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Abstract

The fall armyworm (Spodoptera frugiperda J.E. Smith) is one of the most notorious pests of
maize crops worldwide. However, few studies have shown the influence of agroecological
factors and future distribution patterns of the FAW in Benin. This study assessed the
abundance of the FAW in the Territorial Agricultural Development Agency Division 4, with
extrapolation of the data in relation to environmental variables in the study areas leading to
future FAW distributions in these regions. For this purpose, FAW surveys were carried out in
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80 maize fields at three stages of maize development (sowing, flowering and maturity).
Magurren's formula and Shannon's diversity index were used to assess species abundance.
Mixed effects Poisson and MaxEnt models were developed to investigate the distribution
patterns of FAW and the relative influence of agroecological factors on FAW presence and
abundance. Results showed that FAW abundance varied from one region to another,
depending on the stage of maize development and the areas. All model parameters were
statistically significant at the 5% level (p-value < 0.05) except sowing stage (p-value > 0.05).
Flowering stage showed a significant negative effect on F4W abundance, with an IRR = 0.31,
indicating that F4/ abundance at maturity is reduced by about 69% compared to flowering.
In contrast, the effect of sowing stage was not significant (IRR = 1.30). These results also
suggest that pest management strategies can be adapted to new climatic conditions. This would
allow a proactive rather than a reactive approach.

Keywords: fall armyworm, environmental variables, spatial variability, predict, maize,
MaxEnt

1. Introduction

The fall armyworm (FAW), Spodoptera frugiperda is a lepidopteran pest native to tropical
and subtropical regions of the Americas and its first successful invasion outside the native
region was reported in Africa, more precisely in Nigeria, Togo, and Benin in 2016 (Goergen
et al., 2016). This quick spread across continents might have been speeded up by the high
natural wind-assisted flight capability of FAW allowing it to reach several hundreds of
kilometers in a single day (Early et al., 2018). The FAW is an extremely destructive
omnivorous pest of subtropical and tropical origin with higher viabilities over a wide range of
temperatures and distributions (Fonseca et a/.,2018). Its strong fertility ability, high migratory
capacity and ecological plasticity contribute to the FAW’s major economic damage by
voraciously infiltrating key growing areas of at least 353 known different host plant species
belonging to 76 botanical families, e.g., maize (Zea mays L.), rice, sorghum, sugarcane,
cotton and varieties of vegetables (Montezano et a/.,2019). The pest is known to have high
dispersal abilities. After the first report on its outbreak in Africa (Goergen et al.,2016), farm
areas of nearly 25 million hectares of its main host plant (maize) production have been
severely compromised within only two years post detection of this pest on the continent.
Without any control measures, maize yield losses due to FAW can exceed 50% of the total
annual production of the affected countries, especially in the low and medium maize
producing areas (De Groote et al., 2020), leading to serious economic and social implications.
Hence, with its extensive spread, FAW has the potential to negatively impact the food
security of billions of people, which calls for a collective and holistic approach for its global
management (Molo et al., 2020). However, early outbreaks of FAW were quite devastating,
and in some cases, maize crops were totally lost. Thus, whether further vast FAW
management campaigns contributed to successful reduction of pest populations, the new
associations of natural enemies contributed to FAW population regulation, or the initial
impact assessments were overestimates is unclear. Although offering fast curative action, the
health risks associated with synthetic insecticides and resistance patterns (Muraro ef a/.,2021)
continue to point to the need for alternative pest management methods, particularly in the
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African context where the use of the chemicals does not always comply with standards.
Indeed, field data collected from several countries from 2016 to 2020 appeared to show an
almost total absence of stem borers from maize fields (P.Chinwada, unpublished data; S.
Nyamutukwa, unpublished data). However, recent field studies are starting to show increased
incidence of some stemborer species in maize fields infested by FAW, thus pointing to a
putative partitioning of the niche permitting coexistence of both (Sokame et al.,2022). The
diversity of plant species and habitats in a landscape can also influence the availability of
natural enemies, such as predators and parasites, which can help control fall armyworm
populations (Harrison et al., 2019). However, the exact mechanisms through which landscape
structure influences fall armyworm populations and crop loss were not well understood, and
further research is needed to elucidate this complex relationship in diffrents agroecosystems
of Benin. It is important to point out that, in the absence of location specific data on FAW
incidence and temporal dynamics (as influenced by planting dates and season), extrapolating
this recommendation on Ampligo application schedules to other regions should be avoided.

\\ M acrot h i n k Journal of Agricultural Studies

Furthermore, the occurrence of S. frugiperda infestations can be influenced by bioclimatic
factors, including temperature, rainfall and humidity. Fall armyworms thrive under moderate
temperatures and high relative humidity, which supports their moisture needs for survival and
reproduction (Yan et al., 2022). On the other hand, areas with low rainfallor prolonged
drought conditions may experience fewer infestations due to limited soil moisture and
reduced host plant vigor (Paudel ef al.,2022). Notably, the changing environmental conditions
associated with climate change would also have a direct impact on the life cycle of crop pests
and diseases. Globally, there is a large body of literature linking the occurrence and distribution
of crop pests and diseases to climate variability (Goergen ef al., 2016, Osunga et al., 2017, Day
et al., 2017, Timilsena et al., 2022, Ibrahim et al., 2023). Temperature and rainfall have been
shown to be the most important factors influencing the occurrence and development of many
pests and crop diseases (Goergen et al., 2016, Day et al., 2017, Timilsena et al., 2022, Ibrahim
et al., 2023). To gain a comprehensive understanding of the abundance and impact of S.
frugiperda, it is essential to survey not only FAW populations but also landscape features,
alternate hosts, and management strategies. Inland planning and management, reliable data
sources, such as land use maps, are crucial. As the distribution range of the pest is expanding
worldwide, the need for designing long-term management strategies based on right decision
guidance becomes crucial. However, cropping systems, farming practices, and the
agroecosystems in Benin are different from those of north, central and south. Therefore, the
FAW temporal and spatial infestation spread in different parts of Benin could be influenced
by these factors which are yet to be established. Many models have been developed
worldwide to help understand the dynamics and behavior of FAW using different frameworks
and modeling techniques. A wide range of sophisticated crop models exist worldwide (Jones et
al., 2017). In recent times, scientists have become increasingly interested in using crop models
(Donatelli et al., 2017) and biophysical models to directly assess the impact of climate change
on the distribution of pests, including FAW. However, one of the most common tools for
predicting pests and diseases is the species distribution modelling (SDM) approach, also
referred to as “environmental niche modelling” (Early et al., 2018, Timilsena et al.,
2022, Ramasamy et al., 2022, Wang et al., 2023). For example, Early et al. (2018) integrated
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observed FAW data with historical temperature and precipitation data to project future global
FAW risks using SDM. Estimating the density level of a pest insect in a crop is complex but
can be addressed using empirical and mechanistic modeling approaches such as rule-based
modeling (Liebhold and Tobin, 2008; Bell ef al., 2013).

Thus, the present study aims to use scientific data and the rule-based modeling approach to
adjust, predict and map the level of FAW density on maize crops across Benin using the
following data collected in the Territorial Agency for Agricultural Development Pole 4, which
covers a region of southern, central, eastern, western and northern Benin: FAW larvae field
collection, meteorological data (temperature, rainfall) were downloaded, data on the altitude
of the data collection site. The proposed approach aims to provide the first step towards
information and knowledge on where to prioritize and implement effective agroecological
FAW control strategies in Benin.

2. Material and Methods
2.1 Study Framework on Species Occurrence Data

The occurrence data of S. frugiperda are projected and shown in Fig. 1. We collected data from
fieldwork carried out in Benin Republic. All recorded data has been carefully checked, the
false and duplicate points have been removed. In all, 80 georeferenced occurrences were used
as input data for the presence of the species. The data included only the longitude and latitude
of the species. The study was conducted across seven distinct administrative districts located
in the central-southern region of Benin (Fig. 1). These districts include N'Dali and Borgou in
the northern part of the study area, Donga and Bassila in the west, Ouess¢ in the center,
Glazoué (Collines) in the southwest, Djidja and Zou in the south. The map illustrates the
spatial distribution of these administrative zones, intersected by multiple watercourses and
connected through a network of main and paved roads. The region's climate varies along a
north-south gradient. The northern districts (N'Dali, Borgou, and Donga) are characterized by
a Sudanian climate with distinct rainy and dry seasons (Adomou et al., 2017). The central
zone (Bassila, Ouesse, and Glazou¢) experiences a transitional Sudanian-Guinean climate,
while the southern part (Djidja and Zou) benefits from a subequatorial climate with two rainy
seasons (Yabi & Afouda, 2012). These districts also exhibit significant differences in
agricultural production systems. According to Tovignan et al. (2020), large-scale cotton and
cereal production dominates the northern regions, whereas central and southern zones are
characterized by more diversified agriculture, including subsistence crops (maize, cassava,
yam) and plantations (cashew, oil palm). The average farm size ranges from 5—10 hectares in
the north to 1-3 hectares in the south (Honlonkou, 2019). From a socio-economic perspective,
population density generally increases from north to south, with the highest concentrations
observed in Glazoué and Zou (INSAE, 2023). Access to development infrastructure (health
centers, schools, markets) is more limited in the northern districts, particularly in N'Dali and
Donga, compared to the better-served southern districts (Adégbola et al., 2016). These
regional disparities in climate, agricultural systems, and socio-economic development are
crucial factors to consider when analyzing and interpreting the study results. The table 1
shows the characteristic features of Benin's climates.
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Table 1. Characteristics of Benin’s climatic zones (Mensah et al.,2014)

Parameters Sudanian Zone Sudano-Guinean Guinean Zone
Zone
Annual rainfall 1200 900-1110 <1000
range (mm)
Temperature range 25-29 25-29 24-31
O
Relative humidity 69-97 31-98 18-99
range (%)
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Fig. 1. Map of the study area in the five districts showing the presence of S. frugiperda in
Benin
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2.2 Environmental Data

Bioclimatic and soil data were considered as environmental data to predict suitable habitat for
the conservation of S. frugiperda. The ISRIC database (www.isric.org) was used to obtain the
soil variable. Past bioclimatic data (From 1950-2000) and futures data were downloaded
from the database WorldClim (Hijmans et al., 2005, www.worldclim.org) at 30 seconds
spatial resolution (1 km x 1 km). This dataset includes 19 bioclimatic variables derived from
interpolated means of minimum and maximum temperatures as well as precipitation
(Hiymans et al., 2005). For future climate projections, four global climate models (GCMs:
CanESMS5, CNRM-CM6-1, HadGEM3-GC31-LL and MIROC6) were selected. Two climate
scenarios, titled Shared Socio-Economic Development Pathways (SSPs) were considered:
SSP 245 representing an optimistic scenario and SSP 585 representing a pessimistic scenario.
These scenarios were considered for three time horizons: 2041-2060 (2050s), 2061-2080
(2070s) and 2081-2100 (2090s) (O'Neill et al., 2017; Riahi et al., 2017; Jingyun Guan et al.,
2021).

2.3 Sampling Method for S. Frugiperda in Maize Fields of Five Districts in Benin

During the 2024 rainy season, the occurrence and larval density of the fall armyworm were
studied in five districts (Djidja, Glazoué, Bassila, Ouesse and N'Dali) described (Fig. 1).
Based on the sampling plan developed by Overholt ef al. (1994) and the proportion of
cultivated land (Guihe'neuf 2004, Goux 2005), 80 maize fields were selected for assessment
of FAW prevalence sampled, with 16 maize fields per district mentioned above. To cover the
vegetative, reproductive and maturity stages, all selected fields were visited thrice, three
weeks after planting (sowing, flowering and maturity stages) to check for the presence of S.
frugiperda caterpillars. In each field, a 0.5-hectare area was designated untreated, from which
50 maize plants were randomly selected on each observation date. The number of FAW
larvae on the selected plants was counted in order to estimate F'4 W abundance per field

2.4 Data Analysis

2.4.1 Estimation of Relative Abundance and Diversity of Insect Families - Assessment of
Pest Diversity Relative Abundance (F) Was Determined After Counting Individuals Per
Family

F (%) =nix%o;

To assess family diversity, the Shannon index (H"'), which evaluates the diversity of taxa (in
this case families) in each environment considered, was determined using the formula of
Magurran (2004): HM=->p 1 In(p_1); p_i=n_1/N where n_1i is the abundance of the ith species
and N is the total abundance. Next, the equitability (E) associated with the Shannon index
was calculated. It is defined by E=H"'/ (H"' max) where H"' max=In(S) (maximum Shannon
diversity) and S is the total number of families. E is between 0 and 1. If it tends to 0, it means
that almost all numbers are concentrated in one family. On the other hand, if all families have
the same abundance, E tends to 1. Finally, the Simpson's index (D), which measures the
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probability that two randomly selected individuals belong to the same taxonomic level, was
also calculated as follows:

yni(n; — 1)

D=1-w=D

where n_i is the number of individuals in the given family and N is the total number of
individuals in all families considered. This index varies between 0 (minimum diversity) and 1
(maximum diversity).

2.4.2 Data Processing and Model Evaluation

For the modeling process, the Jackknife test was first carried out on the initially selected
environmental variables to check the contribution of each variable to the distribution of S.
frugiperda. Variables with a higher percentage contribution were then retained for further
analysis (Wang et al., 2019; Rodriguez ef al., 2020). The Variance Inflation Factor (VIF) was
then used to assess multicollinearity among the environmental variables (Dormann et al., 2013;
Moraitis et al., 2019). This test was performed using the "SDM" package in R software (R Core
Team, 2022). For this test, we adopted a default threshold (VIF < 10) to select important
non-collinear variables for the distribution of the species (Naimi and Aratjo, 2016; Biaou et al.,
2023). A VIF greater than 10 indicates collinearity problems in the model (Chatterjee and Hadi,
2006). A total of six environmental variables were selected for prediction using the Maximum
Entropy (MaxEnt) algorithm (Phillips et al., 2006). The MaxEnt algorithm has frequently been
used in species distribution modeling (Dimobe ef al., 2022).

To assess the accuracy of the model, the Area Under Curve (AUC), the Correlation statistic
(COR), and the True Skill Statistic (TSS) were used (Allouche ef al., 2006). AUC values > 0.9
indicate excellent performance, while values between 0.8 and 0.9 indicate good performance,
values between 0.7 and 0.8 indicate fair performance, values between 0.6 and 0.7 indicate poor
performance, and values between 0.5 and 0.6 indicate failure (Swets, 1988).

The TSS ranges from -1 to +1, with +1 indicating sensitivity (detection of true presence) and -1
indicating specificity (detection of true absence). A model with a TSS < 0.5 is considered a
random prediction, while a model with a TSS > 0.5 has good predictive power (Landis and
Koch, 1977).

Correlation (COR) was performed to assess the variation between predictions and observations.
Deviance is essentially a measure of variation unexplained in the logistic regression model; the
higher the value, the less accurate the model. Seventy-five percent of the occurrences were
used as a random subset for model calibration, and 25% were used for model evaluation.
Current and future distribution maps of S. frugiperda were produced using ArcGIS 10.4
software. An overview map for each horizon was displayed, showing the areas potentially high
suitable by combining the results of the four General Atmospheric Circulation Models
(GCMs).
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2.4.3 Mixed Effects Poisson Model

Two generalized linear mixed effects models were fitted, including the Poisson model using
the glmer function from the Ime4 package (Douglas et al., 2015) and the negative binomial
model using the glmer.nb function from the MASS package (Venables & Ripley, 2002) of the
R 4.1.3 software (R Core Team, 2022). The developmental stage factor was considered a
fixed factor and the locality factor was considered a random factor.

2.4.4 Evolution of FAW Abundance During the Three Developmental Stages of the Maize
Plant (Sowing, Flowering and Maturity)

The analysis of spatial variability in FAW abundance during the three developmental stages
of maize (sowing, flowering and maturity) was carried out using geostatistical approaches,
which are widely recognized for their effectiveness in modeling natural phenomena
(Goovaerts, 1997; Gongnet, 2017). In order to capture spatial dependencies, semi-variograms
were calculated for each phenological stage, allowing to quantify the correlation between
observations as a function of the distance separating them (Jafari ef a/.,2011). Among the
commonly used theoretical models (exponential, spherical, Gaussian), the Gaussian model
was chosen to fit the semivariograms due to its ability to capture smooth continuities in
ecological data, especially when there is a gradual transition in insect abundance within the
agricultural space (Goovaerts, 1998; Qingmin ef al., 2013). Variogram parameters (nugget,
range, threshold) were estimated to characterize the spatial structure of larvae abundance at
each stage. Prediction of FAW abundance across the study area was then performed using
ordinary kriging, an interpolation method that minimizes prediction error by weighting
observations according to their distance and the modeled spatial variability structure
(Fereydoon et al., 2010; Sajid et al., 2013). This approach produces continuous maps of FAW
abundance, facilitating the identification of areas at high risk of infestation at different stages
of maize development. Spatial analysis and mapping were performed using ArcGIS 10.4 and
R software, two tools widely used for geostatistical modeling and agroecological systems
analysis (Gongnet, 2017).

2.4.5 Climatic Factors Affecting Fall Armyworm Abundance

To assess the effect of climatic variables on FAW abundance at different stages of plant
development, we followed a rigorous approach combining spatial analysis and statistical
modeling, as recommended by Elith and Leathwick (2009). Our methodology included
several key steps to ensure a robust analysis of the interactions between climate and insect
populations. Climate data were downloaded online as rasters with a resolution of 30 arc
seconds, using the RCP 4.5 emissions scenario, following the protocol established by van
Vuuren et al. (2011). The selected climate variables included key parameters such as
precipitation, temperature, and various bioclimatic indices identified as relevant by Deutsch
et al. (2018). The geographic coordinates of the study fields, which were spread across
different district, were collected in the field using the methodology of Fick and Hijmans
(2017). Using the "Extraction" function of the Spatial Analyst Tools package in ArcGIS 10.8
software, we extracted the climatic values corresponding to each georeferenced point,
according to the recommendations of ESRI (2020). To study the relationship between
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climatic variables and insect abundance at the sowing, flowering and maturity stages of maize
plants, we fitted regression models multiple Poisson, following the approach developed by
Zuur et al. (2009). This method, which is particularly well suited to count data, as
demonstrated by O'Hara and Kotze (2010), allows us to model the discrete nature of FAW
abundance. The response variable was FAW abundance, while the explanatory variables
included extracted climatic indices, in line with the analytical framework proposed by Guisan
and Thuiller (2005). The estimated coefficients of the model were interpreted to determine
the direction and statistical significance of each climatic factor on insect abundance,
following the approach of Bolker ef al. (2009). The p-values associated with the coefficients
were used to identify variables with a significant effect at different thresholds (0.05; 0.01;
0.001), following the statistical conventions established by Crawley (2013). This approach,
combining spatial analysis and statistical modeling, allowed us to identify the most influential
climatic factors at each stage of plant development, providing valuable insights for pest
management in the context of climate change, as suggested by Bebber ef al. (2014).

3. Results

3.1 Distribution of Spodoptera Frugiperda by District According to the Three Stages of Plant
Development (Sowing, Flowering and Maturity)

The Fig. 2 shows the distribution of the number of S. frugiperda found in the 81 sampled
maize fields according to the stages of plant development (sowing, flowering, maturity) in
five communes of Benin: Bassila, Djidja, Glazou¢, N'Dali and Ouésse. Significant
differences were observed in larval infestation depending on the district and the stage of
development. In Bassila, infestation was mainly observed on the hundred maize plants
sampled per field in the size fields at the sowing stage (281 larvae), followed by the
flowering stage (270 larvae), with a notable absence of S. frugiperda caterpillars at the
mature stage. In Djidja, the maximum infestation occurred in the flowering stage (350 larvae),
followed by an intermediate level in the seedling stage (201 larvae) and a low level in the
mature stage (38 larvae) of S. frugiperda. In Glazouég, a similar trend of larvae was recorded,
with an increasing infestation (43 caterpillars) at the maturity stage of the maize plant, (239
caterpillars) at the seedling stage and (279 caterpillars) at the flowering stage. N'Dali has a
maximum infestation at flowering (320 caterpillars), followed by a decrease during flowering
(299 larvae) and a low level at plant maturity (64 caterpillars). Finally, Ougss¢ shows a
relatively stable infestation at the flowering and seedling stages (301 and 266 caterpillars,
respectively), with a low level of FAW at the maturity stage (51 larvae).
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Fig. 2. Number of fall armyworm per maize plant development phase in five districts of
Benin

3.2 Comparison of FAW Abundance Between Different Districts

Poisson and negative binomial Poisson regression models were used to analyze caterpillar
abundance among districts. Comparison of Akaike Information Criteria (AIC) indicated that
the negative binomial model was the best model to describe the data (AIC = 214.449 vs.
835.906 for the Poisson model). This difference indicates that the negative binomial model
better captures the variability of the data, probably due to overdispersion.

The following Table 2 and Fig. 3. shows the results of the models. The results in the table
indicate that all model parameters are statistically significant at the 5% level (p-value < 0.05)
except sowing stage (p-value > 0.05). These differences can be seen in the figure below:

Table 2. Comparison of FAW abundance between different districts

Source Coefficients (se) Valeur Z Pr(>|z|)
Intercept 6.39 (0,26) 24.470 <2e-16***
Flowering stage -1,17 (0,30) -3.931 8.47e-05%**
Sowing stage 0.26 (0,29) 0.904 0.366
Variance of random locality effect 0.13

R? marginal (%) 0,59

R? conditional (%) 0,82

Meaning codes P-values: 0 “***’ 0.001 “**’ 0.01 “*> 0.05 > 0.1 *’ 1
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Fig. 3. Comparison of FAW abundance between different districts
3.3 Diversity of FAW Collected Together with S. frugiperda in the Five Study Districts

The following Table 3 shows the distribution of insect species in the different districts. The
data showed that S. litoralis is the most abundant species in all localities, with numbers
ranging from 44 larvae in Ouesse to 30 caterpillars in Bassila. This species dominates the
others, with high numbers also in N'dali (32 larvae) and a gradual decrease of S. littoralis in
Glazou¢ (19 caterpillars) and Djidja (12 larvae). Helicoverpa armigera is the second most
abundant species with more moderate numbers ranging from 6 larvae in Djidja, 14 in Ouesse,
22 in Glazoué, 31 in Bassila and 33 in N'dali. Sesamia calamistis, on the other hand,
displayed a more heterogeneous abundance, with peaks in Djidja (15 larvae) but very low
numbers in the other localities (11 in Bassila, 8 in Ouésse, 7 in N'dali and 4 in Glazoué).
Finally, Eldana saccharina was the least abundant species, with numbers ranging from 2
larvae in Bassila to 9 in Ougsse. Overall, Bassila recorded the highest total abundance (84
larvae), followed by Ouésse (76 larvae), N'Dali (75 larvae), Glazoué (44 larvae) and Djidja
(41 larvae) in the five districts surveyed. Six (06) Marasmia trapezalis larvae were found on
maize plants in Djidja and one (01) in Glazoué.

34 http://jas.macrothink.org



- Journal of Agricultural Studies
A\\ Mac.rOth ITI,:,.k ISSN 2166-0379
Institute 2026, Vol. 14, No. 1

Table 3. Diversity of FAW Collected Together with S. Frugiperda in the Five Study Districts

Species Bassila Djidja Glazoué N'Dali Ouésse

Eldana saccharina 2 8 5 4 9
Helicoverpa armigera 31 6 22 33 14
Sesamia calamistis 11 15 4 7 8
Sopodoptera littoralis 40 12 13 32 44
Marasmia trapezalis 0 06 01 0 0
Total 84 48 45 76 75

3.4 Diversity of Species Collected According to the Shannon Index in the District Studied

The Shannon indices observed in the study districts Fig. 4 showed great variability, with the
highest values recorded in Djidja (0.98) and Glazoué (0.79), suggesting a potentially greater
diversity of species in these localities compared to Ouésse (0.71), Bassila (0.66) and N'Dali
(0.62). Equitability, on the other hand, varied significantly between district, with higher
values observed in Djidja (0.71) and Glazoué (0.57), indicating a more even distribution of
species abundance in these localities. On the contrary, Bassila (0.48) and N'Dali (0.45) had
lower values of equity, indicating a possible dominance of certain species. Simpson's index
followed a similar trend as equitability, with higher values in Djidja (0.71) and Glazoué (0.57)
and lower values in Bassila (0.41) and N'Dali (0.45), reinforcing the idea of greater species
diversity in the former and possible dominance in the latter.

1.00 - 0.88
0.79
0.75- 0.7 71 0.71
0.66
0.62

w 0.5 57 Index
L1 k]
€ s0- 0 L2 e - Equitability
é N e =5 - Shannon
= .4
= I:l Simpson

0.25-

0.00-

Bassila Dji:jja GlC—IZI-JLIé M I:;lali Ouélssé
Municipalities
Fig. 4. Shannon index of larvae FAW diversity collected in the study areas.

3.5 Spatial Variability of FAW Abundance During Three Stages of Maize Plant Development
(Sowing, Flowering, and Maturity)

- Sowing stage of maize
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The sowing stage map Fig. 5 shows a high concentration of FAW in the northern districts,
particularly in N'Dali and Bassila, with very high densities (53-56 larvae). There is a
decreasing gradient from north to south, with the lowest values (32-39 larvae) recorded in the

districts of Glazou¢ and Djidja.

- Flowering stage of maize

During the flowering stage, the spatial distribution of FAW showed a significant change.
Infestations moved mainly towards Djidja in the south (54-82 larvae) and partly towards
N'Dali in the north. Central areas (Ouessé, parts of Bassila) show medium densities (20-37
larvae), while Glazoué shows variable densities.

- Maturity stage of maize

In the mature stage, there has been a noticeable reorganization of the FAW distribution. The
Djidja district maintains a high density (21-30 larvae), while N'Dali in the north now has the
lowest densities (4-6 larvae). Ouessé shows a variable density gradient.
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Fig. 5: Spatial Variability in FAW Abundance During the Three Stages of Maize Plant
Development (Sowing, Flowering and Maturity)

3.6 Climatic Factors Influencing Fall Armyworm Abundance

This analysis evaluated the effect of climatic variables on FAW abundance at different stages
of plant development (Table 4). The variables considered were: annual precipitation (biol2),
precipitation in the wettest month (biol3), precipitation in the driest month (biol4),
interannual variability in precipitation (biol5), precipitation in the wettest quarter (biol6) and
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in the driest quarter (biol7), as well as environmental indices such as vegetation density (dm),
moisture index (mi) and air quality indices (miaq and mimq). The aim was to identify
climatic factors with a significant impact, either positive or negative, on insect population
dynamics at the sowing, flowering and maturity plant stages.

At the sowing stage, several climatic variables showed significant effects on FAW abundance.
Rainfall in the wettest month (biol3) showed a significant negative effect (p = 0.023),
indicating that higher rainfall reduced FAW abundance. However, rainfall in the driest quarter
(bio17) had a significant positive effect (p = 0.017).

During the flowering stage, S. frugiperda abundance appears to be more responsive to
precipitation and environmental stress indices. Annual precipitation (biol2) showed a highly
significant positive effect (p &lt; 0.001), indicating that higher total precipitation favors FAW
proliferation. On the other hand, precipitation variability (biol5) had a significant negative
effect (p = 0.007), showing that strong climatic fluctuations can disrupt FAW populations. In
addition, vegetation density (dm) had a very strong positive effect (p &lt; 0.001), while
moisture index (mi) had a negative effect (p = 0.012), indicating that wetter environments
without high climatic variability are more conducive to FAW abundance.

Table 4. Climatic factors influencing fall armyworm abundance in Benin

Sowing stage Flowering stage Maturity stage

Variations

Coefficient SE Z value | Pr(>|z]) | Coefficient SE Z value Pr(>|z|) Coefficient SE Z value | Pr(>|z|)
Intercept 9.063e+00 | 3.184e+00 | 2.847 | 0.00441** | -15.968103 | 4.555005 | -3.506 | 0.000456*** | 1.367017 | 7.100664 | 0.193 | 0.8473
biol2 -2.691e-03 | 5.380e-03 | -0.500 | 0.61693 0.030332 | 0.006542 | 4.637 | 3.54e-06*** | -0.004361 | 0.011568 | -0.377 | 0.7062
biol3 -5.636e-02 | 2.478e-02 | -2.274 | 0.02296* | 0.052629 | 0.031702 | 1.660 0.096891. 0.090414 | 0.055572 | 1.627 | 0.1037
biol4 -5.098e-03 | 1.164e-01 | -0.044 | 0.96508 0.068284 | 0.134323 | 0.508 0.611202 -0.150958 | 0.232913 | -0.648 | 0.5169
biol5 1.741e-01 | 9.934e-02 | 1.752 0.07976. | -0.285441 | 0.105739 | -2.699 | 0.006945** | -0.389401 | 0.194427 | -2.003 | 0.0452*
biol6 8.498¢-05 | 1.958e-02 | 0.004 0.99654 0.018385 | 0.025077 | 0.733 0.463465 0.022446 | 0.043441 | 0.517 | 0.6054
biol7 1.325e-01 | 5.533e-02 | 2.394 | 0.01667* | -0.037063 | 0.066868 | -0.554 0.579392 -0.135250 | 0.123150 | -1.098 | 0.2721
dm -3.125e-01 | 1.241e-01 | -2.518 | 0.01181* | 0.984001 | 0.252808 | 3.892 | 9.93e-05*** | -0.248225 | 0.336717 | -0.737 | 0.4610
1lds 2.058e-02 | 5.865¢-01 | 0.035 0.97201 0.567913 | 0.729991 | 0.778 0.436585 -0.410730 | 1.360972 | -0.302 | 0.7628
mi -1.232e-01 | 9.990e-02 | -1.233 0.21746 | -0.300381 | 0.119758 | -2.508 | 0.012133* 0.230605 | 0.214763 | 1.074 | 0.2829
miaq -2.844e-01 | 1.337¢-01 | -2.128 | 0.03337* | 0.387373 | 0.182009 | 2.128 0.033311* 0.215273 | 0.305813 | 0.704 | 0.4815
mimq 2.829¢-02 | 4.585¢-02 | 0.617 0.53724 | -0.032242 | 0.048793 | -0.661 0.508751 -0.037909 | 0.088204 | -0.430 | 0.6673

Signif. codes: 0 “****0.001 “*** 0.01 “** 0.05°.” 0.1 " 1

3.7 Model Performance

The MaxEnt algorithm meets the requirements for good performance based on statistical
parameters: AUC (0.99), COR (0.72), TSS (0.96), and deviance (0.29). The results showed
AUC values greater than 0.9 and TSS values greater than 0.5 (Table 5, Fig. 6). This result
suggests that the algorithm used for modeling is an effective predictive model capable of
predicting the spatial distribution of S. frugiperda under current and future climate conditions.
This highlights the robustest of the MaxEnt algorithm to accurately model the distribution of
the species.
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Table 5. Evaluation of the MaxEnt algorithm

Performance criteria AUC COR TSS Deviance
MaxEnt Algorithm 0.99 0.72 0.96 0.29
ROC plot
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Fig. 6. Area under the ROC curve (AUC) of the MaxEnt prediction model (AUC=0.99)
3.8 Influential FAW Predictor Variables

Table 6 gives the contribution of environmental variables, with Bio3 being the most influential
(21.1%), followed by Biol4 (20.7%), Biol3 (19.6%), Bio8 (8.7%), Bio2 (7.5%) and Soil
(6.1%).

Table 6. Contribution of environmental variables fall armyworm influential predictor

Variable Contribution percentage
Bio3 21.1
Biol4 20.7
Biol3 19.6
Bio8 8.7
Bio2 7.5
Soil 6.1

The Jackknife analysis presented in Fig. 7 showed that the bioclimatic variable that increases
the information gain when used in isolation is Bio4. On the other hand, the variable Bio3, when
not used, results in a loss of information regarding the distribution of S. frugiperda. The Bio8
and Soil variables, which present contribution percentages greater than six (6), respectively 8.7
and 6.1, do not result in any significant gain or loss of information when used in isolation or not
in the model. Therefore, they will be excluded from the variables. In total, four bioclimatic
variables were retained for the model: Bio2, Bio3, Bio14, and Biol3.
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Fig. 7. Jackknife test of environmental variables in the studies area of Benin

Table 7 presents the VIF of environmental variables. A VIF value less than 5 indicates a weak
correlation of the predictor compared with other predictors. A value between 5 and 10 indicates
a moderate correlation, while VIF values greater than 10 indicate a high and unacceptably high
correlation between the predictors of the model. The results show that none of the four input
variables presents any collinearity problem (Bio2 = 8.36, Bio3 = 4.82, Biol3 = 1.67, Biol4 =
1.67). The linear correlation coefficients are as follows: minimum correlation (Bio13 ~ Bio2):
0.509504; maximum correlation (Biol4 ~ Bi02): -0.8878778.

Table 7. VIF of environmental variables on FAW in studies area in Benin

N Variables VIF
1 Bio2 8.36
2 Bio3 4.82
3 Biol3 1.67
4 Biol4 5.28
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3.8.1 Impact of Climate Variability On the Potential Distribution of S. frugiperda in Benin

Current and future potential distributions, according to the different horizons, were depicted in
Fig. 8,9, and 10. The dynamics of areas high suitable to S. frugiperda are presented in Table 8.
Habitat potentially suitable refers to areas where environmental conditions (such as
temperature, humidity, availability of resources, etc.) are conducive to the survival and
reproduction of S. frugiperda.
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Fig 8. Current potential distribution of S. frugiperda in studie areas
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Fig 9. Map showing the future distribution of S. frugiperda under the SSP 245 scenario (A:
Horizon 2041-2060, B: Horizon 2061-2080

C: Horizon 2081-2100) according to the General Atmospheric Circulation Models GCMs
(GCMs = CanESMS5 + CNRM-CM6-1 + HadGEM3-GC31-LL + MIROC®6) in Benin
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Fig. 10. Map showing the future distribution of S. frugiperda under the SSP 585 scenario (A:
Horizon 2041-2060, B: Horizon 2061-2080

C: Horizon 2081-2100) in Benin according to the General Atmospheric Circulation Models
GCMs (GCMs = CanESMS5 + CNRM-CM6-1 + HadGEM3-GC31-LL + MIROCS6) in Benin.

Results of modeling the current potential distribution of S. frugiperda revealed a distribution in
high suitable habitats of 58,964.33 km? and low suitable habitats of 55,798.67 km? (Fig. 8,
Table 8). Regarding the bioclimatic projection under the SSP 245 scenario for 2041-2060, it
showed a distribution in low suitable habitats of 74,275.61 km? and high suitable habitats of

40,487.39 km? (Fig. 9, Table 8).
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In addition, the bioclimatic projection under the SSP 245 scenario for the horizon 2061-2080
revealed a distribution of 64,638.71 km? in low suitable habitats and 50,124.29 km? in high
suitable habitats (Fig. 9, Table 8). For the period 2081-2100, this projection showed a
distribution of 75,224.98 km? in low suitable habitats and 39,538.02 km? in high suitable
habitats (Fig. 9, Table 8).

\\ M ac rot h i n k Journal of Agricultural Studies

Regarding the SSP 585 scenario, the bioclimatic projection for the horizon 2041-2060 revealed
a distribution of 75,665.72 km? in low suitable habitats and 39,097.30 km? in high suitable
habitats (Fig. 10, Table 8).

In addition, the bioclimatic projection under the SSP 585 scenario for the horizon 2061-2080
also showed a distribution of 77,354.96 km? in low suitable habitats and 37,408.04 km? in high
suitable habitats (Fig. 10, Table 8). These scenarios projected a reduction in high suitable
habitats of 37.82%, 11.32%, 41.13%, 42.72%, 47.71%, and 49.16%, followed by an extension
of low suitable habitats of 20.61%, 8.78%, 21.62%, 22.07%, 22.07%, 23.41%, and 23.77%.

Table 8. Dynamics of potential distribution areas for S. frugiperda in Benin

Low Suitable Habitat High Suitable Habitat

Characteristics Area Trend Area Trend

(Km?) (%) (Km?) (%)
Current distribution 58964.33 55798,67

CanESM5 SSP_245_2041-2060 74275.61 +20.61  40487.39 -37.82
SSP_245 2061-2080 64638.71 +8.78 50124.29 -11.32

CNRM-CM6-1 SSP 245 2081-2100 75224.98 +21.62  39538.02 -41.13
HadGEM3-GC31LL  SSP_585_2041-2060 75665.72 +22.07  39097.30 -42.72
SSP_585_2081-2100 76987.12 +2341  37775.88 -47.71

MIROC6 SSP_ 585 2061-2080 77354.96 +23.77  37408.04 -49.16

4. Discussion

Today, it is important to monitor the spread of the fall armyworm in order to contribute to
maintaining global food security, and more specifically in Benin, a West African country,
where this pest species has a major impact on maize production and a high capacity for
dispersal. In order to regulate and/or prevent FAW spread, it is necessary to understand its
potential distribution and factors limiting it under current and future conditions. It is also
important to identify regions with a high invasion potential through surveys in areas of high
maize production, so that strict preventive measures could be taken now and in the future.
Marian et al. (2025) confirm the Fall armyworm (FAW), S. frugiperda has emerged as a
significant pest in agricultural landscapes, particularly in Africa, where its impact is profound
given the continent’s dependency on agriculture. To manage this pest effectively,
understanding the environmental and terrestrial drivers behind its spread is imperative
(Marian et al., 2025).

Our study was carried out in five districts of Benin to assess the current abundance of
armyworm in maize fields. The analysis of the relationship between plant development stages
and FAW abundance was therefore carried out using a negative binomial regression model. To
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facilitate the interpretation of the results, the coefficients of the model were exponentiated to
express them as incidence ratios (IRR), allowing the effect of developmental stages on FAW
abundance to be quantified directly. Flowering stage shows a significant negative effect on
larvae abundance, with an IRR =~ 0.31, indicating that F4AW abundance at maturity is reduced
by about 69% compared to flowering. In contrast, the effect of sowing stage is not significant
(IRR = 1.30), suggesting that F4W abundance at sowing stage is not significantly different
from that observed at flowering stage. We also note that the marginal R? is lower than the
conditional R? for this model, reflecting that this significant variation in F4W abundance at
the three (03) developmental stages considered in the study is due to both the fixed effect of
host plant developmental stage and the random effect of location. A more recent field trial
reported FAW yield losses of 5-20 % at the whorl stage (Capinera, 2017). Occasionally, they
resow maize when pests have eaten the first plants, sometimes even after the optimum sowing
date (Rose et al., 2000) or apply chemicals weekly to avoid pest and disease outbreaks (Ibrahim
et al., 2023). The diversity of Lepidoptera collected with S. frugiperda in the five districts
studied shows that the other Lepidoptera are reduced to trace levels in the maize fields. This
distribution FAW during sowing stage can be explained by the drier, warmer climatic
conditions in the north at the beginning of the maize season, which favored the emergence of
the first larval stages of maize lepidopteran pests, probably those of FAW. This redistribution
could be related to the attractiveness of flowering plants, which are particularly rich in nutrients
and attract more adult lepidoptera for oviposition. The overall increase in densities at this stage
was consistent with the life cycle of the pests, which multiply and often reach their peak
abundance during miaze flowering stage. This general decline in F4W abundance, particularly
in the northern areas, can be explained by: (1) the effect of control measures that may have
been applied after infestations were detected at earlier stages, (2) the development of crops that
are less palatable, (3) the natural cycle of pests completing their development, and (4) possibly
less favorable climatic conditions at this stage. Furthermore, the FAW may benefit from drier
conditions. In addition, plant density (dm) and mean annual air quality index (miaq) had a
significant negative effect (p = 0.012 and p = 0.033, respectively), highlighting that denser
habitats or atmospheric variations may limit FAW presence during this initial phase.

Map of habitat suitability reveals that FAW infestations have been reported in nearly all
sub-Saharan African countries, with varying levels of incidence and severity depending on
the agroecological zone and period of the year (Yan et al., 2022). Countries with a suitable
climate and vegetation for the survival, reproduction, and migration of FAWs in Africa are
those that support the pest’s presence. FAW thrives under warm, humid, and wet conditions,
but it can also persist under drier conditions if alternative host plants or refuges are available
(Du et al., 2020). It is essential to note that the distribution and severity of FAW can vary
within and between countries based on climate, seasonality, agroecology, crop management
practices, pest control strategies and socioeconomic conditions (Harrison et al., 2019).
Consequently, a country’s suitability for FAW occurrence should be evaluated based on local
conditions and data, and appropriate measures should be taken to monitor and manage the
FAW in order to minimize its impact on food security and livelihoods. Finally, at the maturity
stage, the significant effects were more limited. Rainfall variability (biol5) maintained a
significant negative effect (p = 0.045), suggesting that persistent climatic variability can slow
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down fall armyworm population dynamics at this late stage of plant development.

The MaxEnt model performance showed Fig. 6 that this result suggests that the algorithm used
for modeling was an effective predictive model capable of predicting the spatial distribution of
S. frugiperda under current and future climate conditions. This highlights the robust capacity of
the MaxEnt algorithm to accurately model the distribution of the species. Our research fills this
gap by integrating these overlooked variables in the MaxEnt modelling, presenting a more
detailed landscape of the factors influencing FAW’s spread, providing a more holistic
understanding of FAW dynamics. Further accentuating our study’s uniqueness is the
comparison of four different MaxEnt models, an endeavor seldom undertaken in previous
research in Benin. While several past studies, like Baudron et al. (2019), Durocher et al.
(2021), and Ramasamy et al. (2022), have explored bioclimatic variables, and some like
Huang et al. (2020) in Asia exclusively relied on these variables, they often overlooked the
potential influence of factors such as FAW phenology, soil nitrogen, or soil pH. Based on the
contribution of variables, the Jackknife test, and the VIF analysis, four bioclimatic variables
were found to be the most significant factors associated with the predicted distribution of the
species: annual precipitation (Bio2), temperature seasonality (Bio3), isotherm (Biol3),
precipitation in the driest month (Bio14) and soil. Species distributions could be significantly
modified by topography, which might regulate the influences of climate and land-use changes
(Chardon et al., 2015; Oldfather & Ackerly, 2019). In other words, the suitability of climate
and land-use might be reduced when suitable topographical conditions are lacking (Suz et al.,
2015; Oldfather & Ackerly, 2019). Therefore, according to the data and models used in our
study, these areas could theoretically support the species in question. However, the fact that
an area is identified as "weakly suitable" in a spatio-temporal prediction does not necessarily
mean that the species would not develop properly there. This situation can be explained by a
number of factors, including the unavailability or lack of data collected in these areas. In
conclusion, climatic variations will reduce the area of distribution of S. frugiperda, regardless
of the horizon considered. Thus, future climatic conditions will not be conducive to the
expansion of the habitat of S. frugiperda. The results of modeling S. frugiperda reveal that
future climatic conditions will not favor the expansion of its habitat. Indeed, the
non-expansion of the habitat of this insect pest could mean greater stability for crops in the
regions concerned, which is good news for farmers. Furthermore, these results suggest that
pest management strategies can be adapted to new climatic conditions. This would allow for
a proactive approach rather than a reactive approach.

5. Conclusion

The fall armyworm is a major threat to maize production in Benin, influenced by several
agroecological factors. Our study shows that the seasonal and spatial distribution of this pest
varies according to agro-ecological zones, with higher infestations observed in some regions
during the dry season and the development stage of the maize plant. The diversity of other
lepidoptera also varies according to region and crop development stage, which influences fall
armyworm population dynamics through the complex of natural enemies in the environment.
Environmental predictors of FAW occurrence in the study area were identified using Maxent
modelling. Agro-ecological approaches, such as sustainable soil fertility management and
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intercropping, offer low-cost management solutions that can be incorporated into integrated
FAW management programmes. However, the effectiveness of these measures needs to be
evaluated in different ecological and socio-economic contexts before large-scale
implementation. Annual precipitation (Bio2), temperature seasonality (Bio3), isotherm
(Bio13), precipitation in the coldest quarter (Biol4) and soil have a positive influence on fall
armyworm distribution its presence and abundance. Additionel vegetation density (dm) had a
very strong positive effect. Integrating agroecological strategies into farming practices could
provide sustainable solutions to reduce the impact of this pest on maize production, while
protecting the environment and human health.
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