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Abstract 

The management of micronutrients in oil palm trees in the Brazilian Amazon is still 

underdeveloped; thus, information on plant demands and their interactions with other 

nutrients is required to create adequate management procedures. The objective this work was 

to evaluate the effects of phosphate, potassium, and magnesium fertilization on micronutrient 

concentrations in leaves of oil palm trees. The experiment was carried out in the Brazilian 

Amazon in a randomized block design in a 4 x 2 x 3 x 2 factorial scheme, using four 

phosphorus levels, two phosphorus sources (natural phosphate and triple superphosphate), 

three potassium levels and two magnesium levels. Phosphate fertilization increased the 

concentrations of boron, chlorine, and iron in leaves, while copper and manganese 

concentrations in leaves decreased with increased doses of phosphorus. Among the 

phosphorus sources, triple superphosphate provided higher chlorine concentrations in leaves. 

Potassium fertilization increased only chlorine concentrations in leaves, while magnesium 

supply did not alter micronutrient concentrations in leaves. Thus, phosphorus and potassium 

fertilizers are essential to provide adequate micronutrient concentrations in leaves of oil palm 

trees. 

Keywords: Amazon, oleaginous, nutritional diagnosis, plant nutrition, fertilization 

1. Introduction 

Oil palm (Elaeis guineensis Jacq.) is originally from the African continent and is widely 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 1 

http://jas.macrothink.org 378 

cultivated in tropical regions. Currently, the oil palm culture is expanding to eastern Amazon 

and, in the last ten years, the planted area has increased by 103.5% and bunch production by 

71.5% (Ibge, 2018).  

The presence of nutrients is crucial to ensure good soil quality and management, especially in 

agricultural ecosystems (Lopes & Guilherme, 2007). Natural causes, such as soil genesis and 

weathering, are the main causes of low soil fertility, especially in tropical and subtropical 

regions, due to high temperatures and rainfall levels, which accelerate the leaching of 

nutrients (Lopes & Guilherme, 2007). The nutrients available in tropical soils are insufficient 

to meet the nutritional demands of cultivated plants, requiring soil fertilization (Priyandari et 

al., 2017). 

Micronutrients are essential elements for plants and are demanded in small amounts. They 

constitute part of some enzymes and are enzymatic activators in the metabolism of vegetables 

(Dechen et al., 2018). Although the demand for micronutrients is small, deficiencies are 

common in many cultivated species, which are very sensitive to changes in soil management 

and preparation time (Wei et al., 2006). There is little information available on micronutrients 

in oil palm trees, with few reports published mainly on copper (Cu) (Pacheco et al., 1986) 

and boron (B) (Tohiruddin et al., 2010; Viégas et al., 2019). Matos et al., 2016 conduced a 

nutritional diagnosis in commercial oil palm plots in northeastern Pará State, Brazil, and 

indicated the Mn and Zn are the most deficient micronutrients in oil palm trees. Although 

some studies have evaluated micronutrient concentrations in oil palm trees in Pará State 

(Matos et al., 2017; Matos et al., 2019; Viégas et al., 2020), they have not investigated the 

effect of fertilization on micronutrient concentrations.  

Micronutrients in the soil solution are constantly flowing and their concentrations depend on 

the ionic strength of the solution, the concentration of other ions, pH, humidity, temperature, 

redox reaction, absorption by plants, as well as on addition of fertilizers (Abreu et al., 2007). 

The excessive use of fertilizers may have an antagonistic or synergistic action with 

micronutrients, requiring an understanding of responses to oil palm trees for an effective 

fertilization plan. In Pará State, the analysis of the soil, plant age, and crop yield recommends 

the use of macronutrients for the fertilization of oil palm plantations. For micronutrients, only 

boron is recommended (Franzini et al., 2020), although there is a suggestion of 

micronutrients application in the crop nutritional management plan (Matos et al., 2016).  

It is necessary to investigate if fertilizations only with macronutrients and boron are sufficient 

to meet the demand of oil palm trees for micronutrients, since tropical soils (Lopes & 

Guilherme, 2007) and the predominant cultivation of the species in the region has low 

chemical fertility (Franzini et al., 2017). Thus, this work evaluated the effect of P, K, and Mg 

fertilization on micronutrient concentrations in oil palm trees. 

2. Method 

The experiment was carried out at AGROPALMA® in the municipality of Tailândia, Pará 

State, Brazil (2°56'50''S and 48°57'12''W). The climate in the region is rainy tropical without 

seasonal thermal variation with a relative humidity of 84% (Köppen classification). During 
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the study period, the temperature ranged from 21 to 32.5 ºC and the average annual 

precipitation was 2,463 mm. During the experiment, rainfall was measured using a rain gauge 

installed in the experimental area (Figure 1). 
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Figure 1. Rainfall (mm) during the experiment period at AGROPALMA® 

The municipality of Tailândia has a predominance of dystrophic Yellow Latosol, acidic, with 

low natural chemical fertility (Rodrigues et al., 2005). Before the installation of the 

experiment, soil texture (610 g kg-1 of sand, 150 g kg-1 of silt, and 240 g kg-1 of clay) was 

evaluated (0 – 0.3 m) and classified as sandy loam. The soil chemical features (0 – 0.3 m) 

were also evaluated (Table 1). The chemical and texture of the soil were carried out at the 

Institut de Recherches pour les Huiles et Oléagineux.  

Table 1. Soil chemical features (0 – 0.3 m) in the study site before experiment 

implementation 

pH SOM** Ptotal Pavailable
* K* Ca+2* Mg+2* Al+3 

(H2O) g kg-1 ------------ mg dm-3 ------------ ---------cmolc dm-3-------- 

5.20 16.4 89 12 15.6 2.38 0.50 0.02 

Note. * extracted with ion exchange resin. ** colorimetric method. SOM – Soil Organic 

Matter. 

The experiment site was prepared with the removal of natural vegetation and the burning of 

plant residues. The swath was mechanized and every six rows of oil palm trees formed a 

windrow. The soil was covered at the beginning of the experiment between the planting rows 

with the cultivation of legumes [Pueraria phaseoloides (Roxb. Benth.), Calopogoníum 

mucunoídes Desv. and Pubescens pubescens Benth]. 
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The experimental design comprised randomized blocks in a factorial scheme 4x2x3x2 with 

four levels of P, two sources of P, three levels of K, and two levels of Mg. The sources of P, K, 

and Mg used were triple superphosphate (45% P2O5 and 10% OCa) and phosphine (natural 

phosphate; 33% P2O5 and 42% OCa), potassium chloride (60% K2O and 47% Cl) and 

magnesium sulfate (18% Mg), respectively (Table 2). 

Table 2. Doses, source, and time (years) of fertilizers application used in the treatments 

Year 

Sources of P ** (g plant-1) 

KCl (g plant-1) MgSO4 (g 

plant-1) F0 F1 

P1 P2 P3 P4 P1 P2 P3 P4 K0 K1 K2 Mg0 Mg1 

0* 250 500 700 1000 200 400 600 800 0 300 450 0 300 

1 250 500 750 1000 200 400 600 800 0 500 750 0 500 

2 250 500 750 1000 200 400 750 800 0 1000 1500 0 1000 

3 250 500 750 1000 200 400 600 800 0 1500 2250 0 1000 

4 250 500 750 1000 200 400 600 800 0 2000 3000 0 1000 

5 250 625 1000 1375 200 500 800 1100 0 1500 3000 0 1000 

6 to 12 250 750 1250 1750 200 600 1000 1400 0 1600 3200 0 1200 

Note. * Over 300 kg ha-1 of acidulated natural phosphate throughout the area; ** Fo = 

Phosphine (33 % P2O5 and 42 % OCa) and F1 = Triple superphosphate (45 % P2O5 and 10 % 

OCa). 

Before the experiment installation, 300 kg ha-1 of partially acidulated natural phosphate (27% 

of P2O5) was applied uniformly throughout the experiment site. In all treatments, between the 

first and the third year of cultivation, were applied doses of 150, 300, and 500 g plant-1 of 

urea. We also applied 100 g plant-1 of borax in fifth year of cultivation. 

The genetic material used was hybrid DELI x La Mé (Category C), obtained from the LaMé 

research station of the Institut de Recherches pour les Huiles et Oléagineux. Oil palm 

seedlings were produced and conducted for six months in a pre-nursery and later transferred 

to the nursery, remaining for another three months until planting in the field. The spacing 

used was an equilateral triangle of nine meters in quincunx (9 m between plants and 7.80 m 

between lines) for 143 plants ha-1. The experimental plot consisted of six lines, and each line 

had nine plants; however, only twelve central plants were evaluated. 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 1 

http://jas.macrothink.org 381 

The concentrations of micronutrients (B, Cl, Cu, Fe, Mn, and Zn) in leaves were evaluated, 

based on the chemical analyses carried out in the plant laboratory of the Institut de 

Recherches pour les Huiles et Oléagineaux (IRHO). Except for the twelfth year, which was 

carried out at the Department of Soil Sciences of the Federal University of Lavras (UFLA), 

according to the method described in Sarruge and Haag (1974). For that purpose, leaf 17 was 

collected from all plants in each useful plot, and leaf 9 was collected in cases of absence of 

leaf 17 (Veloso et al., 2020). The Cl concentration in leaves was determined from the third to 

the sixth year, while B concentration in leaves was determined in the third, fifth, sixth, and 

twelfth year. The concentration of Cu, Fe, Mn, and Zn were determined only in the twelfth 

year of age of the plants. The nutrient concentrations were determined by the method of 

azomethine H (B), titration of silver nitrate (Cl) and atomic absorption spectrophotometry 

(Cu, Fe, Mn and Zn). 

The results were subjected to the analysis of variance (ANOVA) and compared using the 

Tukey test (p <0.05) for P sources and K and Mg levels, while the regression models were 

adjusted for P levels using the Sisvar statistical software (Ferreira, 2011).   

3. Results and Discussion 

The B concentrations in leaves responded quadratically to the increase in P fertilization 

(Figures 2a, 2b, and 2c). Viégas et al. (2019) and Tohiruddin et al. (2010) also observed n 

increase in B concentration in leaves of oil palm due to P application in the conditions in Pará 

and in Indonesia, respectively. The estimated P doses that provided the highest concentrations 

of B were 439 and 477g plant-1 of P2O5, reaching concentrations of 24.9 and 21.7 mg kg-1 of 

B, respectively, in young plants (3 to 6 years) and in adult plants (12 years) (Figure 2). 

Boron is found in the soil solution as boric acid at neutral pH, forming a complex with Ca or 

combining with soluble organic compounds (Dechen et al., 2018). This explains the increase 

of B concentrations in leaves with an increase in P fertilization, since P sources contain Ca 

(F0 = 42% OCa; F1 = 10% OCa), allowing greater formation of B complexes in the soil 

solution, reducing the effect of leaching, and increasing nutrient uptake by plants (Figures 2a, 

2b, and 2c).  

The B concentration in leaves of oil palm trees did not respond significantly to P sources in the 

years evaluated (Figure 2d). Matos et al. (2016) carried out a study with oil palm in eastern 

Amazon and determined the critical concentration of 24.3 mg kg-1 of B for young plants (<6 

years of age) and of 22.7 mg kg-1 of B for adult plants (≥ 6 years old). Thus, B concentrations 

in leaves reached the critical level determined for the crop with both sources of P applied only 

in the twelfth year of the plant crop. Recently, there is recommendation for B application to oil 

palm (Franzini et al., 2020); however, Viégas and Botelho (2010) recommend the application of 

10 g plant-1 of FTE BR 12 (1.8% of B). In our study, fertilization with B (11 g plant-1) was 

carried out only in the fifth year of cultivation, which possibly had a prolonged residual effect 

of the nutrient, since there was an increase of B concentrations in leaves only in the twelfth year 

(Figures 2d, 2e, and 2f). Even though the region is more susceptible to B losses due to leaching 

(Figure 1), the B source applied (borax) has low solubility (20 g L-1) (Ferreira et al., 2020), 

which may have contributed to its greater residual effect. 
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According to Abreu et al. (2007), high precipitation levels and a high degree of losses, due to 

leaching, decrease B availability, especially in sandy soils. In general, B is linked to soil 

organic matter (SOM) in surface layers, making SOM mineralization an essential B source 

for plants (Dechen et al., 2018). The low B concentrations in leaves observed in our study 

may be attributed to high precipitation levels (Figure 1), sandy soil texture, acidic pH, and 

low SOM concentration (Table 1). Besides, there was a lack of fertilization with B in most 

years of cultivation, despite the use of legumes as a soil cover, such as Pueraria, which can 

cycle approximately 180 g ha-1 year-1 of B in oil palm plantations from the second to the 

eighth year of age (Perez, 1997; Viégas et al., 2018).  
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Figure 2. B concentrations in oil palm leaves as a function of P doses in the third (a), fifth (b), 

sixth and twelfth years (c) of plant age, P sources (F0 - phosphine and F1- triple 

superphosphate) (d), and the doses of K (e) and Mg (f). Equal letters in the columns, 

comparing P sources and fertilization levels of K and Mg at each age of the plants, are 

considered statistically equal by the Tukey test (p> 0.05). C.L. - Critical level established for 

oil palm in Pará by the method of reduced normal distribution (RND) (Matos et al., 2016) 

Fertilization with K and Mg on oil palm showed no significant effects on B concentrations in 

the leaves (Figures 2e and 2f). Viégas et al. (2019) studied oil palm in eastern Amazon and 

reported no significant effect of P and Mg fertilization on B concentrations in leaves. The 

crown formation of oil palm trees has the greatest demand for B and crown formation reaches 
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its peak in the fifth year after planting, followed by a slow in vegetative growth, due to 

competition between plants (Goh et al., 2007). However, Viégas (1993) investigated the 

extraction of nutrients in oil palm plantations in Pará State and found that the greatest 

demand for B occurred in the eighth year. Moreover, in sites with adult plants, litterfall 

contributes to the cycling of 17.7 g leaf-1 of B (Goh et al., 2007), favoring B supply to oil 

palm. 

Although the levels of K fertilization showed no significant difference, B concentrations in 

leaves tended to decrease with an increase in K supply (Figure 2e), corroborating with the 

literature (Tohiruddin et al., 2010; Viégas et al., 2019). Studies show that K fertilization 

decreases B absorption in oil palm plants (Rajarattnam, 1973). The oil palm culture is a major 

consumer of KCl and high rates of K fertilizer induce B deficiency (IPPI, 1989). Thus, there 

is an antagonistic relationship between Cl and B. Although it is more retained in the soil than 

colloids (Abreu et al., 2007), high concentrations of Cl- in the soil solution, depending on the 

application of high KCl doses, could promote greater B desorption, increasing the leaching of 

B by mass effect and decreasing its absorption by plants (Figure 2e). 

The Cl concentrations in leaves responded to P application in a quadratic way in the third and 

fourth years (Figure 3a) and in a positive linear way in the fifth and sixth years (Figures 3b 

and 3c). The average concentration of Cl increased proportionally with the doses of P, with an 

increase of 5.1 to 5.8 g kg-1 and even higher leaf concentrations of this nutrient were observed 

at the sixth year in relation to the other evaluated years (5.6 to 6.2 g kg-1 of Cl) (Figure 3). 

Viégas et al. (2019) also observed an increase in the Cl concentrations in leaves of oil palm 

with increased P doses. Oil palm tends to increase the absorption of Cl during its 

development to nourish the formation of new tissues (Viégas et al., 2020), which may be 

related to the vegetative growth provided by increased P doses (Viégas et al., 2019), boosting 

the demand for Cl in the formation of new palm oil tissues. 

Among the P sources evaluated, Cl concentrations were higher in leaves when P was supplied 

through triple superphosphate (Figure 3d). Triple superphosphate is considered a source of 

faster P release (Alcarde, 2007), unlike phosphine (natural phosphate). Phosphate ions are 

retained more strongly than chloride in soil colloids (Novais et al., 2007); thus, greater 

desorption and greater absorption of Cl by plants were observed with P application via triple 

superphosphate. To date, the critical level of Cl in oil palm has not been defined and optimal 

levels for Cl concentrations in leaves range between 5 and 7 g kg-1 (Uexkull & Fairhust 1991). 

Viégas et al. (2020) reported Cl concentrations in leaves between 3 and 5 g kg-1 in oil palm 

trees from 2 to 8 years old in eastern Amazon. In our study, it appears that the Cl 

concentrations in leaves remained within the variation presented in the literature.  

Possibly, Cl is not only involved in cellular osmoregulation in structural tissues of palm trees, 

but also in the regulation of stomatal opening (Dubos et al., 2011). This fact justifies the high 

Cl concentration in palm trees compared to other cultivated plants, which usually have Cl 

concentration around 0.1 g kg-1 (Chen et al., 2010), indicating the importance of this nutrient 

for oil palm trees. 

Fertilization with K showed that the Cl concentrations in leaves increased with the supply of 
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KCl; however, there was no difference between the fertilization levels (Figure 3e). Other 

studies have reported the same behavior for oil palm trees in (Dubos et al., 2011; Viégas et al., 

2019). The synergistic response of Cl to K supply is explained by the Cl content (47%) in the 

composition of K fertilizer. Cl is mobile and easily leached into the soil; therefore, crops 

grown in soils with a low Cl concentration, such as sandy loam and sandy soils, have greater 

benefit from the application of Cl-source fertilizers, with more positive responses (Chen et al., 

2010). The soil in our study site is loam-sandy, which may have augmented the response of 

the Cl concentrations in leaves, mainly under high rainfall levels that occurred in the region 

during the experiment period (Figure 1).  

Fertilization with Mg did not alter the Cl concentration in leaves of oil palm trees (Figure 3f). 

Daniel & Ochs (1975) carried a study with young oil palm trees and reported that the 

application of Mg sulfate did not cause a significant response to the Cl concentrations in 

leaves. Viégas et al. (2019) carried out a study in eastern Amazon and did not find a 

beneficial effect of Mg fertilization on Cl concentrations in leaves of oil palm trees. Thus, Mg 

supply does not alter the Cl concentrations in leaves of oil palm trees. 
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Figure 3. Cl concentrations in oil palm leaves as a function of P doses in the third and fourth 

(a), in the fifth (b), in the sixth years (c) of plant age, P sources (F0 - phosphine and F1- triple 

superphosphate) (d), and the doses of K (e) and Mg (f). Equal letters in the columns, 

comparing P sources and fertilization levels of K and Mg at each age of the plants, are 

considered statistically equal by the Tukey test (p> 0.05). O.C. - Optimal Cl concentration 
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established for oil palm (Uexkull and Fairhust 1991). 

The Cu concentrations in leaves showed a quadratic response to the P doses applied (Figure 

4a). The leaf Cu concentration decreased proportionally with the increase in P doses from 7.1 

to 6.2 mg kg-1 of Cu (Figure 4a). Tohiruddin et al. (2010) conducted a study in Indonesia and 

found similar results, with an antagonistic effect between the Cu concentrations in leaves and 

P fertilization in oil palm plantations. Studies carried out in other perennial crops have also 

indicated an antagonistic effect between Cu and the applications of P fertilizers, which may 

even lead to Cu deficiency, due to high P doses (Dechen et al., 2018). 

On the other hand, P sources did not influence the Cu concentration in leaves of oil palm 

trees (Figure 4b). Likewise, K and Mg fertilization did not alter Cu concentrations in leaves 

(Figure 4b). Studies carried out in Indonesia with K fertilization in oil palm trees also found 

no significant response to Cu concentrations in leaves (Tohiruddin et al., 2010).  

In oil palm orchards in northeastern Pará, Matos et al. (2016) determined the critical 

concentration of 5.2 mg kg-1 of Cu for young plants and 5.0 mg kg-1 of Cu for adult plants. In 

our study, Cu concentrations in leaves are above the critical level for plantations in the region. 

Besides, the use of legumes as ground cover may have contributed to the greater cycling of 

Cu. Viégas et al. (2018) carried out a study with Pueraria phaseoloides L. and reported a 

cycling of 15 g ha-1 of Cu at the eighth year of age of plants, increasing Cu concentration in 

the soil solution, with greater Cu absorption by the oil palm tree. 
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Figure 4. Cu concentrations in oil palm leaves as a function of P doses (a), P sources (F0 - 

phosphine and F1- triple superphosphate) and K and Mg doses (b) in the twelfth year of the 

plant age. Equal letters in the columns, comparing P sources and fertilization levels of K and 

Mg, are considered statistically equal by the Tukey test (p> 0.05). C.L. - Critical level 

established for oil palm in Pará by the method of reduced normal distribution (RND) (Matos 

et al., 2016). 

The Fe concentrations in leaves responded quadratically to the P doses applied (Figure 5a). In 

our study, the estimated P dose that provided the highest leaf concentration of Fe (88 mg kg-1) 
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was 516 g plant-1 of P2O5 (Figure 5a). Fe deficiency is usually caused by the imbalance 

between micronutrients, mainly by the excess of Mn, Cu, and Mo (Abreu et al., 2007). 

Dechen et al. (2018) reported that Cu excess could lead to Fe deficiency, since Cu acts in 

reactions that affect the oxidation state of Fe, limiting its absorption and translocation in 

plants. Thus, the plants showed low Fe concentrations (Figure 5b) probably due to an indirect 

effect of high Cu concentrations in leaves (Figure 4b). Because the Yellow Latosols contain 

high Fe levels (Costa & Bigham, 2019), higher absorption of Fe could be expected due to 

their advanced weathering degree. In these soils, oxidation reactions are predominant due to 

good aeration and thus the prevalence of the Fe+3 trivalent form, but the Fe+2 form is 

preferentially absorbed by plants (Dechen, 2018). However, high rainfall levels in the 

plantation areas of the region (Figure 1), in addition to possible soil compaction, may also 

have contributed to the reduction of Fe+3 to Fe+2, favoring the increase of Fe absorption by 

plants. Furthermore, Fe solubility decreases with the increase in pH, possibly decreasing to a 

thousand times with each increase in the pH of the soil, within the range from 4 to 9 (Abreu 

et al., 2007).  

The sources of P, K, and Mg fertilization did not influence the Fe concentration in the leaves 

in oil palm trees (Figure 5b). The P and K fertilization in oil palm trees did not significantly 

affect the Fe concentrations in leaves (Tohiruddin et al., 2010). In eastern Amazon, the 

critical concentration of 86.9 mg kg-1 of Fe was determined for young plants and 85.8 mg kg-1 

of Fe for adult plants (Matos et al., 2016). Deficiency of Fe in cultivated plants has been 

observed due to the action of metal nutrients, such as Cu, Zn and Co, which are capable of 

replacing Fe in the soil chelates and hindering its availability (Dechen et al., 2018). 

The Fe availability is generally low considering the nutritional demand in aerated soils and a 

neutral pH, with greater availability of Fe in the soil solution with acidic pH (Abreu et al., 

2007), similar to the soil pH of our study (Table 1). However, even under greater acidity, 

plants did not present Fe concentrations considered adequate for the crop (Figure 5b). Viégas 

(1993) found that the greatest extraction of Fe by oil palm organs occurred in the eighth year, 

corresponding to 17 kg ha-1 of Fe. Plants require Fe at high quantities, which act on the 

physiological activities of plants, such as electron transport, cytochrome, chlorophyll 

biosynthesis, and enzymatic activation (Prado, 2020). 
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Figure 5. Fe concentration in oil palm leaves trees as a function of P doses (a), P sources (F0 - 

phosphine and F1- triple superphosphate) and K and Mg doses (b) in the twelfth year of the 

plant age. Equal letters in the columns, comparing P sources and fertilization levels of K and 

Mg, are considered statistically equal by the Tukey test (p> 0.05). C.L. - Critical level 

established for oil palm in Pará using the reduced normal distribution method (RND) (Matos 

et al., 2016). 

The Mn concentrations in leaves responded in a quadratic manner, with a decrease from 499 

to 415 mg kg-1 of Mn with increasing of P doses (Figure 6a). The Ca excess in the soil can 

cause Mn deficiency (Abreu et al., 2007), explaining that increased P doses led to an 

antagonistic effect with Ca, since P fertilizers contain Ca in their composition (Table 2). In 

addition, the Ca concentration in the soil (Table 1) was in the medium level of availability in 

our study (Brasil & Cravo, 2020).  

The critical Mn concentrations in oil palm cultivated in the Amazon were established at 258 

mg kg-1 for young plants and 244 mg kg-1 for adult plants (Matos et al., 2016). Although the 

Mn concentrations in leaves decreased with the reduction of P supply, they remained above 

the critical level established for the crop (Figure 6a). Viégas (1993) obtained Mn 

concentration of 224 mg kg-1 in leaves of oil palm from 2 to 8 years of age, below the critical 

level suggested by Matos et al. (2016) and the levels obtained in our study. 

The Mn concentrations in leaves of oil palm trees did not respond significantly to P sources 

and K and Mg fertilization (Figure 6b). Tohiruddin et al. (2010) carried out a study with K 

fertilization and did not obtain a significant response in Mn concentrations in leaves of oil 

palm trees. Although the difference was not significant, there was a tendency towards a lower 

concentration of Mn in leaves with K and Mg fertilization. Luyindula & Batanga (2017) 

investigated different oil palm genotypes and found a negative correlation between K and Mn 

concentrations in leaves. In addition, the excess of Mg and Fe can cause Mn deficiency in 

cultivated plants (Abreu et al., 2007). In this sense, our results corroborate with the literature, 
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indicating an antagonistic effect between K and Mg applications and Mn absorption. The 

assessment of critical ranges of nutrients in commercial oil palm plots in Pará State showed 

that Mn and Zn displayed the highest deficiency in plants (Matos et al., 2016).  
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Figure 6. Mn concentrations in oil palm leaves as a function of P doses (a), P sources (F0 - 

phosphine and F1- triple superphosphate) and K and Mg doses (b) in the twelfth year of the 

plant age. Equal letters in the columns, comparing P sources and fertilization levels of K and 

Mg, are considered statistically equal by the Tukey test (p> 0.05). C.L. - Critical level 

established for oil palm in Pará using the reduced normal distribution method (RND) (Matos 

et al., 2016).  

The Zn concentrations did not respond significantly to the P doses applied to oil palm trees, 

with a variation in leaf concentration from 14.4 to 16.8 mg kg-1 of Zn (Figure 7a). In 

Indonesia, Tohiruddin et al. (2010) reported that N and P fertilization decreased the Zn 

concentrations in leaves of young oil palm trees, with no effect on older plants, similar to our 

results. Leaves were sampled only in the twelfth year of age of the plants to determine the Zn 

concentrations. Although P application did not influence Zn absorption (Figure 7a), the 

antagonism between these nutrients is reported in the literature (Abreu et al., 2007; Dechen et 

al., 2018) in which high P doses could cause Zn deficiency. In the Brazilian Amazon, Ochs 

and Corrado (1985) made the first reports of visual symptoms of Zn deficiency in oil palm in 

the edaphoclimatic conditions of Manaus, Amazonas State, Brazil. This nutritional disorder is 

mainly attributed to the application of high doses of P fertilizer, in addition to Zn deficiency 

in soils. According to Singh and Moller (1984), the levels of available Zn ranged from 0.05 to 

0.24 mg kg-1 in Yellow Latosols. 

Furthermore, P sources and fertilization with K and Mg showed no significant effect on Zn 

concentrations in oil palm leaves (Figure 7b). Tohiruddin et al. (2010) investigated K 

fertilization in oil palm trees and reported effect on Zn concentrations in leaves and only a 

trend of lower Zn concentrations at high K doses was found, similar to our study (Figure 7a). 
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Luyindula and Batanga (2017) evaluated the effect of different palm oil genetics and found a 

negative correlation between the K and Zn concentrations in leaves. The critical Zn 

concentrations in leaves of oil palm are 15.4 mg kg-1 in young plants and 15.5 mg kg-1 in 

adult plants (Matos et al., 2016). Viégas (1993) assessed the extraction of nutrients in oil 

palm trees from 2 to 8 years of age and found Zn concentrations that ranged from 9.7 to 23 

mg kg-1 in the leaflets, similar to the range of concentrations in our study. On average, Zn 

concentrations in leaves were below the critical level, indicating the need to replace the 

nutrient through fertilization to increase its concentrations in leaves of oil palm plants. 
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Figure 7. Zn concentration in oil palm leaves as a function of P doses (a), P sources (F0 - 

phosphine and F1- triple superphosphate) and K and Mg doses (b) in the twelfth year of plant 

age. Equal letters in the columns, comparing P sources and fertilization levels of K and Mg, 

are considered statistically equal by the Tukey test (p> 0.05). C.L. - Critical level established 

for oil palm in Pará by the method of reduced normal distribution (RND) (Matos et al., 2016). 

4. Conclusion 

The triple superphosphate and natural phosphate sources did not influence the nutrition of 

micronutrients in oil palm trees, except for Cl concentrations in leaves, which increased with 

the supply of triple superphosphate, resulting in synergism. 

Phosphorus fertilization improves the nutrition of oil palm trees in term of B, Cl, and Fe; 

however, it decreases Cu and Mn concentrations in leaves.  

Potassium fertilization improves Cl nutrition, while Mg supply does not affect leaf 

micronutrient concentrations in oil palm plants.  

Regardless of the mineral fertilization carried out in adult plants, oil palm plants were 

well-nourished in terms of B, Cl, Cu, and Mn; however, Fe and Zn nutrition was not 

satisfactory. 
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