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Abstract 

Crop simulation is a modern tool used to mimic ordinary and extraordinary agriculture systems. 

Under the premise of continuing foreseeable climatic shift we combine adaptive field-level 

management decisions with their effects on crop performance. Price projections are used to 

examine yield and price effects on gross margins of the predominant crops in two specific 

regions of Southwest Germany into the coming decades. After calibration and validation to 

historic records, simulated future weather is used to explore how farmer behavior and 

performance of wheat, barley, rapeseed and maize could develop under anticipated global 

change. This development is examined based on a comparison of historic and projected gross 

margin variance. Simulations indicate that when yield levels increase, the relative variability of 

gross margins may decline in spite of some increasing variability of yields. The coefficient of 

variance of gross margins decreases even more due to the independence of price and yield 

fluctuations. This shows how the effects of global change on yields could be offset by 

economic conditions.  

Keywords: Integrated modelling, Yield forecasts, Simulated gross margins, Global change, 
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Agricultural adaptation, Risk. 

1. Introduction 

In a market economy, profitability is a crucial condition of farm management efficacy and at 

least short-term sustainability. How climate change might affect the comparative profitability 

of different crops in a given region is thus an important question in agricultural research and to 

farmers directly. To have more comprehensive projections of economic and ecological 

conditions under which future agriculture will be practiced is to be better able to plan for and 

react to likely circumstances. To this end, integrated crop and farm-agent modeling have 

become important tools for exploring how the environment, technology and human behavior 

interact and drive development in agricultural systems. The aim of this paper is to compare past 

and future gross margin fluctuations using integrated simulation models. 

1.1 Field-Level Simulation 

This paper is based on simulated cropping of winter wheat (Triticum aestivum L.), spring and 

winter barley (Hordeum vulgare L.) and silage maize (Zea mays L.) using CERES (Jones and 

Kiniry, 1986) and winter rapeseed (Brassica napus L.) with GECROS (Xinyou and van Laar, 

2005) as embedded in the soil-plant-atmosphere model EXPERT-N (Priesack, 2006). These 

crops are of major economic importance, covering almost half of Europe’s arable land, and 

three-fourths of that in Germany (Eurostat, 2013). 

Governing crop simulations is the agent-based model FARMACTOR (Aurbacher et al., 2013). 

Performance of cropping actions, including planting and harvesting, is based on the simulated 

farmer reacting at a daily time interval to conditions in the field. Annual management decisions 

are also dependent on learning from historic patterns that generate expectations and steer 

behavior. For this paper a genetic algorithm is used to iteratively calibrate the timing of 

management actions to observed records, as well as fuzzy logic imitating a farmer’s 

decision-making process. Management and crop performance measures are validated to 

historic records which then lead to projections into the future using simulated weather based on 

anticipated climate change.  

1.2 Risk in Agricultural Production 

Weather is largely responsible for the annual variability of agricultural production. It represents 

the uncertainty associated with production and makes outcomes difficult to predict compared 

to industrial production. Risk, the undesirable part of uncertainty (Knight, 1921) is intrinsic to 

agricultural production and therefore unavoidable (Hardaker et al., 2004). Climate change can 

be expected to alter farm income in both ways and at different magnitudes than previously 

experienced. It is the farmer ś challenge to balance risk and return, given personal willingness 

to withstand a certain range of outcomes (Harwood et al., 1999, Hardaker et al., 2004). Risk has 

been found together with learning to be the major driver of adaptation (Baerenklau, 2005). As 

knowledge is gathered over time, information about the known part of uncertainty changes, 

meaning that adaptation is a continuous process of change over time.  

Herein is a proposition of what might happen with the variability, and hence level of risk, of 
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several field crops under a changing climate. Simulations at the field level and with an artificial 

single-crop choice leave us with the interpretation of the gross margin variability under 

“optimal choice” conditions where management, especially planting, is only constrained by 

weather, both daily and long-term patterns. This provides a foundation upon which adaptive 

cropping decisions may be based in the future.  

2. Methods and Materials 

2.1 Study Areas 

The Kraichgau and Schwäbische Alb are two distinct regions in Baden-Württemberg, 

Southwest Germany. The former is a fertile, intensely cropped region along the Rhine River 

while the latter, 100 km to the Southeast, is a relatively harsh plateau of predominant extensive 

agricultural use (Gayler et al., 2014). The study location in the Kraichgau lies in Karlsruhe 

Rural District (Landkreis) while the Central Schwäbische Alb location is in Alb-Donau-Kreis. 

Average yields of the five simulated crops in these two districts are the basis for comparison of 

the respective study areas. Simulated field cropping on a hypothetical farm in each region, as 

contrasting agricultural environments, presents a broad perspective on climate-driven farm 

management and crop performance in the foreseeable future. A map below portrays the study 

areas and key locations (Appendix 1). 

2.2 Calibration/Validation Data 

Calibration data for EXPERT-N, including soil parameters, daily weather and plant performance 

was derived from winter wheat, silage maize and winter rapeseed grown on experimental fields 

near Pforzheim in the Kraichgau and Nellingen in the Schwäbische Alb during the 2009-2011 

growing seasons (Ingwersen et al., 2011, Wizemann et al., 2014). Spring and winter barley data 

were provided by Baden-Württemberg state variety trial stations (LTZ Augustenberg, 2013), 

augmented with data from the German Weather Service (DWD, 2012a) and the soil map of the 

Federal State of Baden-Württemberg (LGRB, 1997). To account for breeding progress in field 

crops, the calibrated value of one growth parameter per crop is shifted each simulation year 

(Parker et al., submitted). 

The DWD maintains a network of weather and phenological observatories (DWD, 2012b) in 

close enough proximity to allow derivation of causal relationships between them (Menzel, 

2013). DWD weather at Eppingen was used for planting date calibration in the Kraichgau, 

together with the nearest phenology station with complete data - Oberderdingen (for all crops 

except winter barley, for which the paucity of data led to choosing Helmstadt). In the 

Schwäbische Alb, Merklingen weather and Nellingen phenology were chosen for calibration. 

Time periods outside of the calibration period are available for validation of simulated planting 

dates, while harvest date and yield, calibrated to other data, are validated to phenological 

records and district yields for the whole period 1981-2010. For barley, when DWD 

phenological records are not existent, planting and harvest dates from various LTZ trials sites 

are used for validation. 
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2.3 Price Assumptions 

To generate comparable product price series, we use a 20-year price index from the German 

Statistical Office (DESTATIS, 2013) from 1994 to 2013, converted to absolute (nominal) 

prices pt with base year (2005) prices from the Federal Ministry of Food and Agriculture 

(BMELV, 2013) for the wheat, fodder (winter) barley, malting (spring) barley and oilseeds 

(winter rapeseed). To account for a geometric price trend, we estimate the model 

, results of which for each crop are given in Table 1. The trend 

parameters are only in part significantly different from zero, but still they are a better 

estimation for the trend than assuming no trend. This allows an annual calculation of t, 

where t is the model-estimated price at time t. These ratios can be interpreted as the annual 

divergence from the estimated trend, in which we are especially interested. For the past, these 

divergence values are multiplied by the mean of the observed prices to obtain a fluctuating, but 

de-trended price series. For the future scenarios, we use the five-year average of prices 

2009-2013 as a base, multiplied by a randomly resampled series of the annual divergences. 

Silage maize is the exception as there is no long-term market price series available, only very 

local markets started to evolve with the advent of biogas plants. Thus we do not apply the 

above approach given to silage maize, but instead use a constant price of 28 € per ton of fresh 

matter, as given by KTBL (2012). This accounts for the tendency to make multi-year contracts 

at constant prices even when local silage maize markets do exist.  

The advantage of the above approach is to abstract from price trends and focus on the 

variability of prices, which, together with yield variation comprise the majority of profitability 

fluctuations. However, we implicitly assume that the magnitude of the price fluctuations stay 

constant, which may or may not be the case.  

Table 1. Estimated model parameters from 1993-2012 prices, with intercept M and trend b, of a 

geometric price trend for each crop 

 
Wheat Winter barley Spring barley Rapeseed 

M -27.89 -25.39 -11.07 -61.94 

b  0.01635 0.01505 0.007989 0.03362 

p-value(b) 0.107 0.125 0.409 0.000 

Source: Own calculations based on DESTATIS (2013) 

Total variable input costs per hectare are maintained constant at their crop-specific 1993-2012 

averages (KTBL, 2012) for calculation of both historic and future gross margins. 

2.4 Model Calibration 

EXPERT-N was calibrated according to methods in Aurbacher et al. (2013). Dynamic genetic 

parameters were developed to replicate how wheat and barley breeding has produced an 
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increasing number of grains per plant (Ahlemeyer and Friedt, 2012, Parker et al., submitted), 

while changing initial leaf nitrogen concentration in rapeseed is used to reproduce the observed 

yield trend. Silage maize yields have been relatively steady in the two study areas and the 

complexity of genetic factors involved led to an assumption of static genetic parameters for this 

study
1
.  

2.4.1 Calibration of Field Management 

FARMACTOR conducts daily integration of EXPERT-N with database soil and weather records 

and internal management decision-making, subject to “learning”, herein represented by the 

simulated farmer building expectations based on a 10-year moving average of environmental 

factors. These are 1-week average soil temperatures for spring crops (“learning soil-temp”) and 

remaining cumulative air temperatures for fall-planted crops (“learning GDD”) (Aurbacher et 

al., 2013). Field-specific soil properties determine the moisture level corresponding to a 

favorable response to action, and at which traffic and tillage can be withstood without the 

long-term damage of compaction (Rotz and Harrigan, 2005). The model’s crop rotation 

algorithm (Aurbacher and Dabbert, 2011) was omitted to simplify the extraction of annual 

performance measures of each crop and to determine planting and harvest dates based solely on 

daily crop, soil and weather conditions. To accommodate the lack of crop rotation, soil nutrient 

values are reset each year.  

2.4.2 Planting 

Learning from several years of weather designates planting periods each year, during which 

daily soil moisture and temperature, air temperature(s) and precipitation are action triggers. 

The fall planting window begins when the year’s (learning-based) expected remaining growing 

degree days (GDD) reaches a certain minimum threshold, or “trigger”. Spring planting of 

barley and maize begins when the next week’s expected mean soil temperature is above a 

crop-specific value. Within their respective allotted time periods, planting of each crop is 

associated with a set of additional triggers, all of which include soil moisture (volumetric water 

content of the upper 30 cm) as an indicator of trafficability. Additionally, the weather over 

several days is evaluated by the simulated farmer to build short-term expectations that guide 

behavior (Aurbacher et al., 2013). This is a pre-period minimum temperature where spring 

planting is only possible when the air is consistently warm enough that it is unlikely that 

temperatures will subsequently fall to crop-damaging levels. Following Oleson et al. (2012) 

maximum daily temperature values were added as criteria for autumn sowing. In addition, 

maximum temperatures over a 3-day pre-period were included. Our justification of this 

mechanism is that excessive temperatures after planting are likely to result in overdevelopment 

before winter dormancy, while also being conducive to insect, pathogen and weed growth. 

Farmers are generally reluctant to work a field during rain, justifying a maximum for daily 

precipitation. However, the daily resolution of weather data does not account for partial days 

without precipitation that would allow work. 

                                                        
1 Crop simulation model calibration details are omitted from this paper, but available from the authors upon 

request. 
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FARMACTOR can be run iteratively using a genetic algorithm to minimize the error (RMSE) 

between observed and simulated planting dates by altering action triggers according to an 

evolutionary strategy. Further, multiple behavioral paradigms can govern the timing of action: 

fixed triggers throughout the planting period, combinations of trigger values subject to fuzzy 

logic, and “shifting” triggers
2
 that are relaxed linearly throughout the time window. The 

genetic algorithm was run for thirty years, the first ten to establish learned temperature 

expectations and the last twenty comparing simulated to observed planting dates. To limit the 

necessary computational capacity, calibration was limited to ten iterations with a population of 

sixteen trigger combinations each, for a total of 160 model runs for each crop and location. This 

establishes optimal base values plus “fuzziness” ranges and amounts of daily trigger shift. 

Fuzzy logic proved to be the most appropriate paradigm in hind-casting planting dates in the 

Kraichgau. The Schwäbische Alb, however, presents a different situation where, as revealed 

below, shifting triggers proved more suitable.  

2.4.3 Harvest 

Harvest is subject to a set of simultaneously evaluated feasibility criteria including crop 

development stage, soil trafficability and daily precipitation. In seed crops a proxy for moisture 

content (affecting drying costs) is a combination of minimum pre-period temperature and 

maximum precipitation (8°C and 10 mm over three days). 

2.5 Implications of Risk 

This paper works with the assumption that farmers “wish to increase their wealth over time” 

(Pannell et al., 2000, p. 76), implying a preference for greater yields. A further assumption is 

that farmers in general are risk-averse and favor a less volatile yield distribution. The important 

point for relative profitability and risk is the artificiality of observed yields over time under a 

changing climate under “optimal choice conditions”. Annual yields and their variance are used 

as “agronomic utility” parameters defining the trend distribution of each crop and serve as a 

reference for farmer behavior in terms of perceived gains and losses. Simulating adaptive 

management heuristically incorporates the consideration of risk and reward. 

3. Results and Discussion 

3.1 Management Calibration Results 

Table 2 shows results of calibration with the genetic algorithm using fuzzy triggers in the 

Kraichgau and both fuzzy and shifting triggers for the Schwäbische Alb. The best target value 

is given along with its corresponding set of trigger values.  

Table 2. Optimized planting trigger values and target (RMSE) 

 Winter 

wheat 

Winter 

barley 

Winter 

rapeseed 

Spring 

barley  

Silage 

maize 

                                                        
2 Planting is subject to each trigger so that, with shifting: (min) , and (max) ; 

and with fuzzy logic: the composite  of n triggers must exceed a given threshold of 0.5 where:  where 

(min)  and (max) with n triggers at base value b and fuzzy range f, while v is the 

currently simulated value. All ts are truncated to be between 0 and 1. 
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Kraichgau - with fuzzy planting triggers 

Learning GDD (°C) 439.47 873.33 1093.49 - - 

Learning Soil Temp. (°C) - - - 9.06 12.53 

Max. Soil Moisture (% Vol.) 39.69 31.50 45.78 35.76 50 

Range* (% Vol.) 10.02 19.82 0 32.59 17.22 

Max. Precip. (mm day-1) 3.49 0 0 20 0 

Range* (mm day-1) 0.61 28.01 1.71 10.71 41.64 

Max. Air Temp (°C) 19.69 11.78 18.30 - - 

Range* (°C) 5.57 0 2.13 - - 

Max. 3-Day Air Temp (°C) 11.73 25.79 24.13 - - 

Range* (°C) 38.84 0 0.66 - - 

Min. GDD 105.20 3000 1395.92 - - 

Range* (°C) 0 

 

288.91 17.63 - - 

Min. Air Temp (°C) - - - 6.14 10.17 

Range* (°C) - - - 47.34 36.10 

Min. 3-Day Air Temp (°C) - - - 0.53 1.69 

Range* (°C) - - - 0.46 14.11 

RMSE (days) 9.93 

 

3.42 9.75 9.69 5.15 

Schwäbische Alb - with fuzzy planting triggers 

Learning GDD (°C) 1000 734.36 794.29 - - 

Learning Soil Temp. (°C) - - - 4.97 2.73 

Max. Soil Moisture (% Vol.) 48.05 46.29 42.05 59.79 43.46 

Range* (% Vol.) 3.96 4.72 5.00 0.00 21.89 

Max. Precip. (mm day-1) 0.49 3.01 0.29 4.24 5.75 

Range* (mm day-1) 3.32 2.87 4.03 17.62 43.46 

Max. Air Temp (°C) 7.00 8.31 15.00 - - 

Range* (°C) 0.23 0.39 1.54 - - 

Max. 3-Day Air Temp (°C) 7.77 26.55 13.69 - - 

Range* (°C) 5.00 1.64 0.00 - - 

Min. Air Temp (°C) - - - 8.96 14.95 

Range* (°C) - - - 42.83 13.12 

Min. 3-Day Air Temp (°C) - - - 0.00 14.91 

Range* (°C) - - - 50.00 21.89 

RMSE (days) 8.84 4.11 12.65 7.90 7.25 

Schwäbische Alb - with shifting planting triggers 

Learning GDD (°C) 699.61 710.61 1000 - - 

Learning Soil Temp. (°C) - - - 0.00 11.03 

Max. Soil Moisture (% Vol.) 44.90 35.68 42.01 24.55 14.24 

Shift** (% Vol. day-1) 0.13 0.34 0.10 0.74 0.88 

Max. Precip. (mm day-1) 2.97 1.59 0.33 0.82 15.79 

Shift** (mm day-1 day-1) 0.48 0.00 0.28 0.16 0.39 

Max. Air Temp. (°C) 24.58 10.00 0.00 - - 

Shift** (°C day-1) 0.28 0.29 30.00 - - 

Max. 3-Day Air Temp. (°C) 15.53 29.21 16.57 - - 

Shift** (°C day-1) 0.36 0.14 0.50 - - 
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Min. Air Temp. (°C) - - - 17.89 8.22 

Shift** (°C day-1) - - - 0.78 0.97 

Min. 3-Day Air Temp (°C) - - - 3.88 2.12 

Shift** (°C day-1) - - - 0.28 0.54 

RMSE (days) 7.29 4.81 5.43 8.53 4.56 

* Range signifies the width of the transition from possible to impossible surrounding each trigger’s base value 

which, in conjunction with all other triggers, restricts action (planting). ** Shift is likewise the amount each trigger 

is relaxed each day after the beginning of the planting period. Source: Own calculations 

It is apparent that the two trigger paradigms alternate in their superiority matching simulated to 

observed planting dates among the different crops. The decision of which ultimately to use for 

projections is thus a matter of validation metrics.  

3.2 Model Validation 

Validation compares the timing of simulated planting and harvest dates to DWD network and 

LTZ observations and simulated yields to district averages. The model was run for the five 

crops 1970-2010 (the first ten years a warm-up for expectation building/learning) so that 

outside of the calibration period planting dates can be validated for the harvest years 

1981-1990 for wheat, rapeseed and maize planting dates, likewise 1991-2010 for the two 

barley crops (because of the different data availability). Table 3 shows validation results for 

planting dates at both locations. 

Table 3. Validation measures of fit for simulated planting dates by crop and location 

 

Kraichgau 

fuzzy triggers 

Schwäbische Alb 

fuzzy triggers 

Schwäbische Alb 

shifting triggers 

Winter wheat (1981-1990) 

Correlation coefficient 0.52 0.09 0.54 

RMSE (days) 9.43 8.54 8.41 

Bias (days) -7.23 -2.1 -6.1 

Winter barley (1991-2010) 

Correlation coefficient 0.48 -0.50 0.48 

RMSE (days) 12.74 11.52 7.29 

Bias (days) -1.03 -3.4 -5.1 

Spring barley (1991-2010) 

Correlation coefficient 0.12 0.15 0.64 

RMSE (days) 14.45 26.02 15.20 

Bias (days) 1.65 -15.8 -0.7 

Winter rapeseed (1981-1990) 

Correlation coefficient 0.33 0.12 -0.08 

RMSE (days) 13.28 13.86 5.53 

Bias (days) -10.40 10.9 0.6 

Silage maize (1981-1990) 

Correlation coefficient 0.37 0.12 -0.25 
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RMSE (days) 8.03 46.35 13.87 

Bias (days) -2.20 45.90 12.40 

Source: Own calculations 

Functioning at fine tempo-spatial resolution FARMACTOR produces accurate predictions of 

planting date, especially compared to coarser models (Waha et al., 2012). Correlation 

coefficient, RMSE and bias are chosen measures of the accuracy of simulated management, 

how well the model captures the underlying agronomic and behavioral principals. Considering 

the three measures together it was decided to proceed with shifting triggers in the Schwäbische 

Alb while fuzzy triggers were utilized in the Kraichgau. 

Next, simulated crop performance for harvests years 1981-2010 is validated to Karlsruhe and 

Alb-Donau District yields for the Kraichgau and Schwäbische Alb, repectively, and the most 

nearby phenological records of harvest dates (see section 2.2.). Table 4 provides metrics on the 

accuracy of simulated harvest date and yield.  

Table 4. Validation period measures of fit for simulated harvest dates and yield by crop and 

location (harvest years 1981-2010) 

 

Source: Own calculations 

 Kraichgau Schwäbische Alb 

 
Harvest  

(day of year) 

Yield  

(dt ha-1) 

Harvest  

(day of year) 

Yield  

(dt ha-1) 

Winter wheat  

Correlation coefficient 0.78 0.52 0.83 0.86 

RMSE 12.73 12.37 9.79 6.18 

Bias -8.10 -1.79 -10.28 0.28 

Winter barley     

Correlation coefficient 0.57 0.52 0.69 0.72 

RMSE 10.18 7.88 8.67 6.17 

Bias -1.40 -3.43 0.03 2.33 

Spring barley 

Correlation coefficient 0.65 0.55 0.26 0.64 

RMSE 16.09 11.22 11.17 11.55 

Bias -13.50 0.16 2.84 9.19 

Winter rapeseed 

Correlation coefficient 0.51 0.52 0.78 0.50 

RMSE 11.40 14.87 8.19 8.14 

Bias 9.01 0.14 -5.63 1.17 

Silage maize 

Correlation coefficient -0.24 0.26 -0.26 0.17 

RMSE 21.96 75.48 23.65 59.32 

Bias -6.60 49.61 17.13 -33.14 
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Compared to similar multiple-year simulation endeavors such as Palosuo et al. (2011), 

validation accuracy is satisfactory and supports the following projections of how agricultural 

production at the two locations will develop in the coming decades. The following projections 

of field management and crop performance utilize WETTREG 2010 simulated future weather 

scenarios (Kreienkamp et al., 2010) at Eppingen and Merklingen based on historic records and 

assuming IPCC scenario A1B (IPCC, 2007).  

3.3 Projections 

Projections until the year 2031 were completed for the simulated farms at both locations. Three 

runs for each were performed using separate realizations of the same WETTREG scenarios 

(Kraichgau: Eppingen 25002-11, 25002-77 and 25002-99; Schwäbische Alb: Merklingen 

2814-33, 2814-55 and 2814-99). Linear regression function intercept and slope for planting, 

harvest and yield averages from the three future runs are presented in Table 5.  

Table 5. Projected management and crop performance statistics 2012-2031 (harvest years) 

 Winter 

wheat 

Winter 

barley 

Spring 

barley 

Winter 

rapeseed 

Silage 

maize 

Kraichgau (with fuzzy planting triggers) 

Planting -intercept (day) 286.21 254.90 81.72 255.55 119.13 

-trend (days yr-1) +0.52 +0.43 -0.36 +0.36 -0.11 

Harvest -intercept (day) 200.96 212.92 200.47 209.62 290.81 

-trend (days yr-1) -0.63 -0.28 -0.35 -0.37 -0.79 

Yield -intercept (t ha-1) 5.523 5.855 5.939 5.866 70.032 

-trend (t ha-1 yr-1) +0.075 +0.026 +0.052 -0.066 -0.181 

Schwäbische Alb (with shifting planting triggers) 

Planting -intercept (day) 269.52 260.25 89.11 231.46 123.20 

-trend (days yr-1) +0.10 +0.08 -0.05 +0.14 -0.09 

Harvest -intercept (day) 226.12 216.67 231.75 219.73 288.78 

-trend (days yr-1) -1.02 -0.72 -0.16 -0.60 -1.05 

Yield -intercept (t ha-1) 8.056 7.167 6.354 4.378 47.840 

-trend (t ha-1 yr-1) +0.009 +0.086 +0.036 +0.029 +0.039 

Source: Own calculations 

3.3.1 Planting 

According to model projections for the Kraichgau, winter crops will be sown about one day 

later for every two to three years into the future. Sowing of spring barley should occur earlier at 

a similar rate, while sowing of maize in spring should advance slower, about one day every 

nine years. Projections for the Schwäbische Alb also show gradually later sowing in autumn 

and earlier planting in spring.  

3.3.2 Harvest 

The warmer temperatures in simulated future weather drives harvest dates earlier in all crops, 

at both locations, between roughly one to two days every three years in the Kraichgau. Harvests 

in the Schwäbische Alb, notwithstanding spring barley, occur earlier at an even faster rate, 
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wheat and maize maturing more than one day sooner per year. While the simulated future 

growing season, e.g. time between spring and fall frosts, is expanding, warmer temperatures 

result in crops ripening faster so that no advantage can be gained from the extended season. 

This would, however, likely be counteracted with the use of later-ripening, more 

biomass-generating cultivars. 

Overall, projected phenological trends appear plausible. However, at some point the 

climate-induced changes, e.g. toward earlier harvests, should lead to structural change in 

cropping methods such as greater appearance of previously uncommon crop rotations. Further 

research will focus on this possibility.  

3.3.3 Yields 

Kraichgau simulations project a slight increase in yields for all crops except rapeseed and 

silage maize. In contrast are the increasing yields of all crops in the Schwäbische Alb. 

Aurbacher et al. (2013), modeling the nearby Schwäbische Alb, projected negative trends in 

wheat and maize yields. The process-based inclusion breeding progress, not included in the 

latter, demonstrates one way in which the detrimental effects of climate change may be 

mitigated (Parker et al. submitted). Angulo et al. (2013) project decreasing yields for five major 

European crops, based solely on climate change. However, when technological change and 

CO2 fertilization are included their projections were more optimistic.  

3.4 Gross margins 

Gross margins serve as a basic measure of profitability and their variance can give an 

impression of associated risk. Simulated yields from 1992-2011 are multiplied by the 

de-trended historic producer price in each year before the average variable input cost over the 

same period is subtracted to derive a gross margin for each year. The coefficient of variation of 

gross margins over this period serves as the measure of the historic level of risk in each crop 

and study location.  

For the future, yield results from the three simulated weather realizations are multiplied by 

year-specific modeled prices, minus per-hectare input costs (section 2.3) to derive projected 

gross margins. These are shown in Figure 1 together with simulated historic gross margins for 

each crop in the Schwäbische Alb, (Kraichgau in Appendix 2). However, their trends are not 

the focus of this paper as they depend largely on price trends which were purposefully removed. 

Input prices are kept constant, if they were not it could reduce the effects of price variability as 

factor prices (e.g. fertilizer) may correlate to product prices. 
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Figure 1. Simulated historic and future gross margins in the Schwäbische Alb 

Source: Own calculations 

For comparative metrics the individual coefficients of variation of gross margins in the three 

simulated future time series 2012-2031 are averaged for comparison to the twenty-year period 

1992-2011 used to generate price forecasts. Table 6 offers a comparison of past and future yield 
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and gross margin variation coefficients for each crop and location.  

Table 6. Coefficients of variation of simulated historic and future yields and gross margins 

 Winter 

wheat 

Winter 

barley 

Spring 

barley 

Winter 

rapeseed 

Silage 

maize 

Mean historic producer price (€ t-1)  134.50 120.95 141.81 239.36 27.58 

Mean forecasted producer price (€ t-1) 180.55 163.88 184.14 305.68 28.00 

Schwäbische Alb 

Historic yield (t ha-1) -mean 7.586 6.399 5.536 3.822 44.624 

-std dev 0.683 0.763 0.945 0.635 4.643 

-var. coeff. 0.090 0.119 0.171 0.166 0.104 

Historic gross margin (€ ha-1) - mean 445.77 292.73 313.53 

 

280.49 635.81 

-std dev 247.45 180.80 178.57 255.35 130.01 

-var. coeff. 0.555 0.618 0.570 0.910 0.204 

Projected yield (t ha-1) -mean 8.148 8.065 6.734 4.684 48.249 

-std dev 0.469 0.622 0.628 0.532 3.683 

-var. coeff. 0.058 0.077 0.093 0.114 0.076 

Projected gross margin (€ ha-1) -mean 905.43 846.61 789.25 796.31 737.30 

-std dev 302.68 298.47 315.70 205.51 100.68 

-var. coeff. 0.345 0.358 0.410 0.259 0.137 

Ratio of projected/historic 

variance coefficient 

yield 0.639 0.647 0.547 0.684 0.734 

gross margin 0.621 0.579 0.720 0.284 0.669 

Kraichgau 

Historic yield (t ha-1) -mean 6.310 5.293 5.065 3.600 48.861 

-std dev 0.865 0.653 1.059 1.342 6.221 

-var. coeff. 0.137 0.123 0.209 0.373 0.127 

Historic gross margin (€ ha-1) - mean 278.07 162.56 248.48 246.08 754.46 

-std dev 239.28 164.70 195.47 475.36 174.18 

-var. coeff. 0.860 1.013 0.787 1.932 0.231 

Projected yield (t ha-1) -mean 6.315 6.128 6.490 5.169 68.128 

-std dev 2.016 0.551 0.716 1.112 9.563 

-var. coeff. 0.319 0.090 0.110 0.215 0.140 

Projected gross margin (€ ha-1) -mean 568.47 534.23 738.30 947.96 1293.91 

-std dev 424.05 241.02 291.01 380.01 261.40 

-var. coeff. 0.756 0.469 0.402 0.403 0.202 

Ratio of projected/historic 

variance coefficient 

yield 2.328 0.729 0.528 0.578 1.102 

gross margin 0.879 0.462 0.511 0.209 0.877 

Source: Own calculations 
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Only winter wheat and silage maize in the Kraichgau show increasing yield variability as a 

result of future climatic conditions. All other crops in Kraichgau and all crops in the 

Schwäbische Alb experience increased yield and decreased yield variance, so that their 

coefficients of variation decline in the future. In the case of wheat and Kraichgau, this is in line 

with other work. Fuss et al. (2011) also found increasing wheat yield and yield variability in 

Central Europe. Kersebaum & Nendel (2014) simulated slight increases in both absolute yield 

and its variability for wheat in regions throughout Germany. Here, in contrast, decreasing crop 

yield variances were projected. This is presumably due to the combination of the general trend 

towards a more favorable climate in Germany and the modelling of adaptive execution dates 

that mitigate some of the negative effects of climate change. 

Results show that the variability (variation coefficient) of gross margins will decline even more 

than that of yields. Gross margin variability will decline even when yield variability has 

increased. This shows that price fluctuations have an additional effect on the stabilization of 

gross margins, even when price fluctuations are assumed to be statistically independent of 

yields. This is a conservative assumption, as prices and yields tend to be negatively correlated 

(El Benni & Finger, 2012), and this “natural hedge” in effect further reduces gross margin 

variability. A part of the effect is due to the increase of future prices. On the whole, in these 

sample model runs, gross margin variability does not increase for any crops at either location, 

suggesting a comprehensive reduction in producer risk. 

4. Conclusion 

Gross margin volatility, as a measure of economic risk in agricultural production, is influenced 

by both price and yield variability. In the above projections, the interaction of price and yield 

leads to a general stabilization of gross margin fluctuation. Even in cases where yield volatility 

increases (here, Kraichgau wheat and maize), this is offset by the superimposition of price 

fluctuations. Increases in absolute price and yield levels will further amplify this effect.  

Some care has to be taken as the model does not incorporate all anticipated consequences of 

climate change, including CO2-fertilization, extreme weather events and pest proliferation. As 

weather simulations continue to improve, use of new weather projections could likewise 

improve the robustness of the model. 

Still, these results provide some insight into possible developments in the regional economic 

viability of field crops. This allows better estimation of future land use changes which should 

be reintegrated into land-atmosphere models to close the feedback loops. Further, designated 

decisions support systems could benefit from more detailed modelling. 
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Appendix 

Appendix 1. Map of study area with key locations 
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Appendix 2. Simulated historic and future gross margins in the Kraichgau 

 

Source: Own calculations 
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