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Abstract 

Proximal sensors have been used to characterize the crop biophysical properties by 

reflectance values and/or using Vegetation Indices (IV). Our goal with this work is to 

compare NDVI (Normalized Difference Vegetation Index) spectra-temporal profiles obtained 

by active (GreenSeeker 505 Handheld) and passive (FieldSpec4 model Standard-Res) 

proximal sensors to monitor soybeans and beans. It was monitored agricultural fields with 

soybeans Nidera 5909RG variety and beans Imperador variety, located in the municipality of 

Cascavel, Parana state, Brazil. The proximal sensors were used to monitor the crop's 

conditions on different Days After Sowing (DAS). NDVI from FieldSpec4 (NDVI FS) 

showed a higher correlation with GreenSeeker NDVI (NDVI GS) in the wavelengths of 649 

nm and 771 nm for soybeans (rs = 0.9105) and 646 nm and 792 nm for beans (rs = 0.9382). 

The inter-calibration of NDVI GS values in function of NDVI FS, considering the entire 

phenological cycle, resulted in RMSE = 0.0520 and dr = 0.8630 for soybeans and RMSE = 

0.0636 and dr = 0.8890 for beans. NDVI values showed saturation during the major 

vegetative development of the crops, interfering in the inter-calibration process. In general, 

the NDVI GS and NDVI FS were similar in terms of their spectral-temporal pattern. 

According to our results, the active sensor could be used to crop monitoring, resulting in a 

lower cost and less climatic interference. 

Keywords: NDVI, crop monitoring, terrestrial sensors, soybeans, beans, agriculture 

1. Introduction 

Food security is a global concern due to the continued population growth and the stagnant 

number of food production areas (Harfenmeister, Spengler, & Weltzien, 2019). In this context, 

soybean and beans, present in many people's food base, are two of the more important crops 

related to the food demands. There are efforts from farmers, technical, and direct stakeholders 

to guarantee the maximum food production sustainably. Therefore, accurate spatial and 

temporal crop information is necessary (Kenduiywo, Bargiel, & Soergel, 2016). Remote 

sensing data, mainly through spectro-temporal profiles, could be related to the crop biomass, 

allowing monitoring crop phenological development (Johann, Vieira, Lamparelli, & Duft, 

2013). However, due to the crop dynamics (Atzberger, 2013), temporal data frequency is 

important for periodic monitoring (Atzberger, 2013; Johann, Becker, Uribe-Opazo, & 

Mercante, 2016). The Vegetation Indexes (VI) are spectro-temporal examples that could be 

used to express the phenological crop cycle (Almeida et al., 2015; Formaggio & Sanches, 

2017; Johann et al., 2016). NDVI (Normalized Difference Vegetation Index) is a well know 

VI, which was proposed by Rouse et al. (1973). Using the contrast between the red and 

infrared channels, NDVI is related to agronomics variables (e.g., plant height, leaf area index, 

dry matter, yield, intercepted photosynthetically active radiation) (Baret & Guyot, 1991). 

Most of the sensors can provide NDVI values. However, the wavelengths and bandwidth 
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could be different (Kim, 2010), resulting in different patterns.  

Proximal (or terrestrial) sensors suffering less atmospheric interference than aerial and orbital 

sensors (Eberhardt et al., 2016; Prudente et al., 2020; Whitcraft, Vermote, Becker-Reshef, & 

Justice, 2015) and have temporal resolution flexibility (Mulla, 2013). Some studies 

characterized biophysical crop proprieties using proximal VI from active and passive sensors 

(Anderson et al., 2016; Cattani et al., 2017; Congalton, Gu, Yadav, Thenkabail, & Ozdogan, 

2014; Prudente et al., 2019; Viana et al., 2018; Viana, Mercante, Felipetto, Kusminski, & 

Bleil Jr, 2017; Yao et al., 2013). Passive sensors depend on an external electromagnetic 

source, as the sun (Janse & Deshmukh, 2017), and can be grouped as multispectral or 

hyperspectral (hundreds of bands). With spectroradiometers (hyperspectral sensors) it is 

possible to obtain the spectral signature and various VIs (Congalton et al., 2014). FieldSpec4 

Standard-Res (ASD, Boulder, CO, USA) is one of the most common hyperspectral sensors 

used in agricultural research (Cattani et al., 2017; Prudente et al., 2019; Viana et al., 2018, 

2017). On the other hand, active sensors emit their energy source and they are less affected 

by weather conditions (Yao et al., 2013). GreenSeeker 505 Handheld (Trimble Agriculture, 

Westminster, USA) is one of the more popular proximal active sensors for agriculture 

(Stocker, Souza, Johann, Beneduzzi, & Silva, 2019; Zheng et al., 2016).   

FieldSpec4 sensor costs tens of thousands of dollars more than the GreenSeeker 505 

Handheld sensor. Thus, our goal is to compare the spectro-temporal NDVI profiles obtained 

from both sensors for soybean and beans fields monitoring. This comparison allows us to 

identify the possibility of using a more affordable sensor to provide crop monitoring and 

propose an inter-calibration process between NDVI sensors values.  

2. Methods 

Study area 

In the study, two fields were monitored in the municipality of Cascavel, Parana state, Brazil 

(Figure 1). This municipality is recognized due to the high technology on the farmer level 

(Souza, Mercante, Johann, Lamparelli, & Uribe-Opazo, 2015) and as one of the largest 

national producers of soybeans, wheat, corn, and beans (IBGE, 2020). Soybeans and beans 

fields have areas of 78.32 ha and 40.20 ha, respectively. According to Koppen classification, 

both fields have a Humid subtropical climate (Cfa) (Aparecido, Rolim, Richetti, Souza, & 

Johann, 2016). The soybeans field has a 6% slope (range of 1% to 15%) and the beans field 

has a 7% slope (range of 2% to 20%) (Brasil, 2008; Embrapa, 2009). Eutrophic Red Nitosol 

soil type is present in the beans field and Red Dystrophic Latosol soil type is present in the 

soybeans field (Santos et al., 2011). 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 2 

http://jas.macrothink.org 394 

 

Figure 1. Soybean (top left) and beans (bottom left) locations field in the municipality of 

Cascavel (bottom right) 

Field data 

Soybeans, Nidera 5909RG variety, was sown on 2015 October 6th and 7th and harvested 

during 2016 on February 3rd and 10th. Beans, Imperador variety, was sown on 2016 March 3rd 

and 4th. However, due to a frost incident on May 1st and 2nd (DAS 59 and 60), beans were not 

harvest. Both crops had 0.45 m of rows spacing. In the study, were monitored 24 points on 

the soybeans field and 20 points on the beans field. The sampling data field was collected 

with 34, 45, 71, 76, and 110 Days After the Sowing (DAS) for soybean and 0, 10, 25, 43, 55, 

and 70 DAS for beans (Figure 2). The field missions were influenced by the climatic 

conditions (rainy, cloud frequency, and frost incident) as shown in Figure 3. On May 1st and 

2nd (DAS 59 and 60) occurred a frost incident on the beans field, and the farmer removed the 

crop on May 16th and 17th (DAS 74 and 75). 
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Figure 2. Field missions on different DAS for soybean (top) and bean (bottom) 

 

 

Figure. 3. Weather conditions, precipitation, and temperature during the phenological cycle of 

the soybean (left - a) and beans (right - b) (Princeton University, 2016) 

Terrestrial sensors 

The active sensor GreenSeeker 505 Handheld (Trimble Agriculture, Westminster, CO, USA) 

and the passive hyperspectral sensor FieldSpec4 Standard-Res model (ASD, Boulder, CO, 

USA) were used in the study. Few studies used these proximal sensors at the farm level in 

this study region (Cattani et al., 2017; Prudente et al., 2019; Viana et al., 2018), but they did 

not compare the NDVI values from different sensors. GreenSeeker 505 Handheld register the 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 2 

http://jas.macrothink.org 396 

reflectance on two regions of the electromagnetic spectrum, red wavelength (RED GS – 

centered at 0.66 µm ±0.0125 µm) and near-infrared (NIR) wavelength (NIR GS – centered at 

0.78 µm ±0.0125), both with 0.025 µm of spectral resolution. This sensor also provides the 

NDVI values with these bands, which was called NDVI GS (TRIMBLE, 2010; Yao et al., 

2013). FeldSpec4 has a field of view (FOV) of 25° and can provide data with intervals of 

0.001 µm in a range of 0.35–2.5 µm in 0.001 intervals (ASD, 2015). To compare the NDVI 

for both sensors were used the same GreenSeeker 505 Handheld bands regions (red: 0.645 

µm to 0.675 µm, and NIR: 0.765 µm to 0.795 µm) to calculate the FieldSpec4 NDVI values 

(NDVI FS), this way has 961 different NDVI FS with the NDVI GS. 

In both sensors, with a high of 0.80 m above the canopy, were covered 0.6 m horizontally on 

the ground (Cattani et al., 2017; Prudente et al., 2019; Stocker et al., 2019; TRIMBLE, 2010). 

It was provided three replicates between different crop rows for each point in each field 

mission (e.g, each DAS). For the GreenSeeker 505 Handheld, it was walked approximately 

10 m, with a speed average of 0.5 m.s-1, recording 10 samples per second, totalizing between 

150 to 200 samples for each point (Cattani et al., 2017; Sharma, Bu, Denton, & Franzen, 

2015; Zheng et al., 2016). Considering the FieldSpec4, three samples were collected for each 

replicate in the time (one-second peer sample), totalizing nine samples at each point 

(Prudente et al., 2019; Viana et al., 2018, 2017). As FieldSpec4 is a passive sensor, it was 

used a perfectly diffuse surface for the calibration process every 10 minutes (ASD, 2015; 

Viana et al., 2018).  

3. Analysis  

The data from the entire phenological cycle (all the DAS) for each crop were used in the 

statical approach. First, the Spearman correlation coefficient (rs), at 5% of significance, 

compares the NDVI from both sensors for each crop. After, the NDVI FS with the highest 

correlation value with NDVI GS was used to provide the inter-calibration process, using 

Simple Linear Regression. Also, it provided a statical summary of the NDVI values, where 

the T-student test (5% of significance) was used to analyze that the average of NDVI values 

was different from each sensor for each crop. To analyze the inter-calibration process, using 

the NDVI FS values to estimate the NDVI GS, it was used the determination coefficient (R²), 

Mean Error (ME), Root Mean Square Error (RMSE). To verify the performance process, it 

was used the improved concordance coefficient of Willmott (Willmott, Robeson, & Matsuura, 

2012) (dr).  

4. Results 

All Spearman correlation (rs) among NDVI GS and NDVI FS were significant (at 5% of 

significance) for soybeans and beans. The values presented no outliers for both crops (Figure 

4), with a rs range of 0.897 to 0.910 for soybean and 0.925 to 0.938 for the bean. NDVI FS, 

using the bandwidth of 0.648 µm and 0.649 µm on the RED spectrum region and 0.771 µm 

to 0.773 µm on the NIR spectrum region had the highest rs values with NDVI GS to soybean, 

with the best rs (0.9105) value to 0.649 µm (RED) and 0.771 µm (NIR). For beans, were 

identified that the bands from 0.645 µm and 0.646 µm on the RED spectrum and 0.790 µm to 

0.795 µm on the NIR spectrum had better NDVI FS correlation with NDVI GS. The best rs 
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value (0.9382) was achieved with 0.646 µm to the RED and 0.792 µm to the NIR. Therefore, 

were used NDVI FS with RED 0.649 µm and NIR 0.771 µm to soybean and RED 0.646 µm 

and NIR 0.792 µm to beans. 

 

Figure 4. Spearman correlations (rs) between NDVI GS and each NDVI FS wavelength for 

soybean (a) and bean (b) 

NDVI GS and NDVI FS had a similar spectro-temporal pattern for each crop (Figure 5). 

However, each crop had different NDVI patterns. Moreover, the NDVI FS has a higher range 

than NDVI GS for both crops. Analyzing each DAS, soybean had the highest NDVI values 

for the DAS 71 in both sensors (Figure 5), and in the DAS 34 and DAS 110 occurred the 

lower NDVI values from NDVI GS and NDVI FS, respectively. For beans, the higher NDVI 

values identified on the DAS 55 the lower on the DAS 0 and DAS 10 for both sensors (Figure 

5). These lower NDVI values for beans were expected due to the straw in the soil, without 

vegetation contribution. 

Positive and significant rs values were found between NDVI GS and NDVI FS for the entire 

soybean (0.9105) and bean (0.9382) crop cycle, as shown in Figure 5. For each DAS (Figure 

5), the NDVI was correlated for the beginning and end of the soybean crop cycle (DAS 34 

and DAS 110). Between the DAS 45 and 76 occurred the NDVI saturation, with a small 

value variation, resulting in a not significant rs. The beans showed more significant rs for 

DAS than soybean, with a higher value from the DAS 25 and DAS 43. Besides, the not 

significant NDVI rs for beans occurred on the first (DAS 0) and last (DAS 70) fieldwork, 

corresponding to the sown and after frost event, respectively. According to the T-student test 
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at 5% of significance, NDVI GS and NDVI FS values for the entire phenological cycle were 

different to the soybean and equal to the bean. Considering the NDVI means for each DAS, 

soybean had equal NDVI values only to the DAS 34 and DAS 110. To the beans, the last two 

DAS (DAS 55 and 70) were different for NDVI GS and NDVI FS.  

 

Figure 5. Spectro-temporal profiles with standard error bars and spearman correlation for 

NDVI from both sensors to soybean (a) and bean (b). *5% significance; rs: Spearman 

correlation 

The NDVI FS adjustment in the NDVI GS function shown R² of 0.8619 to the soybeans and 

0.9168 to the beans (Figure 6). Moreover, the dr values around 0.9 for both crops indicate that 

the NDVI values registered for both sensors are related. Beans show higher R² e dr and lower 

ME and RMSE values than soybean (Figure 6). The NDVI GS adjusted values (Figure 6) had 

lower errors and the highest dr values (Figure 6). This means that the adjusted and observed 

NDVI GS values were similar. It was found three clusters between the observed and adjusted 

NDVI GS values (Figure 6), corresponding to the DAS 45, DAS 71, and DAS 76. During 

these DAS, the soybean canopy fully covers the soil between the rows, minimizing the soil 

response, become the majority contribute to the NDVI values near 0.90. Besides, had a 

sudden NDVI variation during the DAS 45 to DAS 76, with a coefficient of variation lower 

than 2%. 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 2 

http://jas.macrothink.org 399 

 

Figure 6. Scatterplot between the NDVI GS and NDVI FS collected in the field from soybean 

(a) and bean (b), on the left, and scatterplot between the NDVI values observed and adjusted 

to soybean (c) and bean (d), on the right. R²: Determination coefficient; ME: Mean Error; 

RMSE: Root Mean Square Error e dr: improved concordance coefficient of Willmott 

Considering the DAS (Table 1), the concordance between observed and adjusted soybean 

NDVI GS values was lower than beans. The negative dr values to the DAS 71 and 76 to the 

soybean (Table 1), representing a discordance between the observed and adjusted NDVI 

values for some DAS. That could be due to the saturation factor, mentioned before. For beans, 

the first and last two DAS had lower dr values (Table 1), which could be related to the 

insignificance of crop presence (e.g., small plant height, sown period, etc., to the DAS 0 and 

DAS 10) and the frost occurrence (DAS 70). In general, was not observe the NDVI saturation 

in the bean fields. This because the NDVI values were influenced by lower biomass, less 

dense canopy, and the soil contribution between rows (Figure 2). 
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Table 1. Statics of comparison between the adjusted and observed NDVI GS values for each 

DAS in the soybean and bean fields 

Soybean Bean 

DAS ME RMSE dr DAS ME RMSE dr 

DAS 34 0.0230 0.0723 0.3007 DAS 0 -0.0105 0.0370 0.1895 

DAS 45 -0.0125 0.0182 0.4182 DAS 10 -0.0109 0.0161 0.2359 

DAS 71 0.0214 0.0228 -1.2037 DAS 25 -0.0181 0.0611 0.7111 

DAS 76 0.0139 0.0159 -1.1671 DAS 43 0.0343 0.0688 0.4398 

DAS 110 -0.0461 0.0848 0.5512 DAS 55 -0.0103 0.0923 0.5570 

    DAS 70 -0.0207 0.0752 0.3164 

ME: Mean Error; RMSE: Root Mean Square Error e dr: improved concordance coefficient of 

Willmott. 

6. Discussion 

Soybeans and beans had similar active and passive NDVI patterns. At the beginning and end 

of the crop cycle (Figure 5a and Figure 5b) the soil fraction contribution is more evident, 

resulting in lower NDVI. This soil fraction is more present in the bean field, resulting in 

small NDVI values than the soybean field. Besides, for beans, monitoring started during the 

sown period and for soybean, it started on the DAS 34 when the canopy has grown up and 

attenuated the soil contribution.  

In the inter-calibration process, the NDVI values showed more similar to the beans than to 

the soybeans, in both sensors. Yao et al. (2013) studying winter wheat in China, also found a 

strong relation between NDVI from active (GreenSeeker) and passive (FieldSpec4) terrestrial 

sensors. These authors found the equation y = 1.076x – 0.362, with R²: 0.896 and RMSE: 

0.056, been similar to our results. However, due to the NDVI saturation, the soybean 

development is not well represented for the higher NDVI values. This NDVI limitation in the 

dense canopy as soybean is well recognized in several studies (Feng et al., 2016; Liu et al., 

2018; Sun, Fang, Liu, & Ye, 2017; Yao et al., 2013; Zheng et al., 2016). As beans had a small 

canopy than soybean, not covering the space between rows, was not possible to identify this 

limitation on the bean field. Besides, the number of rainy days (Figure 3) during the soybean 

vegetative crop cycle was a limitation to have more DAS and improve the spectro-temporal 

characterization. 

The NDVI FS had higher values than NDVI GS, with a statistical difference to the soybean. 
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This could be due to the data acquisition scheme, where FieldSpec4 was collected statically, 

against the dynamic way from the GreenSeeker 505 Handheld. NDVI FS is related to statics 

points, NDVI GS is related to tracks/lanes, being more subject to the field heterogeneity (e.g, 

soil presence, and different canopy sizes). Thus, as bigger the canopy more significant was 

the difference between NDVI FS and NDVI GS. The highest differences between NDVI FS 

and NDVI GS were found from DAS 45 to DAS 76 in the soybean fields, and from DAS 55 

to DAS 70 in the bean fields, resulting in a statical different average of NDVI values in these 

DAS. Moreover, each sensor's Spectral Response Function is different and results in different 

reflectance registered in the same environmental conditions. Therefore, has different 

reflectance values for the same canopy and, consequently, different NDVI. 

The results have shown that it is possible to monitor the soybean and bean with the NDVI 

from the different sensors with similar results. GreenSeeker 505 Handheld and FieldSpec4 

were used in several studies (Cattani et al., 2017; Prudente et al., 2019; Viana et al., 2018, 

2017) to monitor the spectro-temporal development of different crops and estimate 

biophysical parameters. According to Zheng et al. (2016) and Prudente et al. (2019), the 

active sensor shows better results to monitor the crop phenological stages and biophysical 

parameters. One of the factors that could influence is that the passive sensor depends on the 

solar radiation, and may suffer the calibration process’s interference. GreenSeeker is way 

cheaper than the FieldSepc4 sensor, corresponding an affordable way to monitor the soybean 

and bean through the NDVI profiles. However, FieldSpec4 has hundred of data in different 

spectral regions and can provide more crop information. 

7. Conclusion 

The NDVI GS and NDVI FS had similar spectro-temporal patterns and were found a strong 

concordance correlation, around 0.9, between the NDVI from the different sensors from 

soybean and beans. Hence this indicates the possibility of providing the intercalibrate process, 

which can be used NDVI from one sensor to estimate the NDVI values to the other sensor. 

However, this process was less effective after occurs the soybean closed canopy with no 

visible soil, due to the NDVI saturation process. Therefore, the GreenSeeker 505 Handheld is 

useful in providing the soybeans and beans monitoring with the NDVI and had a more 

affordable cost. Future researches with all FieldSpec4 and more crop types are encouraged. 
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