibility, and Data Analytics and Processing.  

These factors were selected based on their relevance to the UAE’s environmental and 
technological context, where oil and gas operations, infrastructure constraints, and regulatory 
requirements create unique adoption challenges. The dependent variable in this study is the 
effectiveness of GHG monitoring, reflecting the ability to produce accurate, reliable, and 
actionable environmental data, as illustrated in Figure 1. 

 

 

Figure 1. Theoretical framework 
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The novelty of this framework lies in its contextualized adaptation of the DOI theory to the 
UAE, a region characterized by specific environmental, technological, and regulatory 
dynamics. Unlike prior studies that examine IoT adoption in general industrial or 
environmental contexts, this framework integrates five interrelated factors that collectively 
address the technical, organizational, and policy dimensions of IoT implementation for GHG 
monitoring. This approach offers a localized and holistic perspective, providing insights into 
both the enablers and barriers to effective technology adoption in the UAE. 

Methodologically, the study advances existing literature by combining DOI theory with 
quantitative validation using Partial Least Squares Structural Equation Modeling (PLS-SEM). 
This hybrid approach strengthens theoretical rigor while offering robust empirical evidence 
on the practical viability and performance of IoT-based environmental monitoring systems. 

The practical value of the framework is reflected in its capacity to inform decision-making 
and implementation strategies. By emphasizing critical elements such as sensor reliability, 
cybersecurity robustness, network infrastructure readiness, system interoperability, and 
advanced data analytics, the framework ensures that IoT deployments generate accurate, 
secure, and actionable environmental data. This, in turn, supports evidence-based 
policymaking and regulatory compliance, while enhancing the UAE’s ability to achieve its 
GHG reduction targets and broader sustainability objectives. Overall, the framework 
effectively bridges the gap between theoretical models of technology adoption and real-world 
implementation, offering meaningful contributions to academic discourse as well as 
actionable guidance for industry practitioners and policymakers. 

3. Modelling of Theoretical Framework  

To evaluate the theoretical framework, a questionnaire survey was conducted with 384 
employees from the UAE’s Department of Hazard Forecasting, Monitoring, and Control 
(HFMC). The respondents were selected based on their involvement in IoT-based greenhouse 
gas emission monitoring. The collected data was analysed using SmartPLS software, which 
applies Structural Equation Modelling (SEM) and the Partial Least Squares (PLS) technique. 
Batra, (2025) recommended this method as it is more suitable for theory development than 
theory confirmation. The modelling analysis followed several steps. First, the measurement 
model was assessed to ensure construct reliability and validity (Gaskin et al., 2025).  

Second, the structural model was evaluated to test the hypothesized relationships between the 
independent variables, which include sensor accuracy and calibration, data security and 
privacy, connectivity and network infrastructure, interoperability and compatibility, and data 
analytics and processing, with the dependent variable, Greenhouse Gas (GHG) Monitoring 
(Troiville et al., 2025). Finally, the goodness-of-fit indices were reviewed to validate the 
overall model fit (Costa et al., 2025). This comprehensive analysis provided a strong 
framework for understanding the factors influencing the successful implementation of IoT in 
greenhouse gas emission monitoring in the UAE (Fonseca Vargas & Gabardo-Martins, 2025). 
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Figure 2. The model after path analysis 

 

Figure 2 shows that IC has the strongest positive effect on GMAU (β = 0.534), followed by 
DAP (β = 0.229), DSP (β = 0.181), and CNI (β = 0.104). SAAC has a slight negative effect (β 
= –0.040). All constructs are measured by high-loading indicators (>0.80), confirming strong 
reliability and convergent validity. The model highlights IC as the most critical predictor of 
GMAU. 

3.1 Construct Reliability and Validity  

Construct reliability assesses the internal consistency of the items that measure a particular 
construct, often evaluated using indicators such as Cronbach’s Alpha and Composite 
Reliability. Cronbach’s Alpha values above 0.70 indicate acceptable reliability, while values 
above 0.80 are considered good. Construct validity, on the other hand, examines whether the 
items truly represent the construct they are intended to measure. This is typically assessed 
through Convergent Validity and Discriminant Validity. Convergent Validity is indicated by 
Average Variance Extracted (AVE) values exceeding 0.50, meaning that more than half of the 
variance in the indicators is accounted for by the latent construct (Faishal et al., 2025; 
Gradillas & Thomas, 2025). The results of construct reliability and validity are presented in 
Table 1. 

 



International Journal of Social Science Research 
ISSN 2327-5510 

2025, Vol. 13, No. 3 

http://ijssr.macrothink.org 539

Table 1. Results of construct reliability and validity 

Constructs  Cronbach’s Alpha Composite Reliability Average Variance Extracted (AVE) 
CNI 0.867 0.904 0.653 
DAP 0.881 0.914 0.68 
DSP 0.892 0.921 0.699 
IC 0.898 0.925 0.712 
GMAU 0.898 0.924 0.709 
SAAC 0.882 0.914 0.681 

 

The reliability and validity of the constructs were assessed using Cronbach’s Alpha, 
Composite Reliability, and Average Variance Extracted (AVE). Connectivity and Network 
Infrastructure (CNI) exhibited a Cronbach’s Alpha of 0.867, a Composite Reliability of 0.904, 
and an AVE of 0.653, indicating strong reliability and validity. Similarly, Data Analytics and 
Processing (DAP) demonstrated a Cronbach’s Alpha of 0.881, a Composite Reliability of 
0.914, and an AVE of 0.68, confirming its robustness. For Data Security and Privacy (DSP), 
the Cronbach’s Alpha was 0.892, Composite Reliability was 0.921, and AVE was 0.699, 
reflecting excellent reliability and validity. Interoperability and Compatibility (IC) had a 
Cronbach’s Alpha of 0.898, a Composite Reliability of 0.925, and an AVE of 0.712, 
signifying high internal consistency. Greenhouse Gas Monitoring and Use (GMAU) recorded 
a Cronbach’s Alpha of 0.898, Composite Reliability of 0.924, and AVE of 0.709, further 
supporting strong reliability. Sensor Accuracy and Calibration (SAAC) showed a Cronbach’s 
Alpha of 0.882, Composite Reliability of 0.914, and an AVE of 0.681, confirming robust 
measurement properties. Since all constructs exceeded the Composite Reliability threshold of 
0.70 and the AVE threshold of 0.50, the results validate the measurement model’s strength. 

3.2 Discriminant Validity  

Discriminant Validity ensures that the constructs are distinct and not highly correlated with 
each other, often verified through the Fornell-Larcker criterion or the Heterotrait-Monotrait 
Ratio (HTMT) (Batra, 2025). The results of Fornell-Larker test are presented in Table 2. 

 

Table 2. Fornell-Larcker 

 Construct  CNI DAP DSP IC GMAU SAAC 
CNI 0.808      
DAP 0.703 0.824     
DSP 0.715 0.637 0.836    
IC 0.701 0.71 0.717 0.844   
GMAU 0.652 0.707 0.69 0.809 0.842  
SAAC 0.655 0.644 0.731 0.662 0.602 0.825 
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Table 2 presents the Fornell-Larcker criterion values to assess the discriminant validity of the 
constructs. The Connectivity and Network Infrastructure (CNI) construct has a square root of 
the AVE value of 0.808. Data Analytics and Processing (DAP) shows an AVE value of 0.824, 
with a correlation of 0.703 with CNI. For Data Security and Privacy (DSP), the AVE value is 
0.836, correlating with CNI at 0.715 and DAP at 0.637. Interoperability and Compatibility 
(IC) exhibit an AVE value of 0.844, with correlations of 0.701 with CNI, 0.710 with DAP, 
and 0.717 with DSP. The Greenhouse Gas Monitoring and Use (GMAU) construct has an 
AVE value of 0.842, correlating with CNI at 0.652, DAP at 0.707, DSP at 0.690, and IC at 
0.809. Lastly, Sensor Accuracy and Calibration (SAAC) show an AVE value of 0.825, with 
correlations of 0.655 with CNI, 0.644 with DAP, 0.731 with DSP, 0.662 with IC, and 0.602 
with GMAU. These results demonstrate that each construct is distinct, indicating good 
discriminant validity. The results of Heterotrait-Monotrait Ratio are presented in Table 3. 

 

Table 3. Results of Heterotrait-Monotrait Ratio (HTMT) 

Construct CNI DAP DSP IC GMAU SAAC 
CNI       
DAP 0.804      
DSP 0.812 0.720     
IC 0.794 0.800 0.801    
GMAU 0.733 0.792 0.769 0.899   
SAAC 0.751 0.732 0.822 0.745 0.677  

 

Table 3 shows the results of the Heterotrait-Monotrait ratio (HTMT) test for determining 
discriminant validity among constructs. Greenhouse Gas Monitoring and Use (GMAU) and 
Interoperability and Compatibility (IC) have the highest correlation (HTMT = 0.899). Data 
Security and Privacy (DSP) has a substantial association with Connectivity and Network 
Infrastructure (CNI) at 0.812, Data Analytics and Processing (DAP) at 0.72, and IC at 0.801. 
Data Analytics and Processing (DAP) also shows associations with CNI (0.804) and IC (0.8). 
Sensor Accuracy and Calibration (SAAC) correlate with CNI (0.751), DAP (0.732), DSP 
(0.822), IC (0.745), and GMAU (0.677). Overall, these HTMT values show adequate 
discriminant validity, as they are below the threshold of 0.90 for the majority. 

3.3 Path Strength  

In structural equation modelling (SEM), the path strength, also known as the path coefficient, 
assesses the link between two variables in the model. A larger path coefficient shows that one 
variable has a stronger influence on the other. The significance level of a model reveals the 
statistical validity of the hypothesised relationships, which is typically measured using 
p-values. A p-value of less than 0.05 normally indicates that the path is statistically significant, 
confirming that the observed link is unlikely to have occurred by coincidence (Batra, 2025). 
Table 4 shows the results of path strength generated from hypothesis testing on the model. 
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Table 4. Results of path strength 

Paths Original Sample (O) T Statistics >1.96 Remark   
CNI -> GMAU 0.014 0.195 Not significant 
DAP -> GMAU 0.229 2.930 Significant 
DSP -> GMAU 0.181 2.327 Significant 
IC -> GMAU 0.534 7.193 Significant 
SAAC -> GMAU -0.040 0.578 Not significant 

 

Table 4 displays the connections between the model’s constructs found by hypothesis testing. 
Sensor Accuracy and Calibration (SAAC) and Connectivity and Network Infrastructure (CNI) 
are the two minor pathways that lead to GMAU. The other three routes are given a great deal 
of weight. The most robust of the three routes is Interoperability and Compatibility (IC) to 
GMAU, with a path strength of 0.534. After that, Data Analytics and Processing (DAP) is 
transmitted towards GMAU with a path strength of 0.229. Data Security and Privacy (DSP) 
have a path strength of 0.181 and is associated with GMAU. Increasing the interoperability 
and compatibility of greenhouse gas monitoring systems can significantly improve their 
effectiveness.  

To ensure the successful implementation of Internet of Things-based greenhouse gas 
monitoring systems, strict data security and privacy protocols must be implemented, as well 
as a strong emphasis on strong data analytics and processing. This is necessary to guarantee 
the success of the implementation. The findings indicate that these essential aspects must be 
considered to ensure that the Internet of Things (IoT) technology used in environmental 
monitoring operations in the United Arab Emirates is both effective and reliable. 

3.4 Model Fitness 

The R square value is a measure of the fitness of a model, and it indicates the proportion of 
the variance in dependent variables that can be accounted for by independent variables. In 
structural equation modelling (SEM), the R2 value is a metric frequently used to evaluate the 
model’s fit. This evaluation ensures that the model is accurate. One indication of this is a 
higher R2 value, which indicates a better fit between the model and the data and an increase 
in the power of explanation (Troiville et al., 2025). An illustration of the value of the model’s 
R2 can be found in Table 5. 

 

Table 5. R square value of the model 

 Dependent construct R Square 
GMAU 0.703 

 

Table 5 shows a R² value of 0.703 for Greenhouse Gas Monitoring and Use (GMAU), 
indicating that the model explains around 70.3% of the variance. The results indicate that the 
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model’s GMAU explanatory powers are strong. 

Fit indices of the saturated model, such as SRMR, d_ULS, d_G, Chi-Square, and NFI, are 
also used to evaluate how well the proposed model fits the data. The indicators displayed 
offer a thorough assessment of model performance (Batra, 2025). The model’s fit indices are 
displayed in Table 6. 

 

Table 6. Fit indices of the saturated model 

Indices Saturated Model Estimated Model 
SRMR 0.052 0.052 
d_ULS 1.249 1.249 
d_G 0.706 0.706 
Chi-Square 1590.84 1590.84 
NFI 0.829 0.829 

 

The model fitness indices in Table 6 show that the values of the Saturated Model and the 
Estimated Model are the same. A Standardised Root Mean Square Residual (SRMR) value of 
0.052 indicates a robust fit. The difference between the d_ULS value of 1.249 and the d_G 
value of 0.706 is significant. The Chi-Square score of 1590.84 and the NFI of 0.829 both 
show that the model fits the data well. The similar values in the two models validate the 
robustness of the model fit. 

3.5 Model Predictive Relevance  

Batra, (2025) utilize Cross-Validated Redundancy (CVR) to assess the model’s ability to 
predict endogenous constructs through the Q² value, while Construct Cross-Validated 
Communality (CVC) evaluates the shared characteristics of each construct to ensure that 
indicators effectively measure their respective latent components (Fonseca Vargas & 
Gabardo-Martins, 2025). Both metrics provide essential insights into the model’s robustness 
and measurement accuracy. A high Q² value in CVR signifies strong predictive relevance, 
confirming the model’s capability to forecast future data points accurately. Similarly, a high 
Q² value in CVC indicates that a substantial portion of variance in the indicators is explained 
by their corresponding latent constructs, reflecting high communality and strong 
measurement quality. 
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Table 7. Results of Construct Cross Validated Communality (CVR) 

Constructs SSO SSE Q² (=1-SSE/SSO) 
Constructs SSO SSE Q² (=1-SSE/SSO)  
Independent  CNI 1990 1990  
Independent  DAP 1990 1990  
Independent  DSP 1990 1990  
Dependent  GMAU 1990 1018.261 0.488 
Independent  IC 1990 1990  

 

The dependent construct in Table 7, Greenhouse Gas Monitoring and Use (GMAU), has an 
SSO of 1990 and an SSE of 1018.261, yielding a Q² value of 0.488. The model demonstrates 
a reasonable level of predictive relevance for the GMAU construct, as evidenced by a Q² 
value exceeding 0.35, which suggests sufficient predictive capability. The score indicates that 
the model accounts for approximately 48.8% of the variance in GMAU, demonstrating its 
effectiveness in forecasting outcomes related to this dependent variable. 

 

Table 8. Results of Construct Cross Validated Communality (CVC) 

Constructs SSO SSE Q² (=1-SSE/SSO) 
Independent  CNI 1990 1048.902 0.473 
Independent  DAP 1990 971.505 0.512 
Independent  DSP 1990 912.077 0.542 
Dependent  GMAU 1990 883.721 0.556 
Independent  IC 1990 875.612 0.560 
Independent  SAAC 1990 960.813 0.517 

 

Table 8 presents the Q² values for each construct, demonstrating their predictive relevance. 
The Connectivity and Network Infrastructure (CNI) construct has a Q² score of 0.473, with a 
Sum of Squares Observed (SSO) of 1990 and a Sum of Squares Error (SSE) of 1048.902, 
indicating moderate predictive relevance. The Data Analytics and Processing (DAP) construct 
shows a Q² value of 0.512, an SSO of 1990, and an SSE of 971.505, suggesting slightly 
higher predictive importance. The Data Security and Privacy (DSP) construct exhibits a Q² 
score of 0.542, with an SSO of 1990 and an SSE of 912.077, highlighting considerable 
predictive significance. The dependent construct, Greenhouse Gas Monitoring and Use 
(GMAU), demonstrates strong predictive relevance with a Q² value of 0.556, an SSO of 1990, 
and an SSE of 883.721. Similarly, the Interoperability and Compatibility (IC) construct 
displays excellent predictive significance with a Q² score of 0.560, an SSO of 1990, and an 
SSE of 875.612. 

Overall, the validated model demonstrates strong explanatory and predictive capabilities, 
accounting for 70.3% of the variance in greenhouse gas monitoring effectiveness. The Q² 
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values above 0.35 confirm the model’s predictive relevance, while the SRMR value of 0.052 
indicates a robust fit between the hypothesized and observed data. Collectively, these metrics 
confirm that the proposed IoT adoption framework is not only statistically sound but also 
practically effective in guiding environmental monitoring strategies in the UAE. 

4. Validated Framework  

According to Saunders, a validated framework is developed after the theoretical or 
conceptual framework has been validated with empirical evidence (Gradillas & Thomas, 
2025). It relies on data collected from observations, surveys, experiments, or other empirical 
methods. Specifically, the validated framework focuses on testing the relationships and 
hypotheses defined in the theoretical or conceptual framework using actual data, with a 
particular emphasis on evidence derived from real-world observations. Consequently, based 
on the hypothesis testing results in the path strength section, the validated framework for this 
study is illustrated in Figure 3. 

 

 

Figure 3. The validated framework 

 

The validated framework highlights significant relationships in greenhouse gas monitoring in 
the UAE. Significant paths, represented by blue lines, indicate that Data Security and Privacy 
(DSP), Interoperability and Compatibility (IC), and Data Analytics and Processing (DAP) 
have a strong impact on Greenhouse Gas Monitoring (GMAU), with path coefficients of 
0.181, 0.534, and 0.229, respectively. In contrast, non-significant paths, represented by red 
lines, include the relationships between Sensor Accuracy and Calibration (SAAC), 
Connectivity and Network Infrastructure (CNI), and GMAU. This validated framework 
aligns with and contrasts previous research, offering valuable insights.  

The study confirms that DSP, IC, and DAP are critical factors in greenhouse gas monitoring, 
while SAAC and CNI do not significantly impact GMAU. Prior studies, such as those by 
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(Salim et al., 2025) and (Samha et al., 2025), emphasize the importance of robust data 
security and privacy measures in environmental monitoring. These studies found that 
effective data security policies enhance data reliability and trustworthiness. Consistently, the 
current framework establishes a strong link between DSP and GMAU, reinforcing the role of 
data security in greenhouse gas monitoring. 

Similarly, (Adeoye, 2025) and (Harum et al., 2024) highlight interoperability and 
compatibility as essential in IoT systems, noting that seamless integration enhances data 
collection and processing. The current framework validates this, showing a significant 
positive impact of IC on GMAU, underscoring the need for efficient system integration. 
Additionally, studies by (Baharon et al., 2024) and (Vij & Goyal, 2025) stress the role of 
advanced data analytics in environmental monitoring, demonstrating that sophisticated 
analytics improve data accuracy and generate meaningful insights. This study supports these 
findings, confirming a strong relationship between DAP and GMAU, highlighting the 
necessity of advanced data processing in emission monitoring. 

Previous research, including (Pandian & Disney, 2025) and (Aldawsari, 2025), has suggested 
that sensor accuracy is crucial for reliable data collection in environmental monitoring. 
However, the present framework finds no significant impact of SAAC on GMAU, suggesting 
that while sensor precision is important, other factors such as DSP, IC, and DAP may have a 
more substantial influence in the UAE’s specific context. Similarly, studies by (Dritsas & 
Trigka, 2025) and (Maraveas, Loukatos, & Arvanitis, 2025) emphasize the importance of 
network infrastructure in IoT-based systems for real-time data transmission. In contrast, this 
framework finds CNI to be an insignificant factor in GMAU, potentially due to specific 
implementation conditions in the UAE.  

As compared with prior researches, the study identifies key areas for optimizing greenhouse 
gas monitoring. DSP, IC, and DAP are critical factors, while SAAC and CNI have a lower 
impact. This contributes to existing knowledge by assessing these factors in the UAE’s 
unique setting and providing insights for resource allocation, system integration, and 
decision-making to enhance environmental monitoring efforts. 

5. Discussion  

An unexpected until now theoretically meaningful finding of this study is the lack of a 
statistically significant effect of Sensor Accuracy and Calibration (SAAC) and Connectivity 
and Network Infrastructure (CNI) on the adoption of IoT-based greenhouse gas (GHG) 
monitoring systems. While prior studies frequently identify these factors as critical 
technological enablers of IoT adoption (Atzori et al., 2010; Gubbi et al., 2013), their 
insignificance in the present model can be explained by contextual characteristics specific to 
the UAE’s technological, regulatory, and institutional environment. 

5.1 Sensor Accuracy and Calibration (SAAC) 

In many emerging or less technologically mature contexts, sensor accuracy and calibration 
are regarded as major adoption barriers due to inconsistent standards, limited technical 
expertise, and fragmented maintenance practices (Kumar et al., 2019; Li et al., 2020). 
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However, in the UAE context, sensor accuracy appears to function as a baseline requirement 
rather than a differentiating adoption determinant. Large industrial emitters particularly in the 
oil, gas, and energy sectors that operate under stringent regulatory regimes and internationally 
recognized compliance standards, such as ISO 14064 and other environmental reporting 
frameworks. 

As a result, organizations tend to procure certified, vendor-managed sensor solutions with 
standardized calibration protocols embedded within service-level agreements. This 
institutionalization of accuracy and calibration minimizes performance variability and 
reduces managerial concern over technical reliability. Consequently, decision-makers are 
more likely to focus on strategic and organizational factors, including regulatory compliance, 
perceived usefulness, and organizational readiness, rather than sensor-level technical 
characteristics. 

From a theoretical perspective, this finding aligns with Diffusion of Innovations (DOI) theory, 
which posits that once an innovation attribute becomes standardized and widely accepted, its 
influence on adoption decisions diminishes (Rogers, 2003). In this sense, SAAC operates as a 
hygiene factor which is necessary for operational functionality but insufficient to motivate 
adoption independently. 

5.2 Connectivity and Network Infrastructure (CNI) 

Similarly, the insignificance of CNI can be attributed to the UAE’s highly advanced and 
reliable digital infrastructure ecosystem. The country has invested extensively in nationwide 
broadband connectivity, 5G networks, cloud computing platforms, and industrial IoT 
ecosystems, particularly in strategically important sectors (Al-Fuqaha et al., 2015; Khan et al., 
2022). For most organizations included in this study, connectivity is already robust, 
ubiquitous, and centrally managed, thereby eliminating it as a perceived adoption barrier. 

Moreover, many GHG monitoring initiatives in the UAE operate within centralized or hybrid 
system architectures, where data collection, transmission, and analytics are managed through 
secure enterprise platforms rather than decentralized or ad hoc networks. In such 
environments, connectivity challenges are abstracted away from operational users and 
handled at the organizational or governmental level. As noted by Porter and Heppelmann 
(2014), when digital infrastructure becomes embedded and invisible to users, it loses salience 
as an adoption determinant. 

Accordingly, adoption decisions are driven less by infrastructural readiness and more by 
organizational alignment, regulatory pressures, and value realization, which is consistent with 
the significant effects observed for regulatory compliance and perceived usefulness in the 
model. 

5.3 Infrastructure Maturity and Centralized Governance 

The findings indicate that the UAE has reached a stage of digital and infrastructural maturity 
in which foundational technological elements such as sensor accuracy and network 
connectivity no longer explain variation in adoption behaviour. Instead, IoT adoption for 
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GHG monitoring is shaped by institutional forces, governance structures, and strategic 
priorities, reflecting a transition from technology-centric to organization-centric adoption 
dynamics. 

This observation is consistent with prior research suggesting that in digitally advanced 
environments, innovation adoption is increasingly influenced by organizational capabilities 
and institutional legitimacy rather than basic technical feasibility (Zhu et al., 2006; Venkatesh 
et al., 2012). Therefore, this study contributes to the literature by demonstrating that IoT 
adoption determinants are context-dependent and evolve alongside national digital 
ecosystems. 

5.4 Theoretical Implications (Addition) 

These results extend Diffusion of Innovations theory by illustrating that the relative 
importance of technological attributes is contingent upon ecosystem maturity. In advanced 
digital contexts, adoption decisions shift away from technical characteristics toward 
organizational readiness and institutional alignment, suggesting the need for DOI-based 
models to more explicitly account for environmental and governance-level moderators. 

5.5 Practical and Policy Implications  

For policymakers, the findings suggest that sustained investment in standardization, 
certification, and centralized infrastructure governance has effectively reduced technical 
adoption barriers. Future policy initiatives should therefore prioritize data interoperability, 
analytics capability, and cross-organizational integration, rather than further infrastructure 
expansion (OECD, 2021). 

For industry practitioners, the results imply that competitive advantage in IoT-enabled GHG 
monitoring is more likely to arise from effective data utilization, organizational capabilities, 
and compliance integration, rather than incremental improvements in sensor precision or 
network performance. 

5.6 Limitations and Future Research 

Although SAAC and CNI were not significant in this study, future research could examine 
their roles in small and medium-sized enterprises (SMEs) or in less regulated sectors, where 
infrastructure maturity and standardization may be lower. Cross-country comparative studies 
would further help identify the boundary conditions under which technological factors regain 
explanatory power. 

6. Conclusion 

This study presents the development of a validated framework designed to identify the key 
factors influencing the effective integration of IoT into the UAE’s greenhouse gas (GHG) 
emission monitoring system. The framework was initially crafted using data from 384 
employees at the UAE’s Department of Hazard Forecasting, Monitoring, and Control 
(HFMC). The model’s measurement and structural components were rigorously evaluated 
using SmartPLS software, confirming that the model met fitness standards and was 
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statistically sound. 

The novelty of this research lies in its empirical validation of the factors that significantly 
impact GHG monitoring in the UAE, with specific emphasis on Data Security and Privacy 
(DSP), Interoperability and Compatibility (IC), and Data Analytics and Processing (DAP). 
These factors were found to have a substantial effect on the effectiveness of IoT-based 
monitoring systems. The study highlights the critical role of these factors in driving 
successful IoT adoption, offering new insights into how they contribute to improving the 
UAE’s GHG monitoring capabilities. 

The validated framework developed in this study provides a practical tool for stakeholders, 
assisting in resource allocation, system integration, and informed decision-making aimed at 
enhancing environmental monitoring programs. By addressing key barriers and drivers 
identified through rigorous testing, the framework contributes to advancing the UAE’s efforts 
in reducing GHG emissions and improving environmental sustainability. Furthermore, the 
findings offer a foundation for future research and policy-making that can support IoT-driven 
innovation in climate change mitigation efforts globally. 
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