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Abstract 

The aim of this study was to evaluate the effects of plant growth-promoting rhizobacteria 

effects on anatomical characteristics and nutritional value of Brachiaria (Syn. Urochloa) 

brizantha cv. BRS Piatã. The experimental design applied was completely randomized design 

with three treatments: (1) non-inoculated unfertilized-control plants (C-), (2) non-inoculated 

fertilized-control plants (C+) and (3) B. brizantha inoculated with Pseudomonas fluorescens 

(BRM-32111) and Burkholderia pyrrocinia (BRM-32113). The following parameters were 

evaluated at 35 days after seedling emergence: biomass production, plant height, net 

photosynthesis (A), water-use efficiency (WUE), chlorophyll (SPAD), anatomical and 

nutritional. The rhizobacteria modified the anatomy of the leaf, culm and roots of B. 

brizantha. They also increased the chlorophyll content, A, WUE, total soluble carbohydrates, 

starch and crude protein contents, N, P, Mg and Fe concentrations, plant height, root area and 

biomass production. Therefore, we conclude that co-inoculation with P. fluorescens 

(BRM-32111) and B. pyrrocinia (BRM-32113) modified the anatomy and biochemistry of B. 

brizantha, promoting growth and nutrient accumulation. Therefore, these findings set up the 

basis for additional exploratory studies, using these rhizobacteria as biotechnological 

innovation with potential of use as biofertilizer in B. brizantha, aiming higher productivity 

and nutritive value in a more eco-friendly and sustainable pasture production system. 

Keywords: biofertilizer, nutrients, Brachiaria (Syn. Urochola), sustainable pasture 

production 

1. Introduction 

Improving forage grasses productivity and nutritive value is an important tool for increasing 

ecosystem services in tropical pastures (Dias-Filho and Lopes, 2019a). Throughout tropical 

Latin America and, particularly, in Brazil, Brachiaria (Syn. Urochloa), grasses are the most 

widely sown forages, and B. brizantha stands out as a major species (Reis et al., 2013; Pontes 

et al., 2017; Pagano et al., 2017). Among the commercially available cultivars of B. brizantha 

BRS Piatã stands out for its high leaf/stem ratio and improved adaptability to integrated 

crop-livestock system (Dias-Filho and Lopes, 2019a). 

Beneficial plant-microbiome interactions are considered microbial biotechnology a promising 

solution for a more eco-friendly and sustainable pasture production (Pagano et al., 2017; 

Duchene et al., 2017; Bhat et al., 2019). Plant growth promoting rhizobacteria (PGPR) 

encourages the plants growth by either indirect or direct mechanisms (Richardson et al., 2009; 

Pii et al., 2015; Bhat et al., 2019). As indirect mechanism, they act as bio-control agents, 

increasing plant resistance to biotic and abiotic stresses. As direct mechanism, they behave as 

plant phytohormones and as biofertilizer by increasing the availability of soil nutrients, root 

area and nutrient absorption capacity, affecting biochemical mechanisms and nutritional 

status, increasing plant growth and yield.  
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Low soil fertility is a common limitation to forage grass production in the tropics; under this 

scenario, chemical fertilization is a major requirement for the intensification of pasture 

production (Dias-Filho and Lopes, 2019b). However, the use of chemical fertilization, 

particularly that of nitrogen, poses economic and environmental constraints (Reis et al., 2019; 

Dias-Filho, 2011). These constraints can impair the much-needed sustainable intensification 

of livestock production and the provision of ecosystem services in tropical pastures 

(Dias-Filho, 2011). 

A previous study has shown that co-inoculation of Pseudomonas fluorescens and Burkolderia 

pyrrocinia promotes growth in Brachiaria brizantha (Lopes et al., 2018). Our hypothesis is 

that these rhizobacteria are a promising microbial biotechnology, able to be used as 

biofertilizer, to affect anatomical and biochemistry characteristics of a tropical forage grass, 

that stimulate improvements in nutritional value and biomass production, being an alternative 

chemical fertilizer. This is a relevant study to tropical pasture management and a promising 

solution for a more eco-friendly and sustainable pasture-based livestock production. The aim 

of this study was to evaluate the effects of plant growth-promoting rhizobacteria on 

anatomical characteristics and nutritional value of Brachiaria (Syn. Urochloa) brizantha cv. 

BRS Piatã.  

2. Materials and Methods 

2.1 Experimental Design and Bacterial Strain  

The experiment was conducted at the Plant Protection Laboratory and in a semi-controlled 

environment in the nursery seedling production unit of the Federal Rural University of 

Amazonia (Universidade Federal Rural da Amazônia-UFRA) (01º27'25 "S, 48º26'36" W) in 

Belém, Pará, Brazil. The experimental design was completely randomized with three 

treatments: (1) non-inoculated unfertilized-controls B. brizantha plants (C-), (2) 

non-inoculated fertilized-control plants (C+) and (3) plants inoculated with Pseudomonas 

fluorescens (BRM-32111) and Burkholderia pyrrocinia (BRM-32113). Each treatment had 

ten replicates. The bacterial isolates were cultured in solid 523 medium (Kado et al., 1970) 

for 48h at 28∘C. The bacterial suspension was prepared in water and adjusted to A540 = 0.2 

(108 CFU) (Lopes et al., 2018). 

2.2 Plant Growth Conditions 

Brachiaria (Syn. Urochloa) brizantha cv. BRS Piatã seeds were sown in polyethylene pots 

(15 x 25 x 0.5 cm) filled with low-fertility soil of pasture in the tropics (Ferralsol - pH, 4,2; 

organic matter,18,80 g dm-3; P, 2 mg dm-3; K, 4 mg dm-3; Ca, 0,2 mmolc dm-3; Ca+Mg, 0,3 

mmolc dm-3; Al, 1,4 mmolc dm-3). Fertilized-control plants were fertilized with 5 mg dm-3 of 

N, 14 mg dm-3 of P2O5, and 10 mg dm-3 of K2O. Suspension of bacterial isolates (5 mL, 108 

CFU), water drenched the trial soil at 14 days after seedling emergence (DASE) (Lopes et 

al.,2018). The experiment was conducted with photosynthetically active radiation of 900 

μmol m-2 s-1, mean air temperature of 30°C and relative humidity of 74%. 
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2.3 Leaf Gas Exchange and SPAD Index 

The net CO2 assimilation rate (A) was determined 35 DASE, on one young, fully expanded 

blade per plant, with an infrared gas analyzer (IRGA) (LI-6400XT; LICOR, Lincoln, NE). 

Measurements were made under CO2 of 400 μmol m-1 and a constant photosynthetic active 

radiation of 1000 μmol m-2s-1 (obtained by an artificial light source coupled to the IRGA 

chamber). Water-use efficiency (WUE) was calculated as the ratio of photosynthesis to 

transpiration. The SPAD index (soil plant analysis development) was measured in the 

youngest fully expanded leaf blade. Each SPAD index value was the mean of five readings 

per leaf. A portable chlorophyll meter was used (SPAD-502. Konica Minolta Sensing, INC. 

Japan).  

2.4 Anatomical Characteristics   

At 35 DASE, leaf, culm and root samples were collected and fixed in FAA solution 50% 

(ethanol: glacial acetic acid: formaldehyde). The anatomical study was performed at the 

Laboratory of Plant Anatomy, Department of Botany, Emilio Goeldi Museum, (Museu 

Paraense Emílio Goeldi) MPEG. The samples were dehydrated in a graded ethanol series and 

embedded in hydroxyethyl methacrylate (Leica®, Germany). The blocks were cross 

sectioned on a rotating microtome Leica RM 2265. Section of roots and stems samples were 

8 μm thick, while leaves were 5 μm thick. The sections were stained with 0.05% toluidine 

blue in acetate buffer, pH 4.3 (O'brien et al., 1964), and mounted in synthetic resin Entellan®.  

The observations and measurements were carried out under BX61 Olympus microscope 

(Japan) with coupled digital camera connected to a computer containing the software Motic 

2.0. The anatomical parameters measured were in leaf - thickness of the adaxial and abaxial 

epidermis and area of the bulliform cells, xylem, phloem, sclerenchyma, vascular bundles, 

bundle sheath, mesophyll chlorophyll and number of vascular bundles. In culm - epidermis, 

vascular bundles area and number of vascular bundles. In root - epidermis, exodermis, 

parenchyma, cortex, endoderm, pericycle, vascular cylinder, numbers of metaxylem, numbers 

of protoxylem and xylem diameter.  

2.5 Plant Growth, Biomass Production and Nutrients Acquisition 

the height (H) and root length were determined at 35 DASE, and seedlings were separated 

into shoot (leaf blades and culms) and roots. The root area was estimated by using ImageJ 

(Tajima and Kato, 2011; Schneider et al., 2012). Plant material was oven dried (60° C) until 

constant mass. Total dry mass (TDM) was calculated by adding shoot dry mass (SDM) and 

root dry mass (RDM). Mineral analysis of N, C, P, K, Mg and Ca, as well as, of B, Fe, Zn and 

Cu were determined by inductively coupled plasma optical emission spectrometry (ICPOES). 

The neutral detergent fibre (NDF) and acid detergent fibre (ADF) on a DM basis were 

assayed using the procedure described by Van Soest et al., (1991). N contents (DM basis) 

were analyzed according to the Kjeldahl.  Crude protein (CP) was then calculated by 

multiplying the N content (%) by 6.25.  
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2.6 Biochemical Assays 

Photosynthetic pigments were extracted in ethanol from leaf samples (10 mg FM) macerated 

in 250 μL of 98% ethanol, and the pellet (precipitate) was subjected to two more extractions, 

using 80% ethanol and 50% ethanol. Each extraction was incubated at 80 °C for 20 min and 

centrifuged at 12000g for 5 min at 4 oC. The resulting supernatants were collected and 

homogenized. The absorbance of the samples was determined at 645 and 665 nm (Porra et 

al.,1989; Lichtenthaler, 1987). For determination of the total soluble carbohydrates, 50 mg 

DM incubated with 5 mL of sterile distilled water at 100°C for 30 min and was centrifuged at 

2.000 g for 5 min at 20°C and the supernatant was removed. The quantification of the total 

soluble carbohydrates at 490 nm according to Dubois et al., (1956) and glucose was used as a 

standard.  

For the determination of starch content, 50 mg DM were incubated with 5 mL of ethanol at 

80°C for 30 min, centrifuged at 2.000 g for 10 min at 25°C, and the supernatant was removed. 

In addition, a second extraction was carried out with the same milled material incubated with 

5 mL of 30% HClO4 at 25°C for 30 min and centrifuged in conditions previously described. 

The supernatants of the two extractions were mixed. The quantifications of the total soluble 

carbohydrates and starch were carried out at 490 nm according to Dubois et al. (1956), using 

glucose as a standard. 

2.7 Statistical Analyses  

All data were subjected to analysis of variance and variables with significant F values were 

compared by Duncan test (P < 0.05). The statistical package STATISTICA for Windows 

release 7 (StatSoft, Inc., Tulsa, USA) was used for all computations of the data. 

3. Results and Discussion  

Results revealed that P. fluorescens and B. pyrrocinia modified the anatomy and biochemistry 

of B. brizantha, promoting growth and nutrient accumulation. The higher nutrient 

concentration in the leaves of co-inoculated plants, especially that of nitrogen, as well as the 

lager bundle sheath area and mesophyll cells (Table 1; Figure 1), resulted in an increased 

concentration of photosynthetic pigments (chlorophyll) (P < 0.001) (Figure 2a). The higher 

nitrogen content in inoculated plants was corroborated by the higher Spad index in 

co-inoculated plants (P < 0.01) (Table 2; Figure 2b), which should present values higher than 

40 (Reis et al., 2013). When fertilized with nitrogen, tree species showed a larger xylem 

diameter, which increased water and nutrients transport, contributing to plant development 

(Wang et al., 2018).  

The higher nutrient uptake in co-inoculated plants might also have resulted from anatomical 

changes induced by the rhizobateria in roots. In root, the rhizobacteria increased by more than 

50% the exoderme, pericycle, parenchyma and vascular cylinder, by 30% the protoxilema 

and the diameter of the xylem cells and by 10% the endoderm relative to control plants (P < 

0.01) (Table 1; Figure 1 (g-i)). Higher K and Mg concentrations (P < 0.01) (Table 2) were 

resulted increased exodermis, pericycle (Tabela 1; Figure 1); also, the probably the 

consequence of the increase in auxin, promoting oxygen diffusion from the base to the apex, 
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increasing xylem, protoxilem and root area (Figure 1 and Figure 2).  

 

Figure 1. Brachiaria brizantha cross sections leaf (a-c), culm (d-f) and root (g-i). Unfertilized 

(a, d, g) or fertilized non-inoculated control plants (b, e, h) and co-inoculated with 

Pseudomonas fluorescens and Burkholderia pyrrocinia (c, f, i). Buliform cells (Bc), bundle 

sheath (Bs), Vascular bundles (Vb), xylem (x), mesophyll (Mes), exodermis (Ex), pericycle 

(pe), vascular cylinder (vc) and protoxylem (px) 
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Table 1. Anatomical parameters (μm or μm2) of Brachiaria brizantha under the three 

treatments: unfertilized (C-), fertilized (C+) non-inoculated control plants and co-inoculated 

with Pseudomonas fluorescens and Burkholderia pyrrocinia (MIX) 

Parameters C - C + Mix 

 

 

 

Leaf 

 

 

 

 

 

Adaxial epidermis (μm) 11.54 (0.11) b 11.86 (0.15) b 20.24 (0.11) a 

Abaxial epidermis (μm) 16.60 (0.33) c 25.49 (0.29) a 23.33 (0.08) b 

Bulliform cells area (μm2) 12828.99 (32.1) b 12703.61 (36.07) 

c 

16594,07 (47.45) a 

Xylem area (μm2) 8100.35 (27.67) c 8869.52 (73.88) b 9116.19 (15.64) a 

Phloem area (μm2) 3147.13 (22.63) a 2160.41 (16.88) c 2830,56 b 

Sclerenchyma area (μm2)  1171.01 (4.84) b 1472.41 (7.48) a 800.97 (16.70) c 

Vascular bundles area (μm2) 3058.87 (7.08) b 2686.55 (24.27) c 3200.26 (10.19) a 

Bundle sheath area (μm2) 18862.34 (115.13) c 21484.33 (40.81) 

b 

24316.82 (108.05) 

a 

Mesophyll chlorophyll area 

(μm2) 

193524.01 (95.44) b 188700.81 (77.19) 

c  

211559.31 (146.61) 

a 

Culm Epidermis (μm)  13.47 (0.11) c 18.46 (0.12) a 14.07 (0.02) b 

Vascular bundles area (μm2)  1989.95 (581.06) c 10089.77 (183.57) 

b 

20364.01 (96.54) a 

Number of vascular bundles 33.57 (0.24) c 42.48 (0.27) b 69.12 (0.13) a 

 

Root 

Epidermis (μm) 14508.01 (453.32) a 13037.02 (182.07) 

b 

12734.13 (323.62) 

c 

Exodermis (μm) 18873.81 (236.22) b 14179.94 (235.39) 

c 

23063.50 (719.17) 

a 

Parenchyma (μm) 7985(262.74) b 0 12302, 56 (403.39) 

a 

Cortex (μm) 209883.81 (1581.32) a 145267.23 

(307.23) c 

153069.71 

(1648.16) b 

Endoderm (μm) 12954.78 (308.57) c 14006.01 (391.96) 

b 

14693.67 (542.91) 

a 

Pericycle (μm) 25278.37 (304.21) b 23272.28 (440.33) 

c 

37372.27 (321.22) 

a 

Vascular cylinder (μm)  338050.4 (2572.79) a  190090.8 

(1983.32) b 

337155.31 (321.22) 

a 

Numbers of metaxylem 16.52 (0.12) a 8.24 (0.17) c 15.30 (0.21) b 

Numbers of protoxylem  31.51 (0.21) b 23.95 (0.20) c 36.11 (0.19) a 

Xylem diameter (μm) 30041.11 (456.37) c 38490.77 (361.36) 

b 

45667.51 (501.44) 

a 

Significant at the 0.05 probability level. Data are means ± SE. Means followed by different 

letters in each column are significantly different (P < 0.05, Duncan Test).  
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Figure 2. Leaf chlorophyll (a), Spad index (b), net photosynthesis (A) (c) and water-use 

efficiency (WUE) of Brachiaria brizantha with growth-promoting rhizobacteria. Means 

followed by different letters in each column are significantly different (P < 0.05, Duncan test). 

C - = unfertilized-control; C + = fertilized-control; Mix = Burkholderia pyrrocinia + 

Pseudomonas fluorescens 

The greater vascular system development in leaf, culm and root (Table 1; Figure 1), might 

have contributed to increase water and nutrient transport, resulting in a greater photosynthetic 

efficiency (Figure 2c) and higher total carbohydrates and starch concentration in 

co-inoculated plants (Figure 3). Also, growth promoting rhizobacteria increased chlorophyll 

concentration, photosynthetic rate and water use efficiency in Phaseolus coccineus (Stefan et 

al., 2013); total carbohydrates and protein content in and Arachis hypogaea (Mathivanan et 

al., 2017). 

 

Figure 3. Starch (a) and total carbohydrate (b) of Brachiaria brizantha with 

growth-promoting rhizobacteria. Means followed by different letters in each column are 

significantly different (P < 0.05, Duncan Test). C - = unfertilized-control; C + = 

fertilized-control; Mix = Burkholderia pyrrocinia + Pseudomonas fluorescens 
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It is possible to infer that co-inoculation would increase tolerance to grazing and water deficit 

of B. brizantha. This is because co-inoculated plants had a greater development of the root 

and vascular systems, higher photosynthetic rate, starch concentration, water-use efficiency, 

and bulliform cells area, which are responsible for leaf curling for reducing transpiration 

(Reis et al., 2013). In culm, the rhizobacteria induced the increased vascular bundles. Only 

inoculated plants showed sclerenchyma ring, with 2-5 layers of cells and hollow medulla (P < 

0.001) (Figure 1f). This characteristic could make these plants more resistant to lodging (Reis 

et al., 2013). Rhizobacteria inoculation also increased vascular development in Triticum 

aestivum (El-Afry et al., 2012), and root density in Handroanthus impetiginosus (Larraburu 

and Llorente, 2015). 

Co-inoculation increased the concentrations of macro and micronutrients in leaves (N, P, Na, 

Mg, Fe and Cu) and roots (N, P, K, Na, Mg, Fe, Cu and Mn), improving the nutritional 

quality of B. brizantha (P < 0.05) (Table 2). Crude protein content (CP) was higher in 

co-inoculated plants, with an increase of 37% and 18% relative to unfertilized-control plants 

and fertilized-control plants, respectively (Table 2). A direct consequence of the higher 

nitrogen content in leaves of B. brizantha was the increase in crude protein (CP) content, an 

important forage quality property for ruminant nutrition (Reis et al., 2013; Ball et al., 2015). 

The increase in CP content and biomass production, observed in co-inoculated plants (Table 2, 

Figure 4), is a common response to nitrogen fertilization in B. brizantha (Pontes et al., 2017) 

and in Panicum maximum (Paciullo et al., 2017).  
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Table 2. Macro and micronutrients concentrations, neutral detergent fiber (NDF), acid 

detergent fiber (ADF) and crude protein (CP) of Brachiaria brizantha under the three 

treatments: unfertilized (C-), fertilized (C+) non-inoculated control plants and co-inoculated 

with Pseudomonas fluorescens and Burkholderia pyrrocinia (MIX) 

Parameters 

Shoot Root 

C- C+ Mix C- C+ Mix 

N (g/kg) 
23.19 

(0.78) c 
27.08 (0.74) 

b 
30.08 (0.61) 

a 
4.14 (0.12) c 5.96 (0.15) b 7.49 (0.24) a 

P (g/kg) 
1.07 (0.02) 

c 
1.17 (0.05) 

b 
1.22 (0.03) a 

0.07 (0.002) 
b 

0.08 (0.002) 
b 

0.17 (0.001) 
a 

K (g/kg) 
24.39 
(0.58)  

23.66 (0.31)  22.71 (1.23)  8.12 (0.32) c 9.83 (0.01) b 
14.74 (0.01) 

a 

Na (g/kg) 0.6 (0.01) c 
0.77 (0.04) 

b 
0.81 (0.03) a 1.16 (0.15) c 1.52 (0.06) b 1.96 (0.02) a 

Ca (g/kg) 
5.94 (0.14) 

c 
6.88 (0.07) 

a 
6.79 (0.11) b 1.12 (0.01) b 1.53 (0.05) a 1.09 (0.03) b 

Mg (g/kg) 
4.56 (0.12) 

c 
5.76 (0.07) 

b 
5.86 (0.09) a 

0.66 (0.003) 
c 

0.75 (0.002) 
b 

1.08 (0.02) a 

Fe (g/kg) 
191.02 
(1.98) c 

212.50 
(5.24) b 

542.69 
(46,67) a 

2176.9 
(23.27) c 

2350.5 
(60.34) b 

3143.6 
(26.75) a 

Zn (g/kg) 
97.12 (5.4) 

c 
149.13 
(7.37) a 

123.37 
(3.97) b 

80.86 (4.12) 
a 

78.98 (8.37) 
b 

67.03 (5.28) 
c 

Cu (g/kg) 
13.29 

(0.24) c 
14.14 (0.15) 

b 
14.61 (0.14) 

a 
3.91 (0.16) c 5.62 (0.12) a 4.96 (0.04) b 

Mn (g/kg) 143.02 c 169.24 a 145.06 b 
53.26 (1.54) 

c 
61.05 (5.65) 

b 
74.57 (3.47) 

a 
NDF (g kg-1 of 

DM) 
260 (22.5)  251 (12.32) 260 (23.4)    

ADF (g kg-1 of 
DM) 

130 (45.6) 
b 

150 (21.3) a 
132 (23.76) 

b 
   

CP (g kg-1 of 
DM) 

157.6 
(11.2) c 

183.3 (9.6) 
b 

215.8 (42.3) 
a 

   

Significant at the 0.05 probability level. Data are means ± SE. Means followed by different 

letters in each column are significantly different (P < 0.05, Duncan Test).  

Phosphorus (P) is a limiting nutrient essential for pasture establishment and productivity 

(Dias-Filho, 2011). In some situations, part of the available phosphorus, in 

phosphorus-containing fertilizers may be readily bound to the soil, resulted in low P 

availability to plants (Dias-Filho, 2011; Pii et al., 2015; Duchene, et al., 2017). Oliveira Neto 

et al. (2020) verified that nitrogen and phosphorus supply in soil, increase dry mass 

production in Panicum maximum cv. BRS Zuri. The higher P content observed in inoculated 

plants suggests that the rhizobacteria increased soil P availability and P uptake by B. 

brizantha (Table 2). It is possible to infer that inoculation, besides contributing to increase 

pasture productivity, would also contribute to improve animal nutrition, reducing the need for 

P supplementation in animal diet, a common practice in tropical pastures systems (Dias-Filho, 

2011).  
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Figure 4. Plant height (H) (a) and root area (b) and biomass production (c) of Brachiaria 

brizantha with growth-promoting rhizobacteria. Means followed by different letters in each 

column are significantly different (P < 0.05, Duncan Test). C - = unfertilized-control; C + = 

fertilized-control; Mix = Burkholderia pyrrocinia + Pseudomonas fluorescens 

 

Figure 5. Brachiaria brizantha inoculated with plant growth-promoting rhizobacteria, 35 

days after seedling emergence. Pseudomonas fluorescens (BRM-32111) and Burkhoderia 

pyrrocinia (BRM-32113) modified the anatomy (leaf, culm and root), increased the plant 

height (H), chlorophyll content, net photosynthesis (A), water-use efficiency (WUE), N, P, Na, 

Mg, Fe, starch, carbohydrate and protein contents, root area, forage quality and biomass 

production in B. brizantha 
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The amount of fiber, such as neutral detergent fiber (NDF) and acid detergent fiber (ADF), 

which are structural carbohydrates of plant cell wall, and include cellulose, hemicellulose, 

lignin and pectin, are important components of forage nutritional quality (Ball et al., 2015). 

The NDF did not differ among treatments while ADF was higher in fertilized-control plants 

(Table 2). Forages with a fiber (NDF and ADF) content of over 60% have low digestibility, 

resulting in lower consumption and animal performance (Ball et al., 2015). It is possible to 

infer that B. brizantha co-inoculated with P. fluorescens and B. pyrrocinia would have a 

higher digestibility consumption, due to the lower thickness of the epidermis, mainly the 

abaxial, and the sclerenchyma area (Figura 1) (Tsuzukibashi et al., 2016; Paciullo et al., 

2017).  

Results of the research study pointed out that co-inoculation with P. fluorescens and B. 

pyrrocinia was more efficient than conventional chemical fertilization in promoting 

nutritional quality and biomass production in B. brizantha. (Figure 4) In the present study, 

rhizobacteria acted as biofertilizer in B. brizantha, stimulating nutrient acquisition, modifying 

physiology, contributing to accumulation of metabolites, resulting in increased height, forage 

biomass and nutritional value (Figure 5). These attributes are of great practical importance, 

by affecting total daily feed intake (Reis et al., 2013).  

4. Conclusion 

Co-inoculation with P. fluorescens (BRM-32111) and B. pyrrocinia (BRM-32113) modified 

the anatomy and biochemistry of B. brizantha, promoting growth and nutrient accumulation. 

Therefore, these findings set up the basis for additional exploratory studies, using these 

rhizobacteria as biotechnological innovation with potential of use as biofertilizer in B. 

brizantha, aiming higher productivity and nutritive value in a more eco-friendly and 

sustainable pasture production system. 
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