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Abstract 

In modern agriculture, there is a growing need for increasing crop efficiency while 

minimizing environmental impacts. The use of high-efficiency light supplementation to 

enhance plant development is limited for high-productive crops at field conditions (outdoor). 

This study evaluated the soybean plant’s yield responses in an open commercial area (field 

scale) cultivated under conditions of artificial light supplementation. A commercial irrigated 

(pivot) area received an illumination system for light supplementation (LS) in its inner pivot 
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spans. About 40 hours of LS were applied to the plants during the soybean crop cycle. The 

area’s outer pivot spans did not receive light supplementation (nLS). The internode number, 

the plant height, the pods per plant were evaluated weekly to compute the area under the 

progress curve (AUPC). The grain yield at harvest was also assessed. The AUPC of the 

internode number, plant height and pods per plant were positively affected by the LS 

treatment. The regular soybean cycle (nLS) is about 17 weeks; however, the LS harvest 

occurred three weeks later. Light supplementation increased soybean grain yield by 57.3% 

and profitability by 180% when compared to nLS. Although light supplementation at field 

scale poses a challenge, it is now affordable since sustainable field resistant technologies are 

now available. The present study is the first known report of light supplementation used to 

improve soybean crop production at field scale. 

Keywords: Glycine max, light-emitting diode, crop yield, crop management, agriculture 4.0 

1. Introduction 

Modern agriculture has been continuously compelled to advance and to make use of 

sustainable technologies. Such technologies include genetic breeding tools, efficient-release 

fertilizers, soil management strategies, intelligent use of water and agrochemicals, internet of 

things, crop and weather monitoring, nanotechnology and integrated techniques of farm 

administration among others (Ali et al., 2018; Chowdhury et al., 2019; Leakey et al., 2019; 

Lowenberg-DeBoer & Erickson 2019; Pandey et al., 2019; Saiz-Rubio & Rovira-Más, 2020; 

Singh & Singh, 2020; Devlet, 2021). 

Crop producers also desire crop cultivars with the following traits: (i) optimum nutritional 

content for human consumption, (ii) high performance when compared to other cropping 

systems, and (iii) can withstand diverse environmental conditions (Roberts & Mattoo, 2019). 

Other currently implemented technologies include genetically modified (GM) plants that 

beneficial to growers, consumers, and countries’ economies (Raman, 2017) and bioactive 

compounds like plant growth regulators (Small & Degenhardt, 2018; Harsimrat & Kaur, 

2020). Such plant growth regulators (e.g. plant hormones), when applied in small quantities, 

can alter plant processes from seed germination to plant senescence. Bioactive compounds 

can also enhance or stimulate natural plant development and the source-sink relationship of a 

plant’s photoassimilates (Toungos, 2018). 

In the past decades, the above mentioned technologies were all used to accelerate crop 

intensification. The utilization levels of these technologies in Latin America and Asia 

countries almost matched that of North America and Europe (Pellegrini & Fernández, 2018). 

Additionally, a constantly growing human population and climatic changes (global warming) 

posed a challenge for all human activities, especially to crop production (Besada & 

Sewankambo, 2010; IPCC, 2014; Tamiru & Fekadu, 2019). There was also an increase in 

agrarian pressure on existing environmental resources (Balogh & Jámbor, 2020). Therefore, 

there was an actual need for crop production intensification using advanced sustainable 

technological approaches. 

Improving plant efficiency is a process used to sustainably increase the crop production 



Journal of Agricultural Studies 

ISSN 2166-0379 

2021, Vol. 9, No. 3 

http://jas.macrothink.org 261 

potential (Orr et al., 2017; van Iersel, 2017; Nowicka et al., 2018; Kaiser et al., 2019; 

Batista-Silva et al., 2020; Singer et al., 2020). This can be done using different strategies 

including genetic techniques like the use of genetically modified organisms (Simkin et al., 

2019), management of soil microbiota (Silva et al., 2021), or the addition of yield factors 

such as light (Goto, 2003; Gupta, 2017). 

Gomez and Izzo’s (2018) review illustrated the positive effects of light supplementation using 

light-emitting diode (LED) on plant metabolism and the negative impact of pest insects and 

diseases on crop production. Therefore, crop producers can optimize energy efficiency and 

plant productivity by increasing the canopy light capture efficiency and controlling the light 

output in response to environmental and physiological parameters using LEDs (Hemming, 

2011; Bures et al., 2018). 

Global food production relies on plant protein production for stock-farming and subsequent 

human consumption. The soybean is considered a strategic crop for plant protein production.  

Brazil is a leading soybean producer with an annual grain production of 124.8 million tons 

(Conab, 2020). Brazil’s high soybean production results from a combination of factors such 

as the use genetically improved cultivars and advanced crop management technologies. 

Because sufficient amounts of food must be produced to meet the needs of an increasing 

population in a climate-changing world, newer techniques and advanced farm management 

strategies with minimal environmental impact must be implemented to increase crop 

production. 

The objective of this study was to evaluate the soybean plant and its yield responses in a 

commercial area (field scale) where it was cultivated in conditions of artificial light 

supplementation. 

2. Method 

2.1 Experimental Area and Soybean Cropping 

The experiment was implemented on a commercial farm in Monte Carmelo, Minas Gerais 

state, Brazil; located at 18°57″ S, 47°25″ W, at 980 m above sea level that used irrigation 

(pivot system). The region’s most common and representative biome is the Cerrado 

(Savannah-like biome). The climate of the region is Cw (humid subtropical with dry winter) 

(Beck et al., 2018). 

The soil’s physical analysis (0-0.4 m) indicated 450, 100, and 450 g kg-1 of sand, silt, and clay, 

respectively. The soil chemical characteristics up to a depth of 0.4 m are presented in Table 1. 

Table 1. Soil chemical characterization at 0-0.2 and 0.2-0.4 m soil layer. 

pH H2O Ca Mg Al H+Al CEC V P K S.O.M 

1-2.5 ------------------cmolc dm-3------------------ % ------mg dm-3------ g kg-1 

----------------------------------------0-0.2 m soil depth---------------------------------------- 

6.9 6.03 2.87 0 1.26 10.44 88 188 96 2.9 

---------------------------------------0.2-0.4 m soil depth--------------------------------------- 
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6.8 5.70 2.78 0 1.08 9.77 89 158 82 2.3 

B Co Cu Fe Mn Mo Si Zn 

----------------------------------------------mg dm-3---------------------------------------------- 

----------------------------------------0-0.2 m soil depth---------------------------------------- 

0.19 1.7 9.0 14.0 1.9 2.9 12.4 12.8 

---------------------------------------0.2-0.4 m soil depth--------------------------------------- 

0.14 1.3 7.7 17.0 3.5 2.3 11.4 11.1 

CEC = cation exchange capacity at pH 7; V = saturation of bases; S.O.M. = soil organic 

matter. Methodologies source: Embrapa (2017). 

Despite having a large proportion of clay in the soil and a high natural fertility, 3,000 kg ha-1 

of soil remineralizer (rock powdery) (FMX® Tratto. Aparecida de Goiânia, Brazil) was 

applied to the entire experimental area 30 days before sowing the soybean; 400 kg ha-1 of 

organomineral 06-30-05 (% of N, P2O5, K2O) (Valoriza Agro Ltda. Patos de Minas, Brazil) 

and 150 kg of KCl was applied at the time of sowing, and 2 L ha-1 of Mn was sprayed on the 

plant canopy 40 days after crop emergence. 

The soybean cultivar evaluated in this experiment was the Desafio 8473 RSF (Brasmax® 

GDM. Cambé, Brazil) – indeterminate growth, maturity group 7.4. In October 2019, fourteen 

seeds were sown per square meter (280,000 plants per hectare); the plants were then 

harvested in February 2020. The daily average air temperature during the experimental period 

ranged from 24 to 34 °C (weatherspark.com). 

At the experimental area, insect pests, plant diseases, and weeds were controlled using 

soybean-registered products as per manufacturer’s indications. All areas were monitored 

before and after first application and products reapplied as needed. The crop managements 

and water irrigation were also similar between the light-supplemented and the 

no-light-supplemented treatments. 

2.2 Treatments and Experimental Investigation 

The pivot where the present study was implemented has ten spams and a radius of about 571 

meters. In the four internal pivot spams (33.5 ha), a light supplementation system including 

full-spectrum light-emitting diode (LED) boards were installed. The main RGB spectral 

bands were about 59% red, 33% green and 8% blue. A continuous light range of 

approximately 40 m wide by 230 m long was projected below the extension of the four 

internal pivot spams.  

Each LED board has a power varying between 50 and 200 watts (W). About 600 W h-1 ha-1 

were consumed during the light supplementation process. The LED boards were positioned 

about 3 meters above the plant canopy and distributed to ensure equally distributed light 

power regardless of the different moving speeds of the various pivot spams. The luminous 

flux per unit area (lux) at the soybean canopy level was about 30 lx. The light system used to 

supplement the soybean crop is presented in Figure 1. 
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Figure 1. Light and water irrigation system (A) used to light-supplement soybean crop at 

night (B) and very cloud days 

The light system was turned on every night (after complete sunset) and on very cloudy days. 

Approximately 480 hours of light supplementation was applied to the whole area during the 

soybean crop cycle. Since the pivot completes a full turn over the cropping area in 12.8 hours 

(a circular routine), each plant received about 40 hours of light supplementation during its 

cycle.  

The light supplementation started at the V3-V4 (third-fourth trifoliate leaf fully expanded) 

and ended at the R5-R6 (beginning-full seed) soybean phenological stage. The six external 

pivot spams (69.5 ha) received no light supplementation.  

Between the first and second pivot towers (second spam), a homogeneous area of 50 by 40 m 

(2,000 m2) was delimited to be evaluated as the “light-supplemented” (LS) treatment. 

Between the eighth and ninth pivot tower (ninth spam), a homogeneous area of 50 by 40 m 

(2,000 m2) was delimited to be evaluated as the “no-light-supplemented” (nLS) treatment. 

The experimental sketch of the pivot is presented in Figure 2. 
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Figure 2. Experimental sketch of the irrigation pivot (102 hectares) to evaluate the effects of 

light supplementation on soybean crop development. Green pivot spam received light 

supplementation. Rectangles indicate the position of both treatments, with and without light 

supplementation, and dots in each rectangle indicate sampling points. 

 

2.3 Soybean Evaluations 

The evaluations of the internode, plant height (from soil level to the highest leaflet node), and 

pods per plant were done weekly from R3 (beginning pod) to R7 (beginning maturity) 

soybean phenological stage. During these nine weeks, evaluations were done once each week; 

no further assessments were possible after R7 because the plants in the nLS treatment 

attained physiological maturity earlier than the plants in the LS treatment. The average 

measurement of each variable evaluated was estimated from a representative assessment of 

plants at 10 sampling points in each area (2,000 m2) with each sampling point evaluated 

considered a replication. 

The influence of LS or nLS on each variable was evaluated using the area under the progress 

curve (AUPC) of each variable (Van der Plank, 1963; Simko & Piepho, 2012). The AUPC 

was calculated by the trapezoidal integration: AUPC = Ʃ(dti × ((Yi + Yi+d)/2)), where dti is 

the time interval between every two observations of Yi and Yi+d. The area under the progress 
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curve (AUPC) of the variables was calculated based on nine evaluations. Correlations 

between the AUPC of the variables evaluated were computed to determine if there was a 

linear relationship between them (Pearson, 1892). 

The areas used for each treatment (2,000 m2), were harvested at 115 and 136 days after 

sowing for the nSL and SL, respectively. The grain productivity in each area was expressed in 

kg ha-1. 

2.4 Statistical Analysis 

Extreme values (outliers) in the AUPC of each variable were identified using boxplot graphs 

of the residues (Chambers et al., 1983). When outliers were identified, the outlier was 

replaced using a mean value of the data set that did not include the outlier value (Burke, 2001; 

Kwak & Kim, 2017). The boxplots were generated using SPSS Statistics® software, which 

was also used to calculate the Pearson’s correlation coefficients and the basic assumptions for 

the analysis of variance (normality of residue distribution by Shapiro-Wilk and homogeneity 

of variances by Levene, both at p > 0.01). 

The analysis of variance (ANOVA, F test) was performed after confirming its assumptions 

and considering a fully randomized experimental design. When significant differences were 

observed (p < 0,05) in ANOVA, the AUPC of the internode number, plant height, and pods 

per plant were compared using Tukey’s test of averages (p < 0.05) to distinct the treatments 

(LS and nLS). The ANOVA and Tukey’s test analyses were performed using SISVAR® 

statistical program. Sigma Plot® v.12 software was used to generate the graphics. 

3. Results 

The data from the weekly evaluations of all variables (soybean internode number, the plant 

height, and the number of pods per soybean plant) for both treatments (LS and nLS) did not 

include any outliers based on the boxplots of all variables and treatments. This observation 

indicated that the responses were clustered around a mean with low standard error. The 

soybean variables and their respective standard errors during the nine weeks are presented in 

Figure 3. 
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Figure 3. Internodes, height and pods per soybean plant (cultivar Desafio 8473 RSF - 

Brasmax®) under light supplementation and no-light supplementation. Lines over bars 

indicate standard error 

The number of internodes per soybean plant, the plant height, and the number of pods per 

plant of the LS treatment were higher when compared to the no-light supplementation. These 

superior plant responses of the LS treatment can also be observed in Figure 4. 
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Figure 4. Soybean plants at 80 days after sown from the light supplementation (left, R5.3 

soybean phenological stage) and no-light supplementation treatments (right, R6-7 soybean 

phenological stage). Each blue stretch in the metric tape = 0.1 m 

The analysis of variance of the AUPC and the presumptions (normality and homogeneity) are 

presented in Table 2. 

Table 2. Analysis of variance (F test) and statistics of assumptions of the area under the 

progress curve of the variables soybean internode number, the plant height and the number of 

pods per soybean plant 

SV DF Internodes Height Pods per plant 

Light supplementation 1 375** 1,590** 2,649** 

Error 18    

CV (%)  1.67 1.17 0.98 

KS 20 0.935+ 0.985+ 0.964+ 

L 1+18 1.139+ 0.106+ 0.262+ 

**: significant differences at 0.01. CV (%): coefficient of variation. KS: 

Kolmogorov-Smirnov’s statistics for normality of the residue distribution (p > 0.01). L: 

Levene’s statistics for homogeneity of the data variances (p > 0.01). +: normality of residues 

(KS) or homogeneity of variances (L) fulfill. 

All the AUPC data of the soybean variables (internode number, plant height, and pods per 
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plant) met the ANOVA presumptions (normality of the residue distribution and homogeneity 

of the variances). Also, the coefficients of variation, CV (%), were very low (< 2%). Thus, it 

was suitable to proceed with the ANOVA, which indicated significant differences (p < 0.01) 

between the treatments (LS and nLS). 

The AUPC of the internodes per soybean plant, the plant height, and the number pods per 

plant of the LS treatment were 15.6, 23.3, and 25.3% superior to that of the nLS treatment. 

The Pearson’s correlation computation and interpretation require that the data be normally 

distributed and with no outliers (extreme values) (Figueiredo Filho & Silva Jr., 2009); these 

requirements were met (Table 1). All the correlations observed (Table 3) were strong 

correlations (r > 0.9) according to Callegari-Jacques (2003) and attained statistical 

significance (p < 0.01). 

Table 3. Pearson’s correlation (r) between the AUPC of the variables studied 

 Internodes Plant height Pods per plant 

Internodes 1 0.962** 0.970** 

Plant height  1 0.990** 

Pods per plant   1 

Internodes: soybean internode number; Plant height: soybean plant height; Pods per plant: 

number of pods per soybean plant. **: significant differences at 0.01. 

The soybean cultivar evaluated has a cycle of approximately 17 weeks. At day 115 after 

sowing, the soybean plants from the nLS area (2,000 m2) were harvested; however, the 

harvest in the LS area was done three weeks later representing a 17.6% longer growth cycle. 

The estimated productivity of the nLS was about 4,500 kg ha-1 (75 bags ha-1; 1 bag = 60 kg), 

while the LS treatment was about 7,080 kg ha-1 (118 bags ha-1). The LS grain productivity 

was 57.3% higher were light supplementation was applied, and 109.5% above the average of 

the Brazilian soybean productivity (3,379 kg ha-1) (Conab, 2020). 

The average cost to produce the soybean from soil management until harvest is about 55 

soybean bags per hectare. The average cost required by the light supplementation was about 

seven (7) bags ha-1. Thus, the profitability of the soybean traditionally produced (nLS) and 

the soybean produced with light supplementation were about 20 and 56 bags ha-1, 

respectively. 

4. Discussion 

Soybean development and flowering are majorly influenced by environmental factors such as 

photoperiod and temperature (Kantolic, & Slafer, 2007; Wu et al., 2015). The extension of the 

soybean crop cycle by three weeks due to light supplementation also increased the plant’s 

photosynthetic activity period. This extended cycle increased the biomass accumulation via 

natural daily photosynthesis; a process absent in the regular cycle of the soybean cultivar (17 

weeks) where light is not supplemented. This conjunction of factors resulted in taller soybean 
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plants, more internodes, more pods, and, consequently, over 57% further grain productivity. 

Crop cycle extension, the number of nodes, pods, and seeds per pod, and the pod distribution 

within the soybean canopy are affected by extended photoperiods (Kantolic, & Slafer, 2007; 

Kantolic, & Slafer, 2001; Kantolic, & Slafer, 2005; Kantolic et al., 2013; Nico et al., 2016). 

The photoperiod regulation process results in changes to the soybean development, such as 

the number of pods and seeds established per unit land area (Kantolic et al., 2013). 

In this study, the extra yield (57.3%) generated by an additional photosynthesis cannot solely 

be attributed to the hours of light supplementation provided to each soybean crop (about 40 

hours). Other hypotheses should be considered; for example, photomorphogenesis 

(light-mediated development of the plant morphology) (Beyi, 2018; Tripathi et al., 2019), 

uperregulation or downregulation of phytohormones and phytochromes (Lymperopoulos et 

al., 2018; Tripathi et al., 2019; Faizan et al., 2020), and changes to the secondary plant 

metabolism (Ouzounis et al., 2015; Thoma et al., 2020). 

Crop inputs, such as fertilizers, plant inoculants, and phytosanitary products, applied during 

the crop cycle are solely intended to maximize crop production and economic returns. 

Although such inputs have adverse effects on soil dynamics, these effects are often neglected 

(Bitew & Alemayehu, 2017). However, the light supplementation for field crops has the 

potential to reduce these inputs, especially fertilizers. 

The fertilizer efficiency in this study probably resulted from the significant increase in the 

shoots’ biomass following light supplementation. An increase in the shoot biomas in turn 

cause a proportional increase in the root biomass. This improved root development increases 

the efficiency of the root nutrient absorption, thus, increasing the fertilizer efficiency (Fageria 

& Moreira, 2011). 

Crop production has always been intrinsically correlated nutritional, microbiological, 

environmental, and economic aspects that interact in a spatially sensitive manner (Joglekar et 

al., 2019). Consequently, response models are used to understand the consequences of such 

elements and their interactions. Such models can integrate valuable information about 

physiological processes, sowing time, irrigation blade, fertilizer doses, management of insect 

pests and plant diseases, and their impacts on the soil-crop-environment relationships (Sihag 

& Prakash, 2019). Additionally, including climate information in such models can shed light 

on the relationship between crop production and weather oscillations and which in turn can 

be used to enhance the resilience of the global food system (food security) to unexpected 

climate-related shocks (Tamiru & Fekadu, 2019; Mulungu & Ng’Ombe, 2019; Patle et al., 

2020; Heino et al., 2020). 

Currently, there is an ongoing rapid increase in digitalization and integration of technologies 

in agriculture that is aligned with the sustainability of the ecosystems to enhance. These 

changes are likely to propel modern cropping to a higher level of productivity (Agriculture 

5.0) (Saiz-Rubio & Rovira-Más, 2020). 

Before design cropping factors such as the genetic material to be sown, several factors should 

be availed. These factors include the phytosanitary management and the level of technology 
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implemented other primary factors such as the nutrient availability, water supply, and light 

(usually from a natural source). Although availing light supplementation at the field scale is 

challenging to control, with affordable technologies and field resistant hardware light 

supplementation for crop production is possible for large commercial areas. 

Currently, the world’s population is about 7.88 billion people (Worldometers.org, 2021). 

Intensifying crop production can supply the food required by this population now and in the 

future. However, this does not necessarily imply hunger alleviation. Losses in crop 

production must also be reduced and income equity sought concurrent with the improvements 

in the cropping production systems (Tilman et al., 2011; Pellegrini & Fernández, 2018). 

The light supplementation technology also has a great potential to diminish the deforestation 

of new native areas for the purposes of crop production (Byerlee et al., 2014; Phalan et al., 

2016; Koch et al., 2019). Although crop productivity can be increased with an appropriate 

implementation of light supplementation throughout the crop cycle, little is known about the 

interactions among different factors (e.g., soil, plant, climate, management), crop 

performance, the yield construction, and the cost-benefit relationships. 

The crop production costs generated by the light supplementation system is dependent on 

various factors. These factors include the efficiency of the structure available (e.g., machinery, 

farm administration), the technology implemented (e.g., genetic materials, fertilizers) and the 

use precise agricultural systems (Boehlje, 2021). Other factors include irrigation system 

characteristics (e.g., pivot height which affects light dissipation, light supplementation on 

static irrigation areas), soil structuring (e.g., no physical or chemical limitation, healthy 

microbiota), energy supply (e.g., wiring, constancy and stability) and internet of things and 

crop management. Thus, the cost and profitability in the present study reflects a specific 

scenario of soybean production that may vary on a case to case basis. Despite this observation, 

light supplementation presents an opportunity to improve crop production in the same area. 

There are ongoing research studies on light supplementation at field scale on many crop 

species with promising results. For example, researchers have observed a reduced occurrence 

of leaf diseases and pest insects together with an increased weed infestation in 

light-supplemented areas. However, focused studies are yet to confirm and understand such 

responses. Based on an extensive literature research, this is the first known report of light 

supplementation using full-spectrum LED lights to improve soybean crop production at field 

scale. 

5. Conclusions 

About 40 hours of light supplementation are required per plant during its crop cycle to 

positively affect its number of internodes, pods, plant height, and crop cycle. 

Light supplementation increased soybean grain yield by 57.3% and its profitability by 180% 

compared to cultivation processes without artificial light supplementation. 

Light supplementation to plants at field scale is a feasible and promising technique to 

sustainably improve crop production in the same agricultural area they are currently grown. 
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