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Abstract 

The objective of this study was to evaluate the microbiological attributes of a Cohesive 

Yellow Latosol. Collections were carried out in three land use systems (LUS). The first, with 

natural rainforest (NR), the second with sugarcane (SC) cultivated since 2009, and the third 

under Mimosa cesalpiniifolia (MC) introduced in 1999. Microbiological analyzes were 

carried out by determining the carbon from microbial biomass, readily mineralizable carbon, 

microbial respiration, metabolic quotient, total organic carbon, microbial C/total organic C 

ratio, and occurrence of cellulolytic and ammonifiers microorganisms. Analysis of variance 
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was performed to verify the different measures of microbiological attributes. The variation 

obtained from CMB was from 3.06 to 4 µg.C.g-1 in NR, 3.02 to 3.92 µg.C.g-1 in MC, and 

3.14 to 3.24 µg.C.g-1 in SC. For accumulated CO2, no differences were found between 

environments, with values ranging from 77 to 55.70 µg.Kg-1 for NR, 80.30 to 49.56 for MC, 

and 80.30 to 49.56 for SC. qCO2 had no significant effect, and in relation to total organic 

carbon the forest soil (NR). These results demonstrate that the microbiological attributes of 

the soil are influenced by cover, environmental standards and soil management, and the 

sampling time. The forest soil showed superior microbial biomass when compared to other 

soils. The metabolic control detected a difference between the collection times. For the 

accumulated CO2 resources, no changes were observed. 

Keywords: carbon from biomass, basal respiration, cellulolytic fungi, ammonifers bacteria, 

metabolic quocient 

1. Introduction 

Soil microbiota is the principal responsible by organic residue decomposition and nutrient 

cycle, influencing in organic matter, carbon, and mineral stock. The natural fertility depends 

on the dynamics of these compounds. The microbial diversity in soil is an important indicator 

of soil quality (Silva et al., 2019). Comparative studies about biological properties of soils 

between native and cultivated vegetation are important parameters for sustainable evaluation 

of soils use systems.  

Different plant species, in turn, determine the quantity, quality and persistence of residues, 

and change the growth of the microbial community in the soil. The size of the microbial 

community and its activity determine the intensity with which the biochemical processes take 

place. Microbial activity and biomass, in turn, are influenced, by other factors, such as 

temperature, humidity, aeration and availability of substrates in the soil. 

The choice of microbiological indicators to define soil quality has been adopted since edaphic 

organisms have the ability to respond quickly to changes in the environment, especially 

anthropic changes derived from the crop management (Barroso et al., 2012;  Eleftheriadis & 

Turrion, 2014; Silva et al., 2019).  

Microbial biomass plays a fundamental role in the productivity and maintenance of 

ecosystems, acting as a catalyst for important chemical transformations in the soil and 

constitutes a reservoir of nutrients available to plants, as it belongs to the labile component of 

soil organic matter and has activity influenced by biotic and abiotic conditions. Its monitoring 

reflects possible changes in the soil, being considered a good indicator of changes resulting 

from management (Souza et al., 2008). 

Microbial biomass responds quickly to the addition of C and N applied to the soil, 

determining the decomposition of organic matter, the C:N ratio, mineralization, and 

immobilization of nutrients (Hatch et al., 2000). And it is influenced by seasonal variations in 

humidity and temperature, soil management, cultivation, and plant residues. Soil management 

also interferes with the microbial biomass carbon, promoting its decrease in intensive soil 

preparation, such as plowing, harrowing, and subsoiling (Perez et al., 2005). 
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The carbon in microbial biomass (CMB), which represents the living and most active part of 

the organic matter of the soil, is more sensitive to the removal of native vegetation cover than 

the mineral part of the organic matter. For this reason, the microbial biomass carbon has been 

pointed out by several authors (Mendes & Vivaldi, 2001) as a quality indicator, with 

sensitivity to detect changes in the soil, even before the organic matter contents are 

significantly changed. 

Soil respiration, also known as readily mineralizable C, can be understood as the sum of all 

metabolic functions in which carbon dioxide (CO2) is produced being one of the most used 

methods to evaluate the metabolic activity of the soil microbial population. Breathing can be 

quantified baseline or induced (Alef et al., 1995). While basal respiration simply quantifies 

the CO2 evolved during soil incubation, estimating the heterotrophic activity on the substrates 

present in the system, a readily available carbon source is added to the induced, in order to 

quantify the maximum heterotrophic activity of an edaphic system (Moreira & Siqueira, 

2006). 

The microbial quotient (qMic) calculated by the ratio between CMB and total organic carbon 

(TOC), expressed in micrograms of C-CO2 per microgram of Cmic is an index widely used to 

provide indications about the dynamics of organic matter, expressing the efficiency of 

biomass microbial use of soil organic carbon (Cardoso et al., 2009). 

The soil microbial community is influenced by the environment. Such variations are directly 

linked to the water regime and climate of the region, to the structure and management of the 

soil, and to the content and quality of the vegetable residues contributed. Soil with a high 

content of organic matter tends to keep the microbial population more stable throughout the 

year, probably due to the wealth of ecological niches and the heterogeneity of carbon sources 

(Fede et al., 2001; Mesquita, 2014). 

In view of above, the aim of this study was to evaluate and to characterize the 

microbiological attributes that act as indicator of soil quality in different using system in a 

cohesive Yellow Latosol.  

2. Method 

2.1 Experimental Area and Soil Sampling 

The soil in the experimental areas is classified as a Cohesive Yellow Latosol. The climate of 

the region is As in the Koeppen Classification (Koeppen, 1948), with mean annual rainfall of 

2,363 mm, relative humidity of 93.02%, minimum average temperature of 18.9 ºC, and 

maximum of 27.1 ºC, with a dry season in summer. 

Soil sampling were carried out in three land use systems (LUS), described below: the first, 

with natural rainforest (soil cover condition) (NR), the second with sugarcane crop (SC) 

cultivated since 2009, having received the recommendations for the culture (CNA, 2007), and 

the third under Mimosa caesalpiniifolia (MC) that was introduced replacing the natural forest 

in 1999. In each soil cover system, four 1000 m2 areas were subdivided. 

Five collections were made, 10 samples were collected at a depth of 20 cm by zigzag walking, 
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packed in plastic bags. In the laboratory, sieving was performed (opening = 4 mm), manual 

removal of roots and vegetable remains. 

2.2 Microbiological Analysis 

Microbiological analyzes were performed by determining the carbon of the microbial 

biomass, readily mineralizable carbon, microbial respiration, metabolic quotient, total organic 

carbon, microbial C/total organic C ratio, and the most probable number (MPN.g-1) of 

cellulolytic fungi and ammonifying bacteria. 

A 10 g sub-samples were taken from each composite soil sample which was suspended in 90 

ml of saline solution. After stirring, serial dilutions were made. From the 10-1 to 10-5 dilutions 

1 ml aliquots were transferred to test tubes containing 9 ml of liquid medium for cellulolytic 

fungi. A strip of sterile filter paper measuring 7 x 1 cm was placed in each tube so that the 

paper is 2 cm above the level of the culture medium. The cultures were incubated in the dark 

at 28 ° C for 28 days. Counting was done according to the McGrady table of the most likely 

number of microorganisms for 5 repetitions (Jenkinson & Powlson, 1976). From the 10-1 to 

10-5 dilutions, 1 ml aliquots were transferred to test tubes containing 4 ml of liquid culture 

medium for ammonifying bacteria. The cultures were incubated in the dark at 28 °C for five 

days. The tubes with ammonia production showed a color change from orange to pink. The 

count was made according to the McGrady table of the most likely number of 

microorganisms for 5 repetitions (Jenkinson & Powlson, 1976). 

2.2.1 Basal Respiration (BR) 

Soil microbial respiration was determined by the fumigation-incubation method proposed by 

Jenkinson and Polwson (1976). For this, 20g of soil were sampled with 25 ml of ethanol-free 

chloroform under a vacuum of approximately 600 mm Hg for 2 min after the start of boiling 

in a wet desiccator, remaining for 24 hours in contact with the steam of this fumigant, in a 

dark place and temperature of 27 ± 2 ºC. 

Sub-samples of 20g of fumigated soil were placed in 2 L flasks together with another flask 

containing 10 ml of NaOH 0.05 mol.L-1 to capture the C-CO2 released from the soil. These 

samples were incubated for 10 days. The control consisted of flasks containing only NaOH. 

After incubation, the captured CO2 was precipitated as barium carbonate, after the addition of 

5 ml barium chloride (0.5 mol.L-1), and the excess of NaOH was titrated with HCl solution 

(0.5 mol.L-1)  in the presence of phenolphthalein 0.1%). The rate of evolution of CO2 in 

each sample was calculated using the following formula: 

                      CO2(mg.kg-1 soil)=((Vb-Va) x 1.1 x 1000)/DSW           (1) 

Vb = volume of HCl (ml) used in NaOH titration of control; 

Va = volume of HCl (ml) used in NaOH titration of the sample; 

1,1 = conversion factor (1 ml of NaOH 0,05M = 1mg of CO2) 

DSW = Dry Soil Weight 
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2.2.2 Carbon of Microbial Biomass (CMB) 

The determination of the biomass carbon was performed using the fumigation-extraction and 

oxidation method of organic carbon by potassium dichromate (K2Cr2O7) (Vance et al., 1987). 

For this, 20g of soil were fumigated with 25 ml of ethanol-free chloroform under a vacuum of 

approximately 600 mm Hg for 2 min after the start of boiling in a wet desiccator, remaining 

in contact for 24 hours with the steam of this fumigant, in a dark place and at a temperature 

range of 27 ± 2 ºC.  

The organic carbon was extracted by 50 ml of a 0.5 M potassium sulfate solution (K2SO4) 

added to the fumigated and non-fumigated samples, under stirring for 30 min, after which the 

extract was filtered on Whatman 42 filter paper. An 8 ml aliquot of the filtrate, along with 2 

ml of 66.7 mM K2Cr2O7, 10 ml of concentrated sulfuric acid (H2SO4, 98%) and 5 ml of 

phosphoric acid (H3PO4, 88%) were heated on a reflux plate by 3 min after the first bubble 

appears, when the oxidation reaction of the carbon present in the soil samples occurs. After 

cooling the mixture, residual K2Cr2O7 was quantified by titration with 33.3 mM ferrous 

sulfate (Fe(NH4)2(SO4)26H2O) and 1% diphenylamine in an acid medium as indicator. A 

blank was added with 50mL of potassium sulfate 0.5 mol.L-1 (without the soil). The carbon of 

the microbial biomass was calculated using the formulas: 

Oxidizable C :(mg.g-1C of soil) =  

                                   ((Br-A)xN0,003x50x106)/(8xP)           (2) 

where:  

Br = volume used in titration of the control 

A = volume used in titration of the sample 

N = exact normality of ammoniacal ferrous sulphate 

0,003 = meq of C 

50 = extrator volume 

8 =   aliquot volume 

DW = dry wheight of the sample 

106 = conversion factor to mg C   

Carbon of Microbial Biomass (CMB) (mg.g-1 C) 

    

     Cmic=(CF-CNF).kc                    (3) 

where:  

FC = Fumigated carbon 

NFC = Non fumigated carbon 
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Kc = 2,78 (correction factor) 

2.2.3 Total Organic Carbon 

The organic C of the soil was determined by the method described by Embrapa (1997). This 

principle is based on the oxidation of organic matter in a humid way with potassium 

dichromate (K2Cr2O7, 0.4N) in a sulfuric medium, using the heat given off by the sulfuric 

acid and/or heating as an energy source. The excess dichromate after oxidation was titrated 

with a standard solution of ammoniacal ferrous sulfate [(Fe (NH4) 2 (SO4) 2.6H2O, 0.1N] 

(Mohr's salt). 

20g of soil were sieved through an 80 mesh sieve and 0.5g of that soil was removed and 

placed in a 250 ml conical flask. 10ml of 0.4N potassium dichromate solution was added. A 

blank with 10ml of the potassium dichromate solution (without the soil) was included. 

Erlenmeyers were taken to the condenser and on an electric plate until the boil was mild, for 

5 minutes. It could cool and 80 ml of distilled water, 2 ml of orthophosphoric acid and 3 

drops of the diphenylamine indicator were added. It was titrated with 0.1N ammoniacal 

ferrous sulfate solution. Organic C was calculated using the formula: 

  C (g.kg-1) = [40 – (volume used x f)] x 0.6                   (4) 

where: 

f = 40/volume of ferrous sulfate used in white  

2.2.4 Metabolic Quocient (qCO2) and Microbial Quocient (qMic) 

From the results of the basal respiration of the soil, samples and of the Cmic, the metabolic 

quotient (qCO2) that represents the amount of C-CO2 evolved per unit of microbial C (mg 

C-CO2.hour–1.mg C-biomass.g-1 dry soil) was calculated (Anderson & Domsch, 1993). The 

microbial quotient was calculated according to Anderson and Domsch (1993), by the 

relationship between carbon of microbial biomass and total organic carbon, expressed in 

micrograms of C-CO2 per microgram of Cmic. 

2.2.5 Chemical Analisys 

The chemical analyzes were carried out at the Soil Physics and Fertility Laboratory by the 

methods of Embrapa (1997). 

2.2.6 Experimental Design and Statistical Analysis 

Analysis of variance (ANOVA) was performed to verify the differences between the means of 

the microbiological attributes of the soil and, when these occurred, the Scott-Knott test (5%) 

was applied (Ferreira, 2014). Pearson's correlation test (Sigmaplot 11.0) was performed with 

the average values of chemical and biological attributes. 

3. Results and Discussion 

3.1 Carbon of Microbial Biomass 

The variation obtained in the CMB contents in the soils were 3.06 to 4.00 mg of C.g-1 for NR, 
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3.02 to 3.42 for MC and 3.14 to 3.27 for SC (Table 1). For the accumulated results, there was 

a higher value for NR. The observed levels probably reflect better environmental conditions 

for the development of the microbial population. 

Table 1. Carbon of microbial biomass (µg.C.g-1) in a cohesive Yellow latosol under different 

land use systems 

LUS² Collects 

1 2 3 4 5 

NR³ 4.00 aA¹ 3.06 aB 3.27 aB 3.37 aB 3.21 aB    

MC4 3.22 bA 3.02 aA 3.42 aA 3.38 aA 3.29 aA    

SC5 3.15 bA 3.27 aA 3.19 aA 3.19 aA 3.14 aA    

¹Means followed by the same letter do not differ statistically by Tukey test (p<0.05). ²Land 

Use Systems. ³Native Rainforest. 4Mimosa Cesalpiniifolia. 4Sugarcane. 

In areas under native vegetation, among the factors responsible for conditions more favorable 

to microbial biomass, the following stand out: lack of soil preparation and greater floristic 

diversity. In addition to favoring the preservation of fungal hyphae, and the accumulation of 

litter on the soil surface, the absence of soil disturbance also results in a greater presence of 

roots, which increase the entry of carbon substrates into the system, via root exudates 

(Moreira & Siqueira, 2006). The floristic diversity of native areas and the presence of 

vegetation throughout the year influence the quantity and quality of litter, the sum of these 

factors contributes to the occurrence of higher levels of biomass in these areas. 

In addition, there is a greater diversity of organic compounds deposited in the rhizosphere, 

which is a factor favorable to the survival and growth of different groups of soil 

microorganisms. In this sense, the abundance of decomposing microorganisms can contribute 

to further stimulate their saprophytic and predatory microfauna. 

In this way, the different conditions of the soil under forest vegetation, together with the 

absence of disturbances resulting from anthropic activity, make it possible to have greater 

amounts of CBM, indicating the greater balance of the soil microbiota in this ecosystem 

(Pôrto et al., 2009; Ferreira et al., 2010; Silva et al., 2019). Nunes et al. (2009) and Ferreira et 

al. (2010) verified, through multivariate analysis, that among the biological attributes of the 

soil, CMB was the one that most contributed to the separation of the forest from areas under 

different uses. 

3.2 Basal Respiration and Metabolic Quociente qCO2 

The F test at 5% probability detected significant differences between the collection times. For 

the results accumulated CO2 evolution, there were no differences between areas, the observed 
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variations occurred between collections (Figure 1). The values ranged from 77.00 to 55.70 

μg.kg-¹ CO2 for NR, 80.30 to 55.20 for the MC, and while in the area under SC the values 

ranged from 80.30 to 49.56 μg.kg-1 CO2 (Figure 1). Q-CO2 remained practically stable 

throughout the collection periods; however, a significant effect of the interaction was 

observed (Table 2). 

Figure 1. Basal respiration in a cohesive Yellow latosol under different land use systems. 

 

Table 2. qCO2 in a cohesive Yellow latosol under different land use systems 

LUS² 
Collect 

1 2 3 4 5 

NR³ 2.75 bB¹ 7.18 aA 5.75 aA 5.61 aA 5.96 aA    

MC4 7.09 aA 8.48 aA 4.34 aB 5.45 aB 5.46 aB    

SC5 7.59 aA 6.29 aA 6.59 aA 6.74 aA 5.98 aA    

¹Means followed by the same letter do not differ statistically by Tukey test (p<0.05) – Capital 

letters in the lines, lower case letters in the columns. ²Land Use Systems. ³Native Rainforest. 
4Mimosa cesalpiniifolia. 4Sugarcane. 

The different types of residues in the soil, in different amounts, alters the behavior of the 

microbiota, being able to stimulate or inhibit its activity, mainly in relation to the processes of 

transformation of organic matter and the cycling of nutrients and the exchange interactions 

with most of the plant species, especially those of agricultural importance (Moura et al., 

2015). 

The qCO2 resulting from the specific respiration of the soils represents the amount of CO2 

released per unit of microbial biomass in a time, low values of qCO2 indicate more stable 

agroecosystems, providing more favorable conditions for the development of microorganisms, 

related to the non-overturning of the soil. Soil and mulching, such as less disruption of the 

fungi hyphae, protection of microbial habitat, increased soil moisture content and less 

extreme temperature conditions (Rhoton, 2000; Pereira et al., 2007). Higher qCO2 values 

indicate higher losses of C in the system in the form of CO2 per unit of microbial C (Melloni 
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et al., 2001). According to Martins et al. (2010), increases in qCO2 values are related to the 

response to microbial biomass mineralization. 

The greater release of qCO2 is generally associated with greater biological activity, which in 

turn is directly related to the amount of labile carbon in the soil. However, the interpretation 

of the values of biological indicators must be made with discretion, since high microbial 

activity does not always indicate desirable conditions: in the short term it can mean release of 

nutrients from the plants and, in the long term, loss of organic carbon from the soil into the 

atmosphere. Thus, high basal respiration values can indicate disturbance situations as well as 

a high level of system productivity. 

Pereira et al. (2007) and Ferreira et al. (2010) observed a higher qCO2 in the soil under 

conventional tillage than in no-tillage. As microbial biomass becomes more efficient in the 

use of ecosystem resources, less CO2 is lost through respiration and a higher proportion of 

carbon is incorporated into microbial tissues, resulting in a decrease in qCO2 lower values of 

qCO2 indicate more stable LUS. Direct seeding provides more favorable conditions for the 

development of microorganisms, related to the non-revolving soil and mulching, such as less 

disruption of the fungi hyphae, protection of the microbial habitat, increased soil moisture 

content and extreme soil conditions (Rhoton, 2000; Pereira et al., 2007), such as water and 

temperature. 

3.3 Total Organic Carbon and microbial Quocient (qMic) 

The total organic carbon under rainforest was higher than in cultivated soil (Table 3), 

probably due to the large contribution of organic residues, non-revolving soil, and reduced 

water erosion due to the greater coverage of the soil by the litter. According to Jakelaitis et al. 

(2008), the decrease in total organic carbon in soils under cultivation may also be due to the 

increase in the consumption of carbon readily available by microbial biomass and, also, by 

the management adopted. 

Table 3. Total organic carbon in a cohesive Yellow latosol under different land use systems 

LUS² Collect 

1 2 3 4 5 

NR³ 35.63 bB¹ 39.29 aA 39.37 aA 39.32 aA    38.67 aA 

MC4 39.67 aA 39.73 aA 39.84 aA 38.67 aA 39.57 aA 

SC5 35.47 bB 38.22 aA 39.04 aA 38.71 aA 38.47 aA 

¹Means followed by the same letter do not differ statistically by Tukey test (p<0.05) – Capital 

letters in the lines, lower case letters in the columns. ²Land Use Systems. ³Native Rainforest. 
4Mimosa cesalpiniifolia. 4Sugarcane. 

The highest qMic were found in the first collection for LUS NR (Table 4). Values above those 

reported were found in soils under different use systems in previous studies. For example, 

variations from 0.76 to 1.59% were found in soils under no-tillage and conventional tillage 

with rotated crops (Ferreira et al., 2010), and from 1.3 to 2.5% in forest soils or under 

conventional and organic agricultural crops 179 (Moscatelli et al., 2007). Pôrto et al. (2009) 

observed values of 1.10, in soils under sugarcane cultivation. Higher values for this attribute 
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indicate that a greater part of organic carbon is a constituent of microbial biomass. However, 

these attributes are also influenced by edaphoclimatic conditions. 

Table 4. qMic in a cohesive Yellow latosol under different land use systems 

LUS² Collect 
1 2 3 4 5 

NR³ 8.25 aA¹ 3.47 aB 5.57 aB 6.42 aB 4.60 aB  
MC4 4.59 bA 3.15 aA 7.31 aA 6.72 aA 5.25 aA  
SC5 4.26 bA 6.03 aA 5.95 aA 4.30 aA 3.66 aA  

¹Means followed by the same letter do not differ statistically by Tukey test (p<0.05) – Capital 

letters in the lines, lower case letters in the columns. ²Land Use Systems. ³Native Rainforest. 
4Mimosa cesalpiniifolia. 4Sugarcane. 

For LUS rainforest, qMic showed significantly positive correlations with biomass (r = 0.90 

and TOC (r = 0.91) (Table 5) indicating that this biological attribute is influenced by the 

availability of total organic C and of the microbial biomass in the soil. In fact, to carry out its 

metabolic processes, the soil microorganisms need nutrients and energy, which are obtained 

from the organic matter contained in the soil, so in soils with higher TOC levels, microbial 

density and activity tend to be higher. In LUS MS, biomass correlated positively with qCO2 (r 

= 0.96) and, with microbial biomass (r = 0.98), which shows CMB as a good biological 

attribute to assess soil use conditions. Especially because this biological attribute. Especially 

since this biological attribute can detect differences in the two environments, including at 

different collection times. In fact, CMB is one of the biological parameters most sensitive to 

changes in the soil environment, so it has been widely used to assess the impacts of different 

systems of use on the soil microbiota. 

Table 5. Pearson's correlation coefficients between soil microbiological attributes. 

LUS 
Attributes Basal 

respiration 
Biomass TOC qCO2 qMic 

NR 

Basal 
respiration 

1     

Biomass 0,8781ns 1    
TOC 0,685ns 0,7322ns 1   
qCO2 -0,3106ns -0,6963ns -0,2745ns 1  
qMic 0,8640ns 0,9004* 0,9158* -0,3922ns 1 

MC 

Basal 
respiration 

1     

Biomass -0,5627ns 1    

TOC -0,2548 ns -0,3601ns 1   

qCO2 0,7613ns     0,9626** 0,9791** 1  

qMic -0,5994ns 0,2059ns -0,3584ns 0,9487* 1 

SC 

Basal 
Respiration 

1     

Biomass 0,1451ns 1    

TOC -0,7563ns 0,3436ns 1   

qCO2 0,8255ns -0,2737ns -0,7950ns 1  

qMic -0,2159ns -0,6799ns 0,0410ns 0,3378ns 1 

The results for the sugarcane (LUS SC) showed that the biological attributes of the soil 
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provide variable responses as a function of management practices in perennial agricultural 

crops such as sugarcane. The values observed for this LUS in reflect the management of the 

soil used in this area, where it does not occur when burning straw and is harvested without 

using machines (Montaldo et al., 2018). In addition, the residues of this culture are deposited 

on the soil, which increases the levels of organic carbon and favors microbial biomass and its 

metabolic processes. 

Through the analyzed data it was possible to observe a higher count of ammonifying bacteria 

was observed in NR soil ranging from 160.883 to 42.56 MPN, decreasing from the third 

collection, which also reflects in the occurrence of this group of microorganisms. Greater 

stability was observed in sugarcane crop with 42.56 MPN, and an occurrence of 0.034 in all 

collections without showing variations or oscillations (Table 6). 

Table 6. Most probable number and probability of occurrence of ammonifiers bacteria in a 

cohesive Yellow latosol under different land use systems 

LUS¹ Collect MPN5x105.g-1 Probability (%) 

NR² 

1 160.88 40.96 

2 160.88 40.96 

3 42.56 0.03 

4 42.56 0.03 

5 42.56 0.03 

MC³ 

1 42.56 0.03 

2 34.53 0.35 

3 160.88 40.96 

4 21.21 0.05 

5 160.88 40.96 

SC4 

1 42.56 0.03 

2 42.56 0.03 

3 42.56 0.03 

4 42.56 0.03 

5 42.56 0.03 

¹Land Use System. ²Native Rainforest. ³Mimosa cesalpiniifolia. 4Sugarcane. 5Most Probable 

Number.  

The higher N richness in the cultivated soils is associated with continuous nitrogen 

fertilization thereof (Wolinska et al., 2016), as observed in the sugarcane crop. Li and Lang 

(2014) indicating a similar trend noted in uncultivated and cultivated black soil. Similar 

results were showed by Zhang et al. (2013) when analyzing woodland and agricultural soils.  

As for the presence and occurrence of cellulolytic fungi, the soil cultivated with sugarcane 

had the lowest count and occurrence, however, there was no instability throughout the 

collections (Table 7). This is due to the environment being highly controlled through the 

treatment of culture. The other two environments showed fluctuations in their counts 

throughout the collections, with variations from 34,531 to 1,071 MPN for NR, and 14,788 to 

2,161 MPN for MC. 
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Table 7. Most probable number and probability of occurrence of cellulolytic fungi in a 

cohesive Yellow latosol under different land use systems 

LUS¹ Collect MPN5x105.g-1 Probability (%) 

 
NR² 

1 25.26 0.03 
2 34.53 0.35 
3 2.31 16.64 
4 1.07 10.45 
5 3.86 0.01 

MC³ 

1 14.78 0.01 
2 4.52 5.20 
3 2.16 6.52 
4 10.85 11.03 
5 4.26 0.16 

SC4 

1 8.38 0.04 
2 8.38 0.04 
3 8.38 0.04 
4 8.38 0.04 
5 8.38 0.04 

¹Land Use System. ²Native Rainforest. ³Mimosa cesalpiniifolia. 4Sugarcane. 5Most Probable 

Number.  

The efficiency in the production of certain enzymes by soil and rhizosphere microorganisms 

is of considerable importance from an ecological point of view (Almeida et al., 2020). In 

non-anthropized environments and with litter input from native vegetation, it is common to 

have greater biological activity, especially due to the existence of other edaphic organisms 

acting on the decomposition of organic matter. These characteristics favor the development of 

microorganisms with high capacity and enzymatic activity, as is the case of cellulolytic fungi 

presented here. 

4. Conclusions 

Adoption of sustainable management, such as the absence of burning, associated with the 

maintenance of crop residues on the soil surface favor the biological properties of the soil. 

Greater stability in the biological edaphic properties contributes to the maintenance of the 

carbon stock in the soil in these environments. 

The presence and occurrence of ammonifying and cellulolytic microorganisms demonstrates 

the existence of functional microorganisms in the studied environments, and greater evidence 

in non-anthropized environments.  
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