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Abstract

The aim of this study was to determine the activity of B-galactosidase in the crude extracts of
Pleurotus ostreatus in the presence and absence of various heavy metals. [3-galactosidase (EC
3.2.1.23), is a hydrolase enzyme which helps in the hydrolysis of lactose into
monosaccharides. Characterization of -galactosidase from Pleurotus ostreatus was achieved
using the substrate 2-nitrophenyl B-D-galactopyranoside (ONPG). The pH and temperature
profiles of B-galactosidase showed maximum activity at pH 3.0 and at 50°C, respectively.
The Vimax and K, values of B-galactosidase using ONPG as a substrate was found to be
0.571 pmol/min and 0.307 mM, respectively. These results revealed that the B-galactosidase
activity in the crude extracts of Pleurotus ostreatus was changed in the presence of different
heavy metals. The results indicated that Hg”" and Mo”" have an uncompetitive inhibition on
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the B- galactosidase activity in the extract of Pleurotus ostreatus by decreasing both Km and
Vmax Values. while Al3+, Cu2+, Cr3+, Zn*" and Ni**  showed mixed inhibition activity by
decreasing V. values and by increasing K, values. However, Pb>" was found to act as a
non-competitive inhibition by decreasing V. value. The findings suggested that crude
extract of Pleurotus ostreatus can be used as a source of P-galactosidase for medical and
industrial purposes.
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1. Introduction

[B-galactosidases (EC 3.2.1.23, galactohydrolase, lactase) are hydrolase enzymes that catalyze
the hydrolysis of the glycosidic bonds of terminal nonreducing -D-galactosyl residues of
oligosaccharides and B-D-galactopyranosides (Seddigh & Darabi, 2014; Chandrasekar & van
der Hoorn, 2016). B-galactosidases are well known biocatalyst to catalyze hydrolytic and
transgalactosylation reactions (Princely et al., 2013). In addition, [-galactosidase enzyme is
mainly used in the food industry to reduce the lactose concentration in milk products, with
the aim of overcoming lactose intolerance (Dutra Rosolen et al., 2015). It has many medical
and industrial applications include treatment of lactose malabsorption and production of
lactose hydrolyzed milk (Haider & Husain, 2008; Jokar & Karbassi, 2011; Nath et al., 2014).
-Galactosidases have been obtained from microorganisms (bacteria, fungi and yeasts), plants
(almonds, peaches, apricots, and apples) and animal sources (Haider & Husain, 2007;
O'connell & Walsh, 2007; Panesar et al., 2010).

Microorganisms are considered potentially to be the most suitable source of
B-D-galactosidase for industrial applications. However, they differ in their optimum
conditions for the production of enzyme (Panesar et al., 2010; Carevi¢ et al., 2015).
Microorganisms produce enzymes at higher yields compared to animal and plant sources of
enzymes (Jokar & Karbassi, 2011). In fungi, two principal strategies for catabolism of lactose
are realized: (i) extracellular hydrolysis and subsequent uptake of resulting monomers and (ii)
uptake of disaccharides (Juers et al., 2012; Miguel, 2015). One of major industrial
B-Galactosidase sources is isolated from Kluyveromyces lactis and it is one of the most used
enzymes for manufacturing milk and dairy products (Kim et al., 2004; Kim et al., 2006;
Klewicki, 2007).

The problem of environmental pollution due to toxic metals is of major concern in the
environment. The toxic metals entering the ecosystem may lead to accumulation,
bioaccumulation and biomagnifications (Jaishankar et al., 2014). Heavy metals play an
extremely important role in biochemical reactions which are significant for the growth and
development of microorganisms, plants and animals (Kavamura & Esposito, 2010). At excess
concentrations, these metal ions can become detrimental to living organisms, including fungi
(Emamverdian et al., 2015). The presence of toxic compounds, such as heavy metals, is one
important factor that can cause damage to organisms by altering major organisms
physiological and metabolic processes (Aldoobie & Beltagi, 2013). Several heavy metals
such as iron (Fe*"), manganese (Mn®"), zinc (Zn®"), copper (Cu®"), cobalt (Co®"), or
molybdenum (Mo®") are essential for the growth of organisms (Gaur and Adholeya, 2004).
Fungi are one of the most important group of organisms that have revealed different values of
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sensitivity towards metal ions (Jaeckel et al., 2005; Tong et al., 2016).

Pleurotus ostreatus, also known as the oyster mushroom, is a Basidiomycetes belonging to
the family Pleurotaceae (Hibbett, 2007). Interest in this species has increased considerably in
the last decade because of its gastronomic value and its nutraceutical properties (Barros et
al., 2007; Papaspyridi et al., 2012). The medicinal beneficial effects of P. ostreatus, such as
antioxidant, antitumor and cholesterol-lowering activities, have been investigated intensively
(Horincar et al., 2014). It has been revealed that an extract of P. ostreatus was able to
alleviate the hepatotoxicity induced by CCly in rats (Jayakumar et al., 2008). It has been also
reported that the extract from P. ostreatus appeared to protect major organs such as the liver,
heart, and brain of aged rats against oxidative stress (Jayakumar et al., 2008).

However, to our knowledge, no study has determined the activity and kinetics of
B-galactosidase in the crude extract of Pleurotus ostreatus. Therefore, this study was
conducted to characterize the enzyme in the term of pH, temperature and enzyme kinetic
using the substrate 2-nitrophenyl B-D-galactopyranoside (ONPG) and to identify the effects
of various heavy metals on its activity in order to use this enzyme in medical and food
industrial purposes.

2. Materials and Methods
2.1 Fungi Sample

Pleurotus ostreatus was cultivated at Muta'’h University in the biochemistry research lab at
room temperature, Fungus grew through pores of bag (Kong, 2004). Samples have been
collected from cultivated organism between April-August, 2015.

2.2 Chemicals

ONPG was purchased from Sigma Chemicals (St. Louis, MO, USA). Sodium potassium
tartrate, Sodium carbonate anhydrous, Sodium acetate and Sodium dihydrogen phosphate
were provided by Pharmacos (Birmingham, England), FLUKA (Madrid, Spain), Riedel-De
Haen. Sigma-Aldrich Laborchemikalien Chemik (Seelze, Germany) and Panreac (Barcelona,
Spain), respectively. All other chemicals were of the highest grade.

2.3 Crude Enzyme Preparation

Samples of Pleurotus ostreatus were homogenized in 100 mL sodium acetate buffer (100 mM,
pH 5) in a blender for 4 min. The crude enzyme extract was filtered using filter paper and
then was centrifuged at 10,000 rpm for 15 min (Luz et al., 2012). The extract was stored in a
refrigerator at 4°C until use.

2.4 Enzyme Activity Assay

The activity of -galactosidase was assayed using ONPG as a substrate. The assay mixture
(1mL) was prepared by mixing 0.4 ml of 5.0 mM ONPG in 0.5 ml of 0.1 M acetate buffer
(pH 4.0) and 0.1 mL of enzyme extract (Sekimata et al., 1989). After incubation for 15 min at
37°C, the reaction was terminated by addition of 1 mL of 0.1 mM Na,COj; and monitored at
420 nm. O-Nitrophenol (ONP) was the product of the enzyme catalyzed reaction and it
contributed a certain yellow color in the assay mixture. One unit of enzyme activity is defined
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as the amount of enzyme that liberates 1.0 umol of ONP per minute under the assay condition
(Gulzar & Amin, 2012; Carevi¢ et al., 2015).

2.5 Kinetic Parameters Determination

The maximum velocity (Vmax) and Michaelis-Menten constant (K,,) of p-galactosidase for
ONGP as substrate were determined. The effect of substrate concentration on enzyme activity
was using optimum reaction pH and temperature. Keeping the amount of enzyme constant in
assay mixture, the concentration of ONGP was increased from 1 mM to 8 mM. The enzyme
activity was assayed by monitoring the absorbance at 420 nm. Lineweaver-Burk Plot
(Reciprocal plots) were used to determine V. , Kiy values (Lineweaver & Burk, 1934).

2.6 Effect of pH on B -galactosidase Activity

The enzyme-substrate reaction was performed using various buffer systems with different pH
ranges from 2.0- 9.0 in various buffer systems (Sodium acetate buffer and sodium phosphate
buffer) (Lee et al., 2003; Pal et al., 2013). The enzyme assay was performed separately in
each buffer system. The relative activities were calculated by dividing the velocity value at
certain pH point by V. value and then multiplied by 100 (Meghdari et al., 2015).

2.7 Effect of Temperature on f -galactosidase Activity

The enzyme-substrate reaction was carried out at various temperatures ranging from 20°C to
90°C using optimum reaction pH (Pal et al., 2013). The [B-galactosidase activity was
measured as previously described in the enzyme assay, and the relative activities were
calculated by dividing the velocity value at certain temperature point by Vax value and then
multiplied by 100 (Meghdari et al., 2015).

2.8 Effect of Different Heavy Metals on Enzyme Activity

In order to determine the effect of various metal ions on 3 -galactosidase activity, these metal
ions were incorporated in the standard assay mixture at different concentrations (200-800uM).
The activity was expressed as relative activity (%) compared to control (Nweke &
Okpokwasili, 2011).

2.9 Statistical Analysis

All the experiments were done in triplicate and the results are expressed as mean
values+tstandard deviations (S.D.) using Microsoft excel 2010.

3. Results and Discussion
3.1 Effect of pH on f-galactosidase Activity

Enzymes are affected by changes in pH. The most favorable pH value the point where the
enzyme is most active is known as the optimum pH (Talley & Alexov, 2010; Salwanee et al.,
2013). The optimal pH value depends on various factors such as nature of buffer system,
presence of activators or inhibitors, age of the cell and nature of the substrates (Bisswanger,
2014). The changes in ionization of prototropic groups in the active site of an enzyme at
lower acid and higher alkali pH values may prevent proper conformation of the active site,
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binding of substrates, and/or catalysis of the reaction (Robinson, 2015).

In the present study, it was observed that the maximum enzyme activity was measured at pH
3.0 (Figure 1). As the pH was increased above 3.0 the activities gradually decreased. The
relative activities were based on the ratio of the activity obtained at certain pH to the
maximum activity obtained at that range and expressed as percentage. The relative activity of
B-galactosidases at pH 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0 was 40.1%, 100%, 63.3%,
48.3%, 38.2%, 28.9%, 21.3% and 16.5%, respectively.
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Figure 1. Relative activity (%) of B-galactosidase in the crude extracts of Pleurotus ostreatus
at different pH values using ONPG as a substrate. Mean£SD (n=3).

Previous studies have shown that fungal B-galactosidases generally have acidic pH-optima in
the range of 2.5-5.5 thus they are most effective for the hydrolysis of lactose present in
acidic products such as whey (Husain, 2010). PB-galactosidase from T7eratosphaeria
acidotherma showed optimum pH between 2.5- 4.0 using ONPG (Isobe et al., 2013). In
addition, optimum pH value of B-galactosidase from Aspergillus fonsecaeus was found 2.6 to
4.5 using ONPG as a substrate (Gonzalez & Monsan, 1991). Another study showed that
the optimum pH value of B-galactosidase from Penicillium chrysogenum was found at pH 4.0
(Nagy et al., 2001).

3.2 Effect of Temperature on f-galactosidase Activity

Temperature is another important factor that significantly influences the catalytic activity of
enzymes. Each enzyme has an optimum temperature at which it performs best. It is well
known that a decrease in the kinetic energy of the reactant molecules at low temperatures
corresponds to a slower reaction (Salwanee et al., 2013). Temperature can affect an enzyme
in two ways. One is a direct influence on the reaction rate constant, and the other is in thermal
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denaturation of the enzyme at elevated temperatures (Peterson et al., 2007).

However, the effect of temperature on the activity of P-galactosidase was determined by
performing the standard assay procedure at different temperatures ranging from 20 to 90°C.
In the present findings, the optimum temperature for § -galactosidase activity was found to be
40°C. The enzyme activity was gradually increased with increasing temperature up to 40°C,
and thereafter declined. The relative activities (as percentages) were expressed as the ratio of
the B -galactosidase activity obtained at certain temperature to the maximum activity obtained
at the given temperature range (Figure 2). The decrease in the activity of the enzyme at high
temperatures may be attributed to temperature-induced conformational change at the active
site and thus loss of active site (Haider & Husain, 2007; Daniel et al., 2010).

However, Optimum temperature value of [-galactosidase from Aspergillus terreus,
Aspergillus nidulans and Penicillium chrysogenum using ONPG as a substrate was found to
be 30°C (Diaz et al., 1996; Nagy et al., 2001; Vidya et al., 2014). In addition, optimum
temperature of B-galactosidase from Aspergillus fonsecaeus, Thermomyces lanuginosus and
Rhizomucor sp. was found to be at 50°C (Gonzalez & Monsan, 1991; Fischer et al., 1995;
Shaikh et al., 1999). Also, B-galactosidase from Aspergillus oryzae, Klumeromyces marxians,
Aspergillus niger and Penicillium simplicissimum showed optimum temperature between 55-
60°C (Cruz et al., 1999; Rajoka et al., 2003; Domingues et al., 2005; Nizamuddin et al.,
2008).

These observations from the pH and temperature-activity relationships indicate that the
enzyme has the capacity to withstand the severity of industrial and medical applications.
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Figure 2. Relative activity (%) of B-galactosidase in the crude extracts of Pleurotus ostreatus
at different temperature values using ONPG as a substrate. Mean=SD (n=3).
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3.3 Kinetic Parameters

The kinetic parameters of B-galactosidase from Pleurotus ostreatus for hydrolysis towards
ONPG at pH 3.0 and 40°C were determined by a typical double reciprocal Line-weaver Burk
plot. The K, and Vy,x values for hydrolyzing ONPG were found to be 0.307 mM and
0.571umol/min, respectively (Figure 3).

Vmax 18 the rate of reaction when the enzyme is saturated with substrate. Increasing the
substrate concentration indefinitely does not increase the rate of an enzyme-catalyzed
reaction beyond a certain point (Bar-Even et al., 2011). Besides, the relationship between rate
of reaction and concentration of substrate depends on the affinity of the enzyme for its
substrate. This is usually expressed as the K, (Michaelis constant) of the enzyme, and reflects
the affinity of the enzyme for its substrate. K, is the concentration of substrate which permits
the enzyme to achieve half Vy,.x. The lower the K, the greater the affinity (so the lower the
concentration of substrate needed to achieve a given rate) (Lu, 2004; Reuveni et al., 2014).

However, K, value was less than that of other organisms, 11.3 mM for Thermomyces
lanuginosus (Fischer et al., 1995), 0.785 for Rhizomucor sp. (Shaikh et al., 1999), 1.78 mM
for Aspergillus fonsecaeus (Gonzalez & Monsan, 1991), 1.81 mM for Penicillium
chrysogenum (Nagy et al., 2001) and 1,61 mM for Aspergillus Oryzae (Gargova et al., 1995).
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Figure 3. Determination of V,,x and K, values for B-galactosidase in the crude extracts of
Pleurotus ostreatus using ONPG as a substrate. Mean£SD (n=3).

3.4 Effect of Different Heavy Metals on f-galactosidase Activity

Heavy metals at higher concentrations are toxic to living organisms primarily because of their
protein binding capacity and hence to their ability to inhibit enzymes (Pritsch et al., 2006).
All results are analyzed according to their effects: uncompetitive inhibition, mixed inhibition
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and noncompetitive inhibition.

The effect of an uncompetitive inhibitor is to decrease K, and to decrease Vi, (Voet et al.,
2013; Gonze & Kaufman, 2015). Uncompetitive inhibition cannot be reversed by increasing
the substrate towards a saturating concentration, leading to decrease both K, and V.
(Sharma, 2012). As shown in table (1), Hg*" and Mo”" have an uncompetitive inhibition on
the B-galactosidase extract activity in Pleurotus ostreatus by decreasing both K, value from
0.307 mM to 0.285 mM and 0.253 mM, and Vy,x from 0.571umol/min to 0.189 and 0.377
umol/min, respectively. Figure (4) showed that the relative activity (%) of the enzyme in the
presence of Hg”™ and Mo®" was 33.1% and 66.1%, respectively.

However, the effect of a mixed inhibitor is to increase K, and to decrease Vi.x (Voet et al.,
2013). If the ability of the inhibitor to bind the enzyme is exactly the same whether or not the
enzyme has already bound the substrate, it is known as a non-competitive inhibitor.
Non-competitive inhibition is sometimes thought of as a special case of mixed inhibition
(Storey, 2005). In the present findings, AI’", Cu*", Cr’", Zn?" and Ni*" have mixed inhibition
on the B-galactosidase extract activity in Pleurotus ostreatus by decreasing Vy.x from 0.571
pmol/min to 0.476, 0.43, 0.363, 0.425 and 0.39 pmol/min, and by increasing K, from 0.307
mM to 1.162, 0.91,1.28, 0.66 and 0.892 mM, respectively, while Pb*" showed
non-competitive inhibition by decreasing V.x from 0.571 pumol/min to 0.408, and showed no
change on K, value (Table 1). In addition, the relative activity of B-galactosidase in the
presence of A", Cu®*, Cr’", Zn*", Ni*"and Pb*" was 83.3%, 75%, 63.5%, 74.4%, 68.3% and
71.4%, respectively (Figure 4).
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Figure 4. Relative activity (%) for B-galactosidase in the crude extracts of Pleurotus ostreatus
in control and in presence of different heavy metals (600 uM) using ONPG as a substrate.
Mean+SD (n=3).
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Table 1. Kinetic values of [-galactosidase in the crude extracts of Pleurotus ostreatus in
control and in presence of different heavy metals (600 uM). Mean+SD (n=3).

Heavy metals Kin(mM) Vmax(imol/min) Effects

Control 0.307 0.571 Normal

Hg’ 0.285 0.189 Uncompetitive inhibition
Mo*" 0.253 0.377 Uncompetitive inhibition
AP 1.162 0.476 Mixed inhibition

Cu*’ 0.91 0.430 Mixed inhibition

cr’’ 1.28 0.363 Mixed inhibition

Zn*" 0.66 0.425 Mixed inhibition

Ni** 0.892 0.390 Mixed inhibition

Pb*" 0.307 0.408 Non-competitive

5. Conclusion

In the present study, characterization and kinetic parameters of the - galactosidase in the
crude extracts of Pleurotus ostreatus in the presence and absence of various heavy metals
were investigated. The present findings showed that the crude enzyme [-galactosidase
extracts of Pleurotus ostreatus has a potential activity according to its ability to hydrolyze the
substrate ONPG evidenced by the K, and Vyax values. The optimum reaction conditions for
crude B-galactosidase in the crude extracts of Pleurotus ostreatus was found to be at pH 3.0
and at temperature 40°C. The results of this study indicated that the values of K, and V. of
B-galactosidase in the crude extracts of Pleurotus ostreatus for hydrolyzing ONPG were
found to be 0.307 mM and 0.571pumol/min, respectively. These results suggested that the
enzyme [3-galactosidase in the crude extract of Pleurotus ostreatus could be applied to
industrial, medical and other production processes. The results indicated that heavy metals
such as, Hg2+ and Mo”" have an uncompetitive inhibition, while A13+, Cu*’, Cr'f, Zn*" and
Ni*" have a mixed inhibition, and Pb>" has a non-competitive inhibition.
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