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Abstract 

The fall armyworm (Spodoptera frugiperda J.E. Smith) is one of the most notorious pests of 

maize crops worldwide. However, few studies have shown the influence of agroecological 

factors and future distribution patterns of the FAW in Benin. This study assessed the 

abundance of the FAW in the Territorial Agricultural Development Agency Division 4, with 

extrapolation of the data in relation to environmental variables in the study areas leading to 

future FAW distributions in these regions. For this purpose, FAW surveys were carried out in 
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80 maize fields at three stages of maize development (sowing, flowering and maturity). 

Magurren's formula and Shannon's diversity index were used to assess species abundance. 

Mixed effects Poisson and MaxEnt models were developed to investigate the distribution 

patterns of FAW and the relative influence of agroecological factors on FAW presence and 

abundance. Results showed that FAW abundance varied from one region to another, 

depending on the stage of maize development and the areas. All model parameters were 

statistically significant at the 5% level (p-value < 0.05) except sowing stage (p-value > 0.05). 

Flowering stage showed a significant negative effect on FAW abundance, with an IRR ≈ 0.31, 

indicating that FAW abundance at maturity is reduced by about 69% compared to flowering. 

In contrast, the effect of sowing stage was not significant (IRR ≈ 1.30). These results also 

suggest that pest management strategies can be adapted to new climatic conditions. This would 

allow a proactive rather than a reactive approach.  

Keywords: fall armyworm, environmental variables, spatial variability, predict, maize, 

MaxEnt 

1. Introduction 

The fall armyworm (FAW), Spodoptera frugiperda is a lepidopteran pest native to tropical 

and subtropical regions of the Americas and its first successful invasion outside the native 

region was reported in Africa, more precisely in Nigeria, Togo, and Benin in 2016 (Goergen 

et al., 2016). This quick spread across continents might have been speeded up by the high 

natural wind-assisted flight capability of FAW allowing it to reach several hundreds of 

kilometers in a single day (Early et al., 2018). The FAW is an extremely destructive 

omnivorous pest of subtropical and tropical origin with higher viabilities over a wide range of 

temperatures and distributions (Fonseca et al.,2018). Its strong fertility ability, high migratory 

capacity and ecological plasticity contribute to the FAW’s major economic damage by 

voraciously infiltrating key growing areas of at least 353 known different host plant species 

belonging to 76 botanical families, e.g., maize (Zea mays L.), rice, sorghum, sugarcane, 

cotton and varieties of vegetables (Montezano et al.,2019). The pest is known to have high 

dispersal abilities. After the first report on its outbreak in Africa (Goergen et al.,2016), farm 

areas of nearly 25 million hectares of its main host plant (maize) production have been 

severely compromised within only two years post detection of this pest on the continent. 

Without any control measures, maize yield losses due to FAW can exceed 50% of the total 

annual production of the affected countries, especially in the low and medium maize 

producing areas (De Groote et al., 2020), leading to serious economic and social implications. 

Hence, with its extensive spread, FAW has the potential to negatively impact the food 

security of billions of people, which calls for a collective and holistic approach for its global 

management (Molo et al., 2020). However, early outbreaks of FAW were quite devastating, 

and in some cases, maize crops were totally lost. Thus, whether further vast FAW 

management campaigns contributed to successful reduction of pest populations, the new 

associations of natural enemies contributed to FAW population regulation, or the initial 

impact assessments were overestimates is unclear. Although offering fast curative action, the 

health risks associated with synthetic insecticides and resistance patterns (Muraro et al.,2021) 

continue to point to the need for alternative pest management methods, particularly in the 
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African context where the use of the chemicals does not always comply with standards. 

Indeed, field data collected from several countries from 2016 to 2020 appeared to show an 

almost total absence of stem borers from maize fields (P.Chinwada, unpublished data; S. 

Nyamutukwa, unpublished data). However, recent field studies are starting to show increased 

incidence of some stemborer species in maize fields infested by FAW, thus pointing to a 

putative partitioning of the niche permitting coexistence of both (Sokame et al.,2022). The 

diversity of plant species and habitats in a landscape can also influence the availability of 

natural enemies, such as predators and parasites, which can help control fall armyworm 

populations (Harrison et al., 2019). However, the exact mechanisms through which landscape 

structure influences fall armyworm populations and crop loss were not well understood, and 

further research is needed to elucidate this complex relationship in diffrents agroecosystems 

of Benin. It is important to point out that, in the absence of location specific data on FAW 

incidence and temporal dynamics (as influenced by planting dates and season), extrapolating 

this recommendation on Ampligo application schedules to other regions should be avoided.  

Furthermore, the occurrence of S. frugiperda infestations can be influenced by bioclimatic 

factors, including temperature, rainfall and humidity. Fall armyworms thrive under moderate 

temperatures and high relative humidity, which supports their moisture needs for survival and 

reproduction (Yan et al., 2022). On the other hand, areas with low rainfallor prolonged 

drought conditions may experience fewer infestations due to limited soil moisture and 

reduced host plant vigor (Paudel et al.,2022). Notably, the changing environmental conditions 

associated with climate change would also have a direct impact on the life cycle of crop pests 

and diseases. Globally, there is a large body of literature linking the occurrence and distribution 

of crop pests and diseases to climate variability (Goergen et al., 2016, Osunga et al., 2017, Day 

et al., 2017, Timilsena et al., 2022, Ibrahim et al., 2023). Temperature and rainfall have been 

shown to be the most important factors influencing the occurrence and development of many 

pests and crop diseases (Goergen et al., 2016, Day et al., 2017, Timilsena et al., 2022, Ibrahim 

et al., 2023). To gain a comprehensive understanding of the abundance and impact of S. 

frugiperda, it is essential to survey not only FAW populations but also landscape features, 

alternate hosts, and management strategies. Inland planning and management, reliable data 

sources, such as land use maps, are crucial. As the distribution range of the pest is expanding 

worldwide, the need for designing long-term management strategies based on right decision 

guidance becomes crucial. However, cropping systems, farming practices, and the 

agroecosystems in Benin are different from those of north, central and south. Therefore, the 

FAW temporal and spatial infestation spread in different parts of Benin could be influenced 

by these factors which are yet to be established. Many models have been developed 

worldwide to help understand the dynamics and behavior of FAW using different frameworks 

and modeling techniques. A wide range of sophisticated crop models exist worldwide (Jones et 

al., 2017). In recent times, scientists have become increasingly interested in using crop models 

(Donatelli et al., 2017) and biophysical models to directly assess the impact of climate change 

on the distribution of pests, including FAW. However, one of the most common tools for 

predicting pests and diseases is the species distribution modelling (SDM) approach, also 

referred to as “environmental niche modelling” (Early et al., 2018, Timilsena et al., 

2022, Ramasamy et al., 2022, Wang et al., 2023). For example, Early et al. (2018) integrated 
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observed FAW data with historical temperature and precipitation data to project future global 

FAW risks using SDM. Estimating the density level of a pest insect in a crop is complex but 

can be addressed using empirical and mechanistic modeling approaches such as rule-based 

modeling (Liebhold and Tobin, 2008; Bell et al., 2013).  

Thus, the present study aims to use scientific data and the rule-based modeling approach to 

adjust, predict and map the level of FAW density on maize crops across Benin using the 

following data collected in the Territorial Agency for Agricultural Development Pole 4, which 

covers a region of southern, central, eastern, western and northern Benin: FAW larvae field 

collection, meteorological data (temperature, rainfall) were downloaded, data on the altitude 

of the data collection site. The proposed approach aims to provide the first step towards 

information and knowledge on where to prioritize and implement effective agroecological 

FAW control strategies in Benin. 

2. Material and Methods 

2.1 Study Framework on Species Occurrence Data 

The occurrence data of S. frugiperda are projected and shown in Fig. 1. We collected data from 

fieldwork carried out in Benin Republic. All recorded data has been carefully checked, the 

false and duplicate points have been removed. In all, 80 georeferenced occurrences were used 

as input data for the presence of the species. The data included only the longitude and latitude 

of the species. The study was conducted across seven distinct administrative districts located 

in the central-southern region of Benin (Fig. 1). These districts include N'Dali and Borgou in 

the northern part of the study area, Donga and Bassila in the west, Ouèssè in the center, 

Glazoué (Collines) in the southwest, Djidja and Zou in the south. The map illustrates the 

spatial distribution of these administrative zones, intersected by multiple watercourses and 

connected through a network of main and paved roads. The region's climate varies along a 

north-south gradient. The northern districts (N'Dali, Borgou, and Donga) are characterized by 

a Sudanian climate with distinct rainy and dry seasons (Adomou et al., 2017). The central 

zone (Bassila, Ouèssè, and Glazoué) experiences a transitional Sudanian-Guinean climate, 

while the southern part (Djidja and Zou) benefits from a subequatorial climate with two rainy 

seasons (Yabi & Afouda, 2012). These districts also exhibit significant differences in 

agricultural production systems. According to Tovignan et al. (2020), large-scale cotton and 

cereal production dominates the northern regions, whereas central and southern zones are 

characterized by more diversified agriculture, including subsistence crops (maize, cassava, 

yam) and plantations (cashew, oil palm). The average farm size ranges from 5–10 hectares in 

the north to 1–3 hectares in the south (Honlonkou, 2019). From a socio-economic perspective, 

population density generally increases from north to south, with the highest concentrations 

observed in Glazoué and Zou (INSAE, 2023). Access to development infrastructure (health 

centers, schools, markets) is more limited in the northern districts, particularly in N'Dali and 

Donga, compared to the better-served southern districts (Adégbola et al., 2016). These 

regional disparities in climate, agricultural systems, and socio-economic development are 

crucial factors to consider when analyzing and interpreting the study results. The table 1 

shows the characteristic features of Benin's climates. 
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Table 1. Characteristics of Benin’s climatic zones (Mensah et al.,2014) 

Parameters Sudanian Zone Sudano-Guinean 

Zone 

Guinean Zone 

Annual rainfall 

range (mm) 

1200 900–1110 <1000 

Temperature range 

(_C) 

25-29 25-29 24-31 

Relative humidity 

range (%) 

69-97 31-98 18-99 

 

Fig. 1. Map of the study area in the five districts showing the presence of S. frugiperda in 

Benin 
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2.2 Environmental Data 

Bioclimatic and soil data were considered as environmental data to predict suitable habitat for 

the conservation of S. frugiperda. The ISRIC database (www.isric.org) was used to obtain the 

soil variable. Past bioclimatic data (From 1950–2000) and futures data were downloaded 

from the database WorldClim (Hijmans et al., 2005, www.worldclim.org) at 30 seconds 

spatial resolution (1 km × 1 km). This dataset includes 19 bioclimatic variables derived from 

interpolated means of minimum and maximum temperatures as well as precipitation 

(Hijmans et al., 2005). For future climate projections, four global climate models (GCMs: 

CanESM5, CNRM-CM6-1, HadGEM3-GC31-LL and MIROC6) were selected. Two climate 

scenarios, titled Shared Socio-Economic Development Pathways (SSPs) were considered: 

SSP 245 representing an optimistic scenario and SSP 585 representing a pessimistic scenario. 

These scenarios were considered for three time horizons: 2041–2060 (2050s), 2061–2080 

(2070s) and 2081–2100 (2090s) (O'Neill et al., 2017; Riahi et al., 2017; Jingyun Guan et al., 

2021). 

2.3 Sampling Method for S. Frugiperda in Maize Fields of Five Districts in Benin 

During the 2024 rainy season, the occurrence and larval density of the fall armyworm were 

studied in five districts (Djidja, Glazoué, Bassila, Ouèssè and N'Dali) described (Fig. 1). 

Based on the sampling plan developed by Overholt et al. (1994) and the proportion of 

cultivated land (Guihe'neuf 2004, Goux 2005), 80 maize fields were selected for assessment 

of FAW prevalence sampled, with 16 maize fields per district mentioned above. To cover the 

vegetative, reproductive and maturity stages, all selected fields were visited thrice, three 

weeks after planting (sowing, flowering and maturity stages) to check for the presence of S. 

frugiperda caterpillars. In each field, a 0.5-hectare area was designated untreated, from which 

50 maize plants were randomly selected on each observation date. The number of FAW 

larvae on the selected plants was counted in order to estimate FAW abundance per field 

2.4 Data Analysis  

2.4.1 Estimation of Relative Abundance and Diversity of Insect Families - Assessment of 

Pest Diversity Relative Abundance (F) Was Determined After Counting Individuals Per 

Family 

. ;  

To assess family diversity, the Shannon index (H^'), which evaluates the diversity of taxa (in 

this case families) in each environment considered, was determined using the formula of 

Magurran (2004): H^'=-∑p_i ln(p_i); p_i=n_i/N where n_i is the abundance of the ith species 

and N is the total abundance. Next, the equitability (E) associated with the Shannon index 

was calculated. It is defined by E=H^'/ (H^' max) where H^' max=ln(S) (maximum Shannon 

diversity) and S is the total number of families. E is between 0 and 1. If it tends to 0, it means 

that almost all numbers are concentrated in one family. On the other hand, if all families have 

the same abundance, E tends to 1. Finally, the Simpson's index (D), which measures the 
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probability that two randomly selected individuals belong to the same taxonomic level, was 

also calculated as follows:  

 

where n_i is the number of individuals in the given family and N is the total number of 

individuals in all families considered. This index varies between 0 (minimum diversity) and 1 

(maximum diversity). 

2.4.2 Data Processing and Model Evaluation 

For the modeling process, the Jackknife test was first carried out on the initially selected 

environmental variables to check the contribution of each variable to the distribution of S. 

frugiperda. Variables with a higher percentage contribution were then retained for further 

analysis (Wang et al., 2019; Rodriguez et al., 2020). The Variance Inflation Factor (VIF) was 

then used to assess multicollinearity among the environmental variables (Dormann et al., 2013; 

Moraitis et al., 2019). This test was performed using the "SDM" package in R software (R Core 

Team, 2022). For this test, we adopted a default threshold (VIF < 10) to select important 

non-collinear variables for the distribution of the species (Naimi and Araújo, 2016; Biaou et al., 

2023). A VIF greater than 10 indicates collinearity problems in the model (Chatterjee and Hadi, 

2006). A total of six environmental variables were selected for prediction using the Maximum 

Entropy (MaxEnt) algorithm (Phillips et al., 2006). The MaxEnt algorithm has frequently been 

used in species distribution modeling (Dimobe et al., 2022).  

To assess the accuracy of the model, the Area Under Curve (AUC), the Correlation statistic 

(COR), and the True Skill Statistic (TSS) were used (Allouche et al., 2006). AUC values > 0.9 

indicate excellent performance, while values between 0.8 and 0.9 indicate good performance, 

values between 0.7 and 0.8 indicate fair performance, values between 0.6 and 0.7 indicate poor 

performance, and values between 0.5 and 0.6 indicate failure (Swets, 1988). 

The TSS ranges from -1 to +1, with +1 indicating sensitivity (detection of true presence) and -1 

indicating specificity (detection of true absence). A model with a TSS ≤ 0.5 is considered a 

random prediction, while a model with a TSS > 0.5 has good predictive power (Landis and 

Koch, 1977).  

Correlation (COR) was performed to assess the variation between predictions and observations. 

Deviance is essentially a measure of variation unexplained in the logistic regression model; the 

higher the value, the less accurate the model. Seventy-five percent of the occurrences were 

used as a random subset for model calibration, and 25% were used for model evaluation. 

Current and future distribution maps of S. frugiperda were produced using ArcGIS 10.4 

software. An overview map for each horizon was displayed, showing the areas potentially high 

suitable by combining the results of the four General Atmospheric Circulation Models 

(GCMs). 
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2.4.3 Mixed Effects Poisson Model 

Two generalized linear mixed effects models were fitted, including the Poisson model using 

the glmer function from the lme4 package (Douglas et al., 2015) and the negative binomial 

model using the glmer.nb function from the MASS package (Venables & Ripley, 2002) of the 

R 4.1.3 software (R Core Team, 2022). The developmental stage factor was considered a 

fixed factor and the locality factor was considered a random factor.  

2.4.4 Evolution of FAW Abundance During the Three Developmental Stages of the Maize 

Plant (Sowing, Flowering and Maturity) 

The analysis of spatial variability in FAW abundance during the three developmental stages 

of maize (sowing, flowering and maturity) was carried out using geostatistical approaches, 

which are widely recognized for their effectiveness in modeling natural phenomena 

(Goovaerts, 1997; Gongnet, 2017). In order to capture spatial dependencies, semi-variograms 

were calculated for each phenological stage, allowing to quantify the correlation between 

observations as a function of the distance separating them (Jafari et al.,2011). Among the 

commonly used theoretical models (exponential, spherical, Gaussian), the Gaussian model 

was chosen to fit the semivariograms due to its ability to capture smooth continuities in 

ecological data, especially when there is a gradual transition in insect abundance within the 

agricultural space (Goovaerts, 1998; Qingmin et al., 2013). Variogram parameters (nugget, 

range, threshold) were estimated to characterize the spatial structure of larvae abundance at 

each stage. Prediction of FAW abundance across the study area was then performed using 

ordinary kriging, an interpolation method that minimizes prediction error by weighting 

observations according to their distance and the modeled spatial variability structure 

(Fereydoon et al., 2010; Sajid et al., 2013). This approach produces continuous maps of FAW 

abundance, facilitating the identification of areas at high risk of infestation at different stages 

of maize development. Spatial analysis and mapping were performed using ArcGIS 10.4 and 

R software, two tools widely used for geostatistical modeling and agroecological systems 

analysis (Gongnet, 2017).  

2.4.5 Climatic Factors Affecting Fall Armyworm Abundance 

To assess the effect of climatic variables on FAW abundance at different stages of plant 

development, we followed a rigorous approach combining spatial analysis and statistical 

modeling, as recommended by Elith and Leathwick (2009). Our methodology included 

several key steps to ensure a robust analysis of the interactions between climate and insect 

populations. Climate data were downloaded online as rasters with a resolution of 30 arc 

seconds, using the RCP 4.5 emissions scenario, following the protocol established by van 

Vuuren et al. (2011). The selected climate variables included key parameters such as 

precipitation, temperature, and various bioclimatic indices identified as relevant by Deutsch 

et al. (2018). The geographic coordinates of the study fields, which were spread across 

different district, were collected in the field using the methodology of Fick and Hijmans 

(2017). Using the "Extraction" function of the Spatial Analyst Tools package in ArcGIS 10.8 

software, we extracted the climatic values corresponding to each georeferenced point, 

according to the recommendations of ESRI (2020). To study the relationship between 
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climatic variables and insect abundance at the sowing, flowering and maturity stages of maize 

plants, we fitted regression models multiple Poisson, following the approach developed by 

Zuur et al. (2009). This method, which is particularly well suited to count data, as 

demonstrated by O'Hara and Kotze (2010), allows us to model the discrete nature of FAW 

abundance. The response variable was FAW abundance, while the explanatory variables 

included extracted climatic indices, in line with the analytical framework proposed by Guisan 

and Thuiller (2005). The estimated coefficients of the model were interpreted to determine 

the direction and statistical significance of each climatic factor on insect abundance, 

following the approach of Bolker et al. (2009). The p-values associated with the coefficients 

were used to identify variables with a significant effect at different thresholds (0.05; 0.01; 

0.001), following the statistical conventions established by Crawley (2013). This approach, 

combining spatial analysis and statistical modeling, allowed us to identify the most influential 

climatic factors at each stage of plant development, providing valuable insights for pest 

management in the context of climate change, as suggested by Bebber et al. (2014). 

3. Results 

3.1 Distribution of Spodoptera Frugiperda by District According to the Three Stages of Plant 

Development (Sowing, Flowering and Maturity) 

The Fig. 2 shows the distribution of the number of S. frugiperda found in the 81 sampled 

maize fields according to the stages of plant development (sowing, flowering, maturity) in 

five communes of Benin: Bassila, Djidja, Glazoué, N'Dali and Ouèssè. Significant 

differences were observed in larval infestation depending on the district and the stage of 

development. In Bassila, infestation was mainly observed on the hundred maize plants 

sampled per field in the size fields at the sowing stage (281 larvae), followed by the 

flowering stage (270 larvae), with a notable absence of S. frugiperda caterpillars at the 

mature stage. In Djidja, the maximum infestation occurred in the flowering stage (350 larvae), 

followed by an intermediate level in the seedling stage (201 larvae) and a low level in the 

mature stage (38 larvae) of S. frugiperda. In Glazoué, a similar trend of larvae was recorded, 

with an increasing infestation (43 caterpillars) at the maturity stage of the maize plant, (239 

caterpillars) at the seedling stage and (279 caterpillars) at the flowering stage. N'Dali has a 

maximum infestation at flowering (320 caterpillars), followed by a decrease during flowering 

(299 larvae) and a low level at plant maturity (64 caterpillars). Finally, Ouèssè shows a 

relatively stable infestation at the flowering and seedling stages (301 and 266 caterpillars, 

respectively), with a low level of FAW at the maturity stage (51 larvae). 



Journal of Agricultural Studies 

ISSN 2166-0379 

2026, Vol. 14, No. 1 

http://jas.macrothink.org 33 

 

Fig. 2. Number of fall armyworm per maize plant development phase in five districts of 

Benin 

3.2 Comparison of FAW Abundance Between Different Districts 

Poisson and negative binomial Poisson regression models were used to analyze caterpillar 

abundance among districts. Comparison of Akaike Information Criteria (AIC) indicated that 

the negative binomial model was the best model to describe the data (AIC = 214.449 vs. 

835.906 for the Poisson model). This difference indicates that the negative binomial model 

better captures the variability of the data, probably due to overdispersion. 

The following Table 2 and Fig. 3. shows the results of the models. The results in the table 

indicate that all model parameters are statistically significant at the 5% level (p-value < 0.05) 

except sowing stage (p-value > 0.05). These differences can be seen in the figure below: 

Table 2. Comparison of FAW abundance between different districts 

Source Coefficients (se) Valeur Z Pr(>|z|) 

Intercept 6.39 (0,26) 24.470 <2e-16*** 

Flowering stage -1,17 (0,30) -3.931 8.47e-05*** 

Sowing stage 0.26 (0,29) 0.904 0.366 

Variance of random locality effect 0.13 

R² marginal (%) 0,59 

R² conditional (%) 0,82 

Meaning codes P-values: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Fig. 3. Comparison of FAW abundance between different districts 

3.3 Diversity of FAW Collected Together with S. frugiperda in the Five Study Districts 

The following Table 3 shows the distribution of insect species in the different districts. The 

data showed that S. litoralis is the most abundant species in all localities, with numbers 

ranging from 44 larvae in Ouèssè to 30 caterpillars in Bassila. This species dominates the 

others, with high numbers also in N'dali (32 larvae) and a gradual decrease of S. littoralis in 

Glazoué (19 caterpillars) and Djidja (12 larvae). Helicoverpa armigera is the second most 

abundant species with more moderate numbers ranging from 6 larvae in Djidja, 14 in Ouèssè, 

22 in Glazoué, 31 in Bassila and 33 in N'dali. Sesamia calamistis, on the other hand, 

displayed a more heterogeneous abundance, with peaks in Djidja (15 larvae) but very low 

numbers in the other localities (11 in Bassila, 8 in Ouèssè, 7 in N'dali and 4 in Glazoué). 

Finally, Eldana saccharina was the least abundant species, with numbers ranging from 2 

larvae in Bassila to 9 in Ouèssè. Overall, Bassila recorded the highest total abundance (84 

larvae), followed by Ouèsse (76 larvae), N'Dali (75 larvae), Glazoué (44 larvae) and Djidja 

(41 larvae) in the five districts surveyed. Six (06) Marasmia trapezalis larvae were found on 

maize plants in Djidja and one (01) in Glazoué.  
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Table 3. Diversity of FAW Collected Together with S. Frugiperda in the Five Study Districts 

Species Bassila Djidja Glazoué N'Dali   Ouèssè 

Eldana saccharina 2 8 5 4 9 

Helicoverpa armigera 31 6 22 33 14 

Sesamia calamistis 11 15 4 7 8 

Sopodoptera littoralis 40 12 13 32 44 

Marasmia trapezalis 0 06 01 0 0 

Total 84 48 45 76 75 

3.4 Diversity of Species Collected According to the Shannon Index in the District Studied 

The Shannon indices observed in the study districts Fig. 4 showed great variability, with the 

highest values recorded in Djidja (0.98) and Glazoué (0.79), suggesting a potentially greater 

diversity of species in these localities compared to Ouèssè (0.71), Bassila (0.66) and N'Dali 

(0.62). Equitability, on the other hand, varied significantly between district, with higher 

values observed in Djidja (0.71) and Glazoué (0.57), indicating a more even distribution of 

species abundance in these localities. On the contrary, Bassila (0.48) and N'Dali (0.45) had 

lower values of equity, indicating a possible dominance of certain species. Simpson's index 

followed a similar trend as equitability, with higher values in Djidja (0.71) and Glazoué (0.57) 

and lower values in Bassila (0.41) and N'Dali (0.45), reinforcing the idea of greater species 

diversity in the former and possible dominance in the latter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Shannon index of larvae FAW diversity collected in the study areas. 

3.5 Spatial Variability of FAW Abundance During Three Stages of Maize Plant Development 

(Sowing, Flowering, and Maturity) 

- Sowing stage of maize 
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The sowing stage map Fig. 5 shows a high concentration of FAW in the northern districts, 

particularly in N'Dali and Bassila, with very high densities (53-56 larvae). There is a 

decreasing gradient from north to south, with the lowest values (32-39 larvae) recorded in the 

districts of Glazoué and Djidja.  

- Flowering stage of maize 

During the flowering stage, the spatial distribution of FAW showed a significant change. 

Infestations moved mainly towards Djidja in the south (54-82 larvae) and partly towards 

N'Dali in the north. Central areas (Ouessé, parts of Bassila) show medium densities (20-37 

larvae), while Glazoué shows variable densities.  

- Maturity stage of maize 

In the mature stage, there has been a noticeable reorganization of the FAW distribution. The 

Djidja district maintains a high density (21-30 larvae), while N'Dali in the north now has the 

lowest densities (4-6 larvae). Ouessé shows a variable density gradient. 

 

Fig. 5: Spatial Variability in FAW Abundance During the Three Stages of Maize Plant 

Development (Sowing, Flowering and Maturity) 

3.6 Climatic Factors Influencing Fall Armyworm Abundance 

This analysis evaluated the effect of climatic variables on FAW abundance at different stages 

of plant development (Table 4). The variables considered were: annual precipitation (bio12), 

precipitation in the wettest month (bio13), precipitation in the driest month (bio14), 

interannual variability in precipitation (bio15), precipitation in the wettest quarter (bio16) and 
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in the driest quarter (bio17), as well as environmental indices such as vegetation density (dm), 

moisture index (mi) and air quality indices (miaq and mimq). The aim was to identify 

climatic factors with a significant impact, either positive or negative, on insect population 

dynamics at the sowing, flowering and maturity plant stages.  

At the sowing stage, several climatic variables showed significant effects on FAW abundance. 

Rainfall in the wettest month (bio13) showed a significant negative effect (p = 0.023), 

indicating that higher rainfall reduced FAW abundance. However, rainfall in the driest quarter 

(bio17) had a significant positive effect (p = 0.017).  

During the flowering stage, S. frugiperda abundance appears to be more responsive to 

precipitation and environmental stress indices. Annual precipitation (bio12) showed a highly 

significant positive effect (p &lt; 0.001), indicating that higher total precipitation favors FAW 

proliferation. On the other hand, precipitation variability (bio15) had a significant negative 

effect (p = 0.007), showing that strong climatic fluctuations can disrupt FAW populations. In 

addition, vegetation density (dm) had a very strong positive effect (p &lt; 0.001), while 

moisture index (mi) had a negative effect (p = 0.012), indicating that wetter environments 

without high climatic variability are more conducive to FAW abundance. 

Table 4. Climatic factors influencing fall armyworm abundance in Benin 

Variations 

Sowing stage Flowering stage Maturity stage 

Coefficient SE Z value Pr(>|z|) Coefficient SE Z value Pr(>|z|) Coefficient SE Z value Pr(>|z|) 

Intercept 9.063e+00 3.184e+00 2.847 0.00441** -15.968103 4.555005 -3.506 0.000456*** 1.367017 7.100664 0.193 0.8473 

bio12 -2.691e-03 5.380e-03 -0.500 0.61693 0.030332 0.006542 4.637 3.54e-06*** -0.004361 0.011568 -0.377 0.7062 

bio13 -5.636e-02 2.478e-02 -2.274 0.02296* 0.052629 0.031702 1.660 0.096891. 0.090414 0.055572 1.627 0.1037 

bio14 -5.098e-03 1.164e-01 -0.044 0.96508 0.068284 0.134323 0.508 0.611202 -0.150958 0.232913 -0.648 0.5169 

bio15 1.741e-01 9.934e-02 1.752 0.07976. -0.285441 0.105739 -2.699 0.006945** -0.389401 0.194427 -2.003 0.0452* 

bio16 8.498e-05 1.958e-02 0.004 0.99654 0.018385 0.025077 0.733 0.463465 0.022446 0.043441 0.517 0.6054 

bio17 1.325e-01 5.533e-02 2.394 0.01667* -0.037063 0.066868 -0.554 0.579392 -0.135250 0.123150 -1.098 0.2721 

dm -3.125e-01 1.241e-01 -2.518 0.01181* 0.984001 0.252808 3.892 9.93e-05*** -0.248225 0.336717 -0.737 0.4610 

llds 2.058e-02 5.865e-01 0.035 0.97201 0.567913 0.729991 0.778 0.436585 -0.410730 1.360972 -0.302 0.7628 

mi -1.232e-01 9.990e-02 -1.233 0.21746 -0.300381 0.119758 -2.508 0.012133* 0.230605 0.214763 1.074 0.2829 

miaq -2.844e-01 1.337e-01 -2.128 0.03337* 0.387373 0.182009 2.128 0.033311* 0.215273 0.305813 0.704 0.4815 

mimq 2.829e-02 4.585e-02 0.617 0.53724 -0.032242 0.048793 -0.661 0.508751 -0.037909 0.088204 -0.430 0.6673 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

3.7 Model Performance 

The MaxEnt algorithm meets the requirements for good performance based on statistical 

parameters: AUC (0.99), COR (0.72), TSS (0.96), and deviance (0.29). The results showed 

AUC values greater than 0.9 and TSS values greater than 0.5 (Table 5, Fig. 6). This result 

suggests that the algorithm used for modeling is an effective predictive model capable of 

predicting the spatial distribution of S. frugiperda under current and future climate conditions. 

This highlights the robustest of the MaxEnt algorithm to accurately model the distribution of 

the species. 



Journal of Agricultural Studies 

ISSN 2166-0379 

2026, Vol. 14, No. 1 

http://jas.macrothink.org 38 

Table 5. Evaluation of the MaxEnt algorithm 

Performance criteria AUC COR TSS Deviance 

MaxEnt Algorithm 0.99 0.72 0.96 0.29 

 

Fig. 6. Area under the ROC curve (AUC) of the MaxEnt prediction model (AUC=0.99) 

3.8 Influential FAW Predictor Variables  

Table 6 gives the contribution of environmental variables, with Bio3 being the most influential 

(21.1%), followed by Bio14 (20.7%), Bio13 (19.6%), Bio8 (8.7%), Bio2 (7.5%) and Soil 

(6.1%). 

Table 6. Contribution of environmental variables fall armyworm influential predictor  

Variable Contribution percentage 

Bio3 21.1 

Bio14 20.7 

Bio13 19.6 

Bio8 8.7 

Bio2 7.5 

Soil 6.1 

The Jackknife analysis presented in Fig. 7 showed that the bioclimatic variable that increases 

the information gain when used in isolation is Bio4. On the other hand, the variable Bio3, when 

not used, results in a loss of information regarding the distribution of S. frugiperda. The Bio8 

and Soil variables, which present contribution percentages greater than six (6), respectively 8.7 

and 6.1, do not result in any significant gain or loss of information when used in isolation or not 

in the model. Therefore, they will be excluded from the variables. In total, four bioclimatic 

variables were retained for the model: Bio2, Bio3, Bio14, and Bio13.  
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Fig. 7. Jackknife test of environmental variables in the studies area of Benin 

Table 7 presents the VIF of environmental variables. A VIF value less than 5 indicates a weak 

correlation of the predictor compared with other predictors. A value between 5 and 10 indicates 

a moderate correlation, while VIF values greater than 10 indicate a high and unacceptably high 

correlation between the predictors of the model. The results show that none of the four input 

variables presents any collinearity problem (Bio2 = 8.36, Bio3 = 4.82, Bio13 = 1.67, Bio14 = 

1.67). The linear correlation coefficients are as follows: minimum correlation (Bio13 ~ Bio2): 

0.509504; maximum correlation (Bio14 ~ Bio2): -0.8878778. 

Table 7. VIF of environmental variables on FAW in studies area in Benin 

N Variables VIF 

1 Bio2 8.36 
2 Bio3   4.82 
3 Bio13 1.67 
4 Bio14 5.28 
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3.8.1 Impact of Climate Variability On the Potential Distribution of S. frugiperda in Benin 

Current and future potential distributions, according to the different horizons, were depicted in 

Fig. 8, 9, and 10. The dynamics of areas high suitable to S. frugiperda are presented in Table 8. 

Habitat potentially suitable refers to areas where environmental conditions (such as 

temperature, humidity, availability of resources, etc.) are conducive to the survival and 

reproduction of S. frugiperda.  



Journal of Agricultural Studies 

ISSN 2166-0379 

2026, Vol. 14, No. 1 

http://jas.macrothink.org 41 

 

Fig 8. Current potential distribution of S. frugiperda in studie areas 
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Fig 9. Map showing the future distribution of S. frugiperda under the SSP 245 scenario (A: 

Horizon 2041-2060, B: Horizon 2061-2080 

C: Horizon 2081-2100) according to the General Atmospheric Circulation Models GCMs 

(GCMs = CanESM5 + CNRM-CM6-1 + HadGEM3-GC31-LL + MIROC6) in Benin 
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Fig. 10. Map showing the future distribution of S. frugiperda under the SSP 585 scenario (A: 

Horizon 2041-2060, B: Horizon 2061-2080 

C: Horizon 2081-2100) in Benin according to the General Atmospheric Circulation Models 

GCMs (GCMs = CanESM5 + CNRM-CM6-1 + HadGEM3-GC31-LL + MIROC6) in Benin. 

Results of modeling the current potential distribution of S. frugiperda revealed a distribution in 

high suitable habitats of 58,964.33 km² and low suitable habitats of 55,798.67 km² (Fig. 8, 

Table 8). Regarding the bioclimatic projection under the SSP 245 scenario for 2041-2060, it 

showed a distribution in low suitable habitats of 74,275.61 km² and high suitable habitats of 

40,487.39 km² (Fig. 9, Table 8).  
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In addition, the bioclimatic projection under the SSP 245 scenario for the horizon 2061-2080 

revealed a distribution of 64,638.71 km² in low suitable habitats and 50,124.29 km² in high 

suitable habitats (Fig. 9, Table 8). For the period 2081-2100, this projection showed a 

distribution of 75,224.98 km² in low suitable habitats and 39,538.02 km² in high suitable 

habitats (Fig. 9, Table 8). 

Regarding the SSP 585 scenario, the bioclimatic projection for the horizon 2041-2060 revealed 

a distribution of 75,665.72 km² in low suitable habitats and 39,097.30 km² in high suitable 

habitats (Fig. 10, Table 8).  

In addition, the bioclimatic projection under the SSP 585 scenario for the horizon 2061-2080 

also showed a distribution of 77,354.96 km² in low suitable habitats and 37,408.04 km² in high 

suitable habitats (Fig. 10, Table 8). These scenarios projected a reduction in high suitable 

habitats of 37.82%, 11.32%, 41.13%, 42.72%, 47.71%, and 49.16%, followed by an extension 

of low suitable habitats of 20.61%, 8.78%, 21.62%, 22.07%, 22.07%, 23.41%, and 23.77%. 

Table 8. Dynamics of potential distribution areas for S. frugiperda in Benin 

Characteristics 

Low Suitable Habitat  High Suitable Habitat  

Area 

(Km2) 

Trend 

(%) 

Area 

(Km2) 

Trend 

(%) 

Current distribution  58964.33   55798,67   

CanESM5 

CNRM-CM6-1 

HadGEM3-GC31-LL 

MIROC6 

SSP_245_2041-2060 74275.61 +20.61 40487.39 -37.82 

SSP_245_2061-2080 64638.71 +8.78 50124.29 -11.32 

SSP_245_2081-2100 75224.98 +21.62 39538.02 -41.13 

SSP_585_2041-2060 75665.72 +22.07 39097.30 -42.72 

SSP_585_2081-2100 76987.12 +23.41 37775.88 -47.71 

SSP_585_2061-2080 77354.96 +23.77 37408.04 -49.16 

4. Discussion  

Today, it is important to monitor the spread of the fall armyworm in order to contribute to 

maintaining global food security, and more specifically in Benin, a West African country, 

where this pest species has a major impact on maize production and a high capacity for 

dispersal. In order to regulate and/or prevent FAW spread, it is necessary to understand its 

potential distribution and factors limiting it under current and future conditions. It is also 

important to identify regions with a high invasion potential through surveys in areas of high 

maize production, so that strict preventive measures could be taken now and in the future. 

Marian et al. (2025) confirm the Fall armyworm (FAW), S. frugiperda has emerged as a 

significant pest in agricultural landscapes, particularly in Africa, where its impact is profound 

given the continent’s dependency on agriculture. To manage this pest effectively, 

understanding the environmental and terrestrial drivers behind its spread is imperative 

(Marian et al., 2025).  

Our study was carried out in five districts of Benin to assess the current abundance of 

armyworm in maize fields. The analysis of the relationship between plant development stages 

and FAW abundance was therefore carried out using a negative binomial regression model. To 
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facilitate the interpretation of the results, the coefficients of the model were exponentiated to 

express them as incidence ratios (IRR), allowing the effect of developmental stages on FAW 

abundance to be quantified directly. Flowering stage shows a significant negative effect on 

larvae abundance, with an IRR ≈ 0.31, indicating that FAW abundance at maturity is reduced 

by about 69% compared to flowering. In contrast, the effect of sowing stage is not significant 

(IRR ≈ 1.30), suggesting that FAW abundance at sowing stage is not significantly different 

from that observed at flowering stage. We also note that the marginal R² is lower than the 

conditional R² for this model, reflecting that this significant variation in FAW abundance at 

the three (03) developmental stages considered in the study is due to both the fixed effect of 

host plant developmental stage and the random effect of location. A more recent field trial 

reported FAW yield losses of 5–20 % at the whorl stage (Capinera, 2017). Occasionally, they 

resow maize when pests have eaten the first plants, sometimes even after the optimum sowing 

date (Rose et al., 2000) or apply chemicals weekly to avoid pest and disease outbreaks (Ibrahim 

et al., 2023). The diversity of Lepidoptera collected with S. frugiperda in the five districts 

studied shows that the other Lepidoptera are reduced to trace levels in the maize fields. This 

distribution FAW during sowing stage can be explained by the drier, warmer climatic 

conditions in the north at the beginning of the maize season, which favored the emergence of 

the first larval stages of maize lepidopteran pests, probably those of FAW. This redistribution 

could be related to the attractiveness of flowering plants, which are particularly rich in nutrients 

and attract more adult lepidoptera for oviposition. The overall increase in densities at this stage 

was consistent with the life cycle of the pests, which multiply and often reach their peak 

abundance during miaze flowering stage. This general decline in FAW abundance, particularly 

in the northern areas, can be explained by: (1) the effect of control measures that may have 

been applied after infestations were detected at earlier stages, (2) the development of crops that 

are less palatable, (3) the natural cycle of pests completing their development, and (4) possibly 

less favorable climatic conditions at this stage. Furthermore, the FAW may benefit from drier 

conditions. In addition, plant density (dm) and mean annual air quality index (miaq) had a 

significant negative effect (p = 0.012 and p = 0.033, respectively), highlighting that denser 

habitats or atmospheric variations may limit FAW presence during this initial phase. 

Map of habitat suitability reveals that FAW infestations have been reported in nearly all 

sub-Saharan African countries, with varying levels of incidence and severity depending on 

the agroecological zone and period of the year (Yan et al., 2022). Countries with a suitable 

climate and vegetation for the survival, reproduction, and migration of FAWs in Africa are 

those that support the pest’s presence. FAW thrives under warm, humid, and wet conditions, 

but it can also persist under drier conditions if alternative host plants or refuges are available 

(Du et al., 2020). It is essential to note that the distribution and severity of FAW can vary 

within and between countries based on climate, seasonality, agroecology, crop management 

practices, pest control strategies and socioeconomic conditions (Harrison et al., 2019). 

Consequently, a country’s suitability for FAW occurrence should be evaluated based on local 

conditions and data, and appropriate measures should be taken to monitor and manage the 

FAW in order to minimize its impact on food security and livelihoods. Finally, at the maturity 

stage, the significant effects were more limited. Rainfall variability (bio15) maintained a 

significant negative effect (p = 0.045), suggesting that persistent climatic variability can slow 

https://www.sciencedirect.com/science/article/pii/S0167880925000660#bib88
https://www.sciencedirect.com/science/article/pii/S0167880925000660#bib57
https://www.sciencedirect.com/science/article/pii/S0167880925000660#bib57
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down fall armyworm population dynamics at this late stage of plant development.  

The MaxEnt model performance showed Fig. 6 that this result suggests that the algorithm used 

for modeling was an effective predictive model capable of predicting the spatial distribution of 

S. frugiperda under current and future climate conditions. This highlights the robust capacity of 

the MaxEnt algorithm to accurately model the distribution of the species. Our research fills this 

gap by integrating these overlooked variables in the MaxEnt modelling, presenting a more 

detailed landscape of the factors influencing FAW’s spread, providing a more holistic 

understanding of FAW dynamics. Further accentuating our study’s uniqueness is the 

comparison of four different MaxEnt models, an endeavor seldom undertaken in previous 

research in Benin. While several past studies, like Baudron et al. (2019), Durocher et al. 

(2021), and Ramasamy et al. (2022), have explored bioclimatic variables, and some like 

Huang et al. (2020) in Asia exclusively relied on these variables, they often overlooked the 

potential influence of factors such as FAW phenology, soil nitrogen, or soil pH. Based on the 

contribution of variables, the Jackknife test, and the VIF analysis, four bioclimatic variables 

were found to be the most significant factors associated with the predicted distribution of the 

species: annual precipitation (Bio2), temperature seasonality (Bio3), isotherm (Bio13), 

precipitation in the driest month (Bio14) and soil. Species distributions could be significantly 

modified by topography, which might regulate the influences of climate and land-use changes 

(Chardon et al., 2015; Oldfather & Ackerly, 2019). In other words, the suitability of climate 

and land-use might be reduced when suitable topographical conditions are lacking (Suz et al., 

2015; Oldfather & Ackerly, 2019). Therefore, according to the data and models used in our 

study, these areas could theoretically support the species in question. However, the fact that 

an area is identified as "weakly suitable" in a spatio-temporal prediction does not necessarily 

mean that the species would not develop properly there. This situation can be explained by a 

number of factors, including the unavailability or lack of data collected in these areas. In 

conclusion, climatic variations will reduce the area of distribution of S. frugiperda, regardless 

of the horizon considered. Thus, future climatic conditions will not be conducive to the 

expansion of the habitat of S. frugiperda. The results of modeling S. frugiperda reveal that 

future climatic conditions will not favor the expansion of its habitat. Indeed, the 

non-expansion of the habitat of this insect pest could mean greater stability for crops in the 

regions concerned, which is good news for farmers. Furthermore, these results suggest that 

pest management strategies can be adapted to new climatic conditions. This would allow for 

a proactive approach rather than a reactive approach. 

5. Conclusion 

The fall armyworm is a major threat to maize production in Benin, influenced by several 

agroecological factors. Our study shows that the seasonal and spatial distribution of this pest 

varies according to agro-ecological zones, with higher infestations observed in some regions 

during the dry season and the development stage of the maize plant. The diversity of other 

lepidoptera also varies according to region and crop development stage, which influences fall 

armyworm population dynamics through the complex of natural enemies in the environment. 

Environmental predictors of FAW occurrence in the study area were identified using Maxent 

modelling. Agro-ecological approaches, such as sustainable soil fertility management and 
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intercropping, offer low-cost management solutions that can be incorporated into integrated 

FAW management programmes. However, the effectiveness of these measures needs to be 

evaluated in different ecological and socio-economic contexts before large-scale 

implementation. Annual precipitation (Bio2), temperature seasonality (Bio3), isotherm 

(Bio13), precipitation in the coldest quarter (Bio14) and soil have a positive influence on fall 

armyworm distribution its presence and abundance. Additionel vegetation density (dm) had a 

very strong positive effect. Integrating agroecological strategies into farming practices could 

provide sustainable solutions to reduce the impact of this pest on maize production, while 

protecting the environment and human health.  
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