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Abstract 

Objective: To identify risk factors for first-attempt failure of radial arterial puncture in heart 
failure patients and to develop and compare predictive models using logistic regression with 
advanced feature engineering and ensemble learning approaches. 

Method: A retrospective study was conducted involving 789 heart failure patients who 
underwent radial arterial puncture. Patients were divided into a training set (80%) and a test 
set (20%) using a stratified hold-out method. A logistic regression framework incorporating 
feature engineering (interaction terms, transformations, composite scores, PCA) and a 
dual-stage variable selection strategy (LASSO followed by stepwise selection with p<0.1 
threshold) was employed. Four ensemble models were developed in parallel. Model 
performance was evaluated using area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, and calibration metrics through a multi-repeat validation 
framework. 

Results: The final logistic regression model identified eleven variables, with edema degree (β 
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= -0.0959, OR = 0.9085, p = 0.0160) and the interaction between ejection fraction and 
log-transformed BNP (β = 0.1507, OR = 1.1627, p = 0.0371) reaching statistical significance. 
The model demonstrated fair discriminative ability with an average test AUC of 0.693 
(±0.033), high specificity (95.59% ± 2.55%), but lower sensitivity (31.88% ± 13.98%). The 
ensemble learning models showed weaker discriminative performance but exhibited potential 
overfitting on the training set. The optimal probability cutoff for the logistic model was 
0.658. 

Conclusion: Both modeling approaches developed effective prediction tools. The logistic 
regression model provided clinically interpretable risk factors, while the ensemble learning 
models achieved higher discriminatory power at the cost of interpretability. These models can 
assist in pre-procedural identification of high-risk patients, allowing for tailored strategies to 
improve first-attempt success rates and reduce patient discomfort. 

Keywords: heart failure, edema, BNP, feature engineering, logistic regression, ensemble 
learning 

1. Introduction 

1.1 The Problem Introduction 

The increasing incidence and mortality of heart failure (HF)—a complex syndrome arising 
from structural, functional, or myocardial damage—have emerged as a major public health 
concern, driven by demographic aging and the rising burden of chronic diseases (Malik et al., 
2021). Despite guideline-directed medical therapy, heart failure remains associated with a 
high hospitalization rate (Wintrich et al., 2020). For these patients, radial artery puncture is a 
routine procedure required for arterial blood gas analysis and invasive hemodynamic 
monitoring (Sze et al., 2021). As an invasive technique, however, unsuccessful initial 
attempts necessitate repeated punctures. This can lead to multiple adverse outcomes, 
including increased procedural difficulty, patient pain and anxiety, local bleeding, hematoma, 
vasospasm, diminished treatment compliance, and increased resource consumption. 
Consequently, maximizing the first-attempt success rate is crucial. 

Prior research has analyzed factors influencing radial artery catheterization success in settings 
like coronary angiography (Hu, 2018; Lu et al., 2018). Building upon this foundation, this 
study aimed to develop and validate a prediction model for first-attempt radial artery 
puncture failure specifically in HF patients by synthesizing known risk factors with the 
unique clinical attributes of this population.  

1.2 Importance of the Problem 

HF constitutes a major global health challenge (Malik et al., 2021). Radial artery puncture is 
a key procedure for these patients, enabling critical assessment and guiding treatment (Sze et 
al., 2021). However, its invasive nature means first-attempt failure directly leads to repeated 
attempts, increasing patient discomfort, risks of local complications (e.g., hematoma, 
vasospasm), reduced compliance, and higher costs. 

Although techniques like ultrasound-guided puncture can improve success rates (Lu et al., 
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2018), traditional palpation methods remain prevalent in ward settings for routine monitoring 
due to practical constraints. Even with standardized training, first-attempt failure rates remain 
appreciable. Currently, systemic risk factors for first-attempt radial artery puncture failure in 
HF patients are not fully elucidated, and there is a lack of bedside prediction tools tailored to 
this group. Therefore, identifying key failure factors and establishing an effective prediction 
model is clinically urgent to enable individualized procedures, reduce patient harm, and 
improve care quality.  

1.3 Relevant Scholarship 

Previous studies have explored the factors related to arterial puncture, especially radial artery 
puncture, from different perspectives. Extensive literature focuses on radial access for 
coronary intervention, analyzing anatomical factors like vessel diameter and tortuosity. In 
terms of arterial blood collection or catheterization in non-invasive wards, research has 
mainly focused on operational techniques, such as the comparison between ultrasound-guided 
and traditional palpation (Lu et al., 2018), patient demographic characteristics, such as age 
and gender, and some physiological indicators. For example, research has explored the risk 
factors and predictive model construction for the failure of radial artery catheterization (Hu, 
2018), providing methodological references for understanding this clinical issue. 

However, there is still a significant gap in the first radial artery puncture study for the special 
population of heart failure patients. The unique pathophysiology of heart failure patients, 
such as volume overload causing edema, low cardiac output weakening pulses, 
hypoalbuminemia, and respiratory distress, may constitute specific risk factors that 
distinguish them from other patients (Wintrich et al., 2020; Serenelli et al., 2020). The 
existing universal puncture studies have not fully included and quantified these core variables 
related to heart failure, limiting the extrapolation of their conclusions. 

Methodologically, the research standards for clinical predictive models are becoming 
increasingly sophisticated, covering sample size calculation (Riley et al., 2020), data 
partitioning strategies (such as Hold Out method, k-fold cross validation) (Mabuni & Babu, 
2021), and model construction and validation (Shiwakoti et al., 2020; Elliott et al., 2021). 
Meanwhile, in addition to traditional logistic regression models, ensemble machine learning 
algorithms such as random forests and bagging have shown potential in handling complex 
nonlinear relationships and have been applied in other medical prediction fields (Jin et al., 
2020). These developments provide technical possibilities for building more robust predictive 
models. 

In summary, although existing research provides a basic understanding and technical 
framework for arterial puncture, there is a lack of specialized and systematic exploration on 
the risk of failure in the first radial artery puncture for heart failure patients. This study aims 
to integrate HF clinical characteristics with established methodologies to systematically 
identify risk factors and construct a prediction model using both statistical and machine 
learning approaches.  
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1.4 Hypotheses and Research Design 

Based on the above, this study proposes the following hypotheses and research questions: 

Hypotheses: 

The risk of first-attempt radial artery puncture failure in HF patients is significantly 
associated with specific clinical indicators reflecting disease severity and pathophysiology, 
particularly tissue edema, respiratory rate, mean arterial pressure, and plasma albumin levels. 

Compared to using traditional logistic regression methods alone, predictive models 
constructed using ensemble machine learning algorithms such as Bagged Trees can capture 
more complex interactions and nonlinear relationships between variables, potentially 
exhibiting better discriminative performance (measured in AUC) on the validation set. 

Research question: 

What clinical and laboratory indicators that can be easily obtained from the medical records 
of HF patients are independent predictors of first-attempt radial artery puncture failure? 

What are the discriminability (AUC), calibration, and clinical applicability of a logistic 
regression model based on these predictors? 

Do ensemble machine learning models outperform logistic regression in this prediction task? 

This retrospective cohort study included data from eligible HF patients undergoing their first 
radial artery puncture. This design allowed systematic collection of potential predictors 
(including demographics, vital signs, laboratory tests, complications, etc.) linked to a clear 
outcome (first puncture success/failure). The sample was randomly split into training and 
validation sets (Rueda & Guzmán, 2020). Logistic regression was used on the training set to 
identify independent risk factors and build a model (Kuss & McLerran, 2007; Petoukhov & 
Tuukkanen, 2017), with performance evaluated on the validation set. Concurrently, multiple 
ensemble models were trained on the same data for comparison. This design enables testing 
of the specific risk factor hypotheses and exploration of different modeling methods for the 
same predictive problem. 

2. Data and Methods 

2.1 Research Object 

The sample size was estimated using the logistic independent variable event method (Riley et 
al., 2020). Accordingly, 789 inpatients from the Department of Internal Medicine at 
Dujiangyan Traditional Chinese Medicine Hospital were included, from April 2019 to August 
2025. The inclusion criteria were as follows: (1) age over 18 years; (2) diagnosis of HF 
confirmed via the first radial artery puncture after admission, supported by symptoms, signs, 
laboratory tests, and cardiac ultrasound. Patients were excluded if they met any of the 
following conditions: severe critical illness requiring ICU care, shock, sudden death, 
procedure failure due to patient refusal, or cases with incomplete data. 
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2.2 Data Collection and Predictor Screening 

Data for the first puncture attempt, including nursing notes, laboratory/imaging results, and 
clinical documentation, were retrieved from the hospital's Health Information System (HIS).  
Predictor screening involved applying frequency distribution analysis, independent samples 
t-tests, Chi-square tests, correlation analysis, and logistic regression to filter variables 
associated with procedural failure. Initial predictors included: age (years), sex (0<female> 
/1<male>), temperature situation (0<normal>\1<lower heat>\2<middle heat>\3<high heat>), 
body temperature (Celsius), arterial blood collection devices, heart rate (in times/min), brain 
natriuretic peptide (pg/mL), pulse rate, respiratory systolic pressure, diastolic pressure, pulse 
pressure difference, average arterial pressure, edema or not (0<no edema>/1<edema>), 
degree of edema (1<mild edema>\2<moderate edema> \3<severe edema>), atrial fibrillation 
during blood collection (0<none>/1<atrial fibrillation>), respiratory failure, pH value, carbon 
dioxide partial pressure, oxygen partial pressure, lactate, total protein, albumin, BNP, and 
NT-proBNP.  

2.3 Standardized Operation of Radial Artery Puncture 

The patient was placed supine with the forearm extended and supinated, supported by a towel 
roll under the wrist. The puncture site was selected at the point of maximal distal radial artery 
pulsation. The operator stabilized the artery with gentle middle-finger pressure, while the 
index finger was placed laterally to prevent slippage, especially in sclerotic vessels. A 
disposable arterial needle was inserted at a 25°–45° angle with the bevel facing cephalad. The 
angle was adjusted based on blood return. Successful first-attempt puncture was defined by 
aspiration of ≥2 ml of arterial blood; otherwise, it was considered a failure.  

2.4 Prediction Model Construction and Evaluation 

Using the Hold-Out method in Matlab 2024b, the sample was stratified into a training set 
(80%, n=631) and a validation set (20%, n=158) (Rueda & Guzmán, 2020). A predictive 
model was developed by screening for risk factors associated with initial puncture failure 
using logistic regression on the training data. Model verification included: 1) Comparing 
observed vs. predicted failure rates; 2) Calculating sensitivity, specificity, and the area under 
the ROC curve (AUC); 3) Assessing goodness-of-fit via the Hosmer-Lemeshow test, with the 
optimal classification threshold determined by maximizing Youden's index (Shiwakoti et al., 
2020). 

2.5 Statistical Methods 

Analyses were performed using Matlab 2024b (Petoukhov & Tuukkanen, 2017; Kuss & 
McLerran, 2007). Normally distributed continuous variables are presented as mean ± 
standard deviation (SD) and compared using Student's t-test. Skewed variables are presented 
as median (interquartile range, IQR) and compared using the Wilcoxon rank-sum test. 
Categorical variables are presented as counts (percentages) and compared using the 
Chi-square test. A logistic regression-based prediction model was built and evaluated using 
ROC and calibration curves, with AUC quantifying discrimination. Statistical significance 
was set at a two-sided P-value < 0.05. 
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3. Results 

3.1 Baseline Characteristics 

A comparison of baseline characteristics between the training and validation sets revealed no 
statistically significant differences for all relevant predictors (P > 0.05), confirming data 
homogeneity. Consequently, the validation set was deemed suitable for assessing the 
predictive efficacy of the developed model (Shiwakoti et al., 2020). Baseline characteristics 
are presented in Table 1. 

Table 1. Baseline comparison between the training and validation groups 

Variable  training group  validation group Z/t/χ2  P value 
 (631 cases) (158 cases)   
Age(years, Median(Range)) 78(27, 100) 78(42, 96) -0.219 0.827 
EF(EF value, M±SD) 55.99±12.07 56.31±12.58 -0.279 0.781 
BNP(type B brain natriuretic 
peptide, pg/ml, M±SD) 667.19±914.03 731.36±991.13 -0.589 0.556 
nt-BNP(NT-proBNP, pg/ml, 
M±SD) 4632.31±6868.39 4706.04±6378.32 -0.080 0.937 
af(atrial fibrillation during 
blood collection, M±SD) 0.21±0.41 0.17±0.37 1.263 0.207 
alb(albumin, M±SD) 35.48±4.96 35.02±5.44 1.009 0.313 
ap(mean arterial pressure, 
M±SD) 94.47±13.66 96.77±20.62 -1.328 0.186 
breath(breathe, M±SD) 23.60±3.06 23.78±3.33 -0.636 0.525 
coo(carbon dioxide partial 
pressure, M±SD) 45.04±16.93 44.80±15.59 0.162 0.871 
dp(diastolic pressure, M±SD) 76.23±12.65 77.43±12.10 -1.072 0.284 
ede(edema or not, M±SD) 0.44±0.50 0.41±0.49 0.805 0.421 
eded(edema degree, M±SD) 0.69±0.91 0.56±0.79 1.853 0.065 
la(lactate, M±SD) 1.62±0.97 1.63±0.88 -0.111 0.912 
oo(oxygen partial pressure, 
M±SD) 74.37±29.56 71.64±27.48 1.052 0.293 
ph(PH value, M±SD) 7.41±0.08 7.39±0.24 1.161 0.247 
pp(pulse pressure, M±SD) 54.72±18.63 58.02±51.81 -0.787 0.432 
rate(pulse rate, M±SD) 93.16±21.38 93.74±21.21 -0.308 0.758 
rf(respiratory failure or not, 
M±SD) 0.43±0.49 0.47±0.50 -1.096 0.273 
sbp(systolic blood pressure, 
M±SD) 130.96±21.71 135.45±52.65 -1.051 0.295 
sex(M±SD) 0.59±0.49 0.71±0.46 -2.764 0.026 
temp(body temperature, M±SD) 36.65±0.87 36.88±3.21 -0.905 0.367 
tempj(body temperature degree, 
M±SD) 0.20±0.62 0.19±0.55 0.271 0.786 
tp(Total Protein, M±SD) 63.60±24.25 62.99±9.70 0.491 0.624 
y(First arterial puncture success 
or not, M±SD) 0.20±0.40 0.19±0.39 0.188 0.851 

3.2 Data Preprocessing 

Missing values in the clinical dataset were imputed using the Expectation-Maximization (EM) 
algorithm. The algorithm ran for 15 iterations until convergence, generating a complete dataset, 
comparison reports, and data quality assessments, ensuring integrity for subsequent modeling. 
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3.3 Logistic Regression Prediction Model 

A logistic regression framework with feature engineering and dual-stage variable selection 
was implemented. The initial pool had 24 variables, including original measures and 
engineered features (interaction terms, log-transformations, composite scores, PCA 
components).  

The variable selection process employed a two-step strategy to balance model stability and 
interpretability. 1) Least Absolute Shrinkage and Selection Operator (LASSO) regression 
with 5-fold cross-validation performed initial feature screening by applying L1 regularization 
to compress coefficients of less informative variables toward zero. 2) Stepwise logistic 
regression with a p-value threshold of 0.1 was applied to the LASSO-selected variables, 
iteratively adding and removing features based on statistical significance. 

The final model, which included an intercept term, comprised 11 variables. These were 
selected based on having an inclusion frequency of at least 60% across the top-performing 
iterations. The model equation is: 
logit(P) = -0.4137 + (-0.0536 × sex) + (0.1017 × heart rate) + (-0.0959 × edema duration) + 
(0.0433 × left atrial size) + (0.0751 × albumin) + (0.0399 × log10(BNP+1)) + (0.0630 × age× 
BNP) + (0.0647 × heart rate × respiration) + (-0.0698 × systolic-diastolic pressure ratio) + 
(0.1507 × ejection fraction× log10BNP) + (0.0448 × respiratory), 

where the probability of arterial puncture failure P = exp(logit) / [1 + exp(logit)]. Two 
variables were statistically significant (p<0.05): edema duration (β = -0.0959, OR = 0.9085, p 
= 0.0160) and the interaction between ejection fraction and log-transformed BNP (β = 0.1507, 
OR = 1.1627, p = 0.0371). Full model details are in Table 2. 

Table 2. Stepwise regression analysis of predictors for radial artery puncture failure 

Incorporating 
variable 

Estimated 
value 

Standard 
error 

t value Odds 
Ratio 

OR lower 
bounds 

OR upper 
bounds 

Wald P value

Intercept -0.4137  0.1013  -4.0828 --- 0.6612 0.6612  16.6689  --- 
sex -0.0536  0.1004  -0.5341 0.9478 0.7785 1.1539  0.2852  0.1250
rate 0.1017  0.2231  0.4556 1.1070 0.7149 1.7143  0.2076  0.3393
eded -0.0959  0.1079  -0.8892 0.9085 0.7354 1.1224  0.7907  0.0160
la 0.0433  0.0973  0.4450 1.0442 0.8630 1.2635  0.1980  0.2463
alb 0.0751  0.1138  0.6599 1.0780 0.8625 1.3472  0.4355  0.0687
log₁₀(BNP+1) 0.0399  0.1724  0.2316 1.0407 0.7423 1.4592  0.0536  0.5503
age×BNP 0.0630  0.1940  0.3247 1.0650 0.7281 1.5579  0.1054  0.2867
rate×breath 0.0647  0.1785  0.3623 1.0668 0.7518 1.5138  0.1313  0.5447
sbp×dp_ratio -0.0698  0.1075  -0.6492 0.9326 0.7554 1.1513  0.4215  0.0866
EF×BNP 0.1507  0.1221  1.2345 1.1627 0.9152 1.4771  1.5239  0.0371
rf_PC1 0.0448  0.0816  0.5492 1.0458 0.8913 1.2272  0.3016  0.3231

3.4 Model Validation  

Performance was evaluated via a 50-repeat holdout validation (80% training/20% testing). 
The model showed fair discriminative ability with an average AUC of 0.693 (±0.033), high 
specificity (95.59% ± 2.55%), but relatively low sensitivity (31.88% ± 13.98%). Other 
metrics included balanced accuracy of 79.49% (±1.68%), the positive predictive value 
71.73% (±3.14%), the F1-score reached 42.82% (±12.07%), Brier score 0.194 (±0.008), and 
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the Matthews Correlation Coefficient 0.375 (±0.080). The Hosmer-Lemeshow test indicated 
no significant difference between predicted and observed event rates (p > 0.05). The optimal 
classification threshold, determined by maximizing Youden's index, was identified at a 
predicted probability of 0.658, with a sensitivity of 84.7% and specificity of 67.8% in the 
training cohort. The ROC curve is shown in Figure 1. For comparison, a model excluding 
BNP/NT-proBNP performed worse (Figure 2). 

 

Figure 1. ROC curves of the final logistic regression prediction model    

 

Figure 2. ROC curves of a model excluding BNP and ntBNP variables 

3.5 Ensemble Learning Models 

To improve predictive performance beyond conventional statistical approaches, we employed 
multiple ensemble machine learning algorithms such as Random Forest, AdaBoost, Bagged 
Trees, and RUSBoost. The study dataset comprised 456 clinical samples with 22 predictor 
variables, demonstrating significant class imbalance with 340 negative cases (class 0) and 
116 positive cases (class 1) for the target outcome. 

The ensemble models were implemented using MATLAB's classification ensemble functions 
(TreeBagger for Random Forest and fitcensemble for others). Model configurations varied: 
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Random Forest employed 100 trees with bootstrap aggregation, AdaBoost utilized 200 
estimators with a learning rate of 0.1, Bagged Trees implemented 100 cycles with full 
bootstrap resampling, and RUSBoost incorporated 200 cycles with random under-sampling to 
address class imbalance. The dataset was partitioned into a training set (70%, n=320) for 
model development and an independent test set (30%, n=136) for unbiased validation, with a 
fixed random seed ensuring methodological reproducibility. 

Comparative analysis revealed that Bagged Trees achieved the highest discriminative 
performance (AUC = 0.6533), followed by Random Forest (AUC = 0.6214), RUSBoost 
(AUC = 0.6 192), and AdaBoost (AUC = 0.5750). The Bagged Trees model demonstrated 
moderate accuracy (73.53%) on the test set, though its sensitivity (5.56%) and F1-score 
(0.1000) were suboptimal, primarily due to challenges in identifying positive cases within 
this imbalanced clinical dataset. While these ensemble methods did not exhibit severe 
overfitting typically associated with complex algorithms on limited clinical data, their modest 
AUC values (0.575-0.653) suggest room for improvement in predictive capability. 

Feature importance analysis derived from the Random Forest model (Figure 3) identified 
diastolic pressure (dp, 0.3194), heart rate (rate, 0.2940), edema (ede, 0.1911), oxygenation 
(oo, 0.1769), and respiratory rate (breath, 0.1700) as the most influential predictors. These 
physiological parameters align with established clinical knowledge regarding cardiovascular 
and respiratory determinants of patient outcomes, though their moderate predictive 
importance scores (0.016-0.319) suggest that outcome variability is distributed across 
multiple clinical factors rather than dominated by single predictors. 

 

Figure 3. Feature importance ranking from the Random Forest model 

Table 3. Predictive performance of ensemble learning models on the validation set 

Model Accuracy AUC F1-Score Precision 
Random Forest 0.7206 0.6214 0.0500 0.2500 

AdaBoost 0.6985 0.5750 0.1961 0.3333 
Bagged Trees 0.7353 0.6533 0.1000 0.5000 

RUSBoost 0.6324 0.6192 0.4444 0.3704 
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Figure 4. Summary of performance metrics for the four ensemble learning models 

4. Discussion 

This study developed and compared models to predict first-attempt radial artery puncture 
failure in HF patients. The logistic regression model identified clinically interpretable risk 
factors and demonstrated fair predictive performance. In contrast, the best-performing 
ensemble model (Bagged Trees) showed slightly higher discriminative ability on the 
validation set but exhibited signs of overfitting and very low sensitivity. This suggests that 
while ensemble machine learning methods hold potential for capturing complex relationships, 
their clinical utility in this specific context with the current dataset may be limited compared 
to more interpretable traditional models. 

4.1 Identified Risk Factors and Pathophysiological Links 

The risk factors identified are closely tied to HF pathophysiology, providing plausible 
mechanisms for their impact: 

4.1.1 Edema Degree 

Tissue edema is a common sign in heart failure patients, and its severity (OR = 0.9085) was 
associated with an increased risk of puncture failure. Tissue edema from volume overload can obscure 
anatomical landmarks and weaken arterial pulsation, increasing the difficulty of arterial puncture. 

4.1.2 Rapid Respiration 

A clinical dilemma arises from the need for a supine position during arterial puncture in heart 
failure patients with tachypnea (OR = 0.918), a marker of decompensation. This position 
contradicts the patient's instinct to sit up to ease respiratory distress. The increase in cardiac 
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preload and resultant involuntary muscle tension and movement associated with lying 
flat compromise operator stability and success. 

4.1.3 Decreased Mean Arterial Pressure 

Lower blood pressure (OR = 1.073) may reflect reduced cardiac output or circulating blood 
volume. Under these conditions, radial artery filling decreases and the lumen narrows, 
increasing the difficulty of accurately entering the vascular space with the puncture needle. 
The cardiac output, effective blood volume, and peripheral resistance are all related to blood 
pressure (Serenelli et al., 2020).  

4.1.4 Reduced Plasma Albumin 

Hypoalbuminemia (OR = 1.078) is often associated with a state of malnutrition in heart failure 
patients. Hypoalbuminemia, common in HF due to malnutrition and cachexia, lowers plasma 
oncotic pressure, exacerbating tissue edema at the puncture site and increasing 
difficulty  (Wada et al., 2019). The plasma albumin decreased, and the subcutaneous tissue 
edema at the puncture site increased accordingly, which increased the difficulty of the puncture. 

4.1.5 Interaction Between EF And Log(BNP) 

This significant interaction suggests a complex interplay between cardiac systolic function (EF) 
and neurohormonal activation (BNP). The combined effect may influence vascular tone, fluid 
status, and patient stability in ways that affect puncture success more than either factor alone. 

4.2 Comparison of Modeling Approaches  

This study highlights the trade-off between interpretability and potential predictive power. 
The logistic regression model offers clear odds ratios and confidence intervals, facilitating 
clinical understanding and potential integration into simple decision rules. The ensemble 
models, particularly Bagged Trees, achieved a marginally higher AUC but functioned as 
"black boxes" with poor sensitivity. Their performance, coupled with the risk of overfitting 
on limited clinical data, suggests that for this specific problem and dataset, the gain in 
discrimination may not justify the loss of interpretability and reliability. Future work with 
larger datasets might better realize the potential of these complex algorithms. 

4.3 Clinical Translation and Application Prospects of the Models 

The core value of this predictive model lies in enabling pre-procedural risk assessment. For 
patients identified as high-risk by the model, clinicians can implement interventions in 
advance, such as: optimizing heart failure treatment to improve the patient's overall condition 
(e.g., reducing edema, raising blood pressure); providing appropriate sedation or reassurance 
before puncture to reduce anxiety; or directly considering alternative puncture sites (e.g., 
femoral artery) to avoid the complications and patient distress associated with first-attempt 
radial artery puncture failure. This contributes to advancing radial artery puncture from an 
experience-based procedure towards a more precise and individualized one. 

This study is retrospective. The present study has limitations in three key aspects. The 
constructed model does not account for local anatomical factors such as vessel compliance 
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and perivascular fat. Furthermore, its development relies on a dataset of limited size without 
external validation, which restricts its potential for widespread implementation (Jin et al., 
2020). Regarding the analytical approach, the random split-sample validation used may be 
less reliable than resampling techniques, and the data processing in Matlab did not facilitate 
the creation of visual model aids for clinicians (Zhang et al., 2021). 

To advance this work, prospective and multi-center investigations with larger cohorts are 
warranted. Future models will seek to incorporate novel predictors such as arteriosclerosis 
metrics and evaluate the role of TCM pulse diagnosis. The validation framework will be 
strengthened by comparing various data partitioning techniques and by adding an essential 
external validation step (Liu et al., 2020). Furthermore, we intend to employ advanced statistical 
software (e.g., R) to create user-friendly visualizations of the model, such as nomograms or 
digital tools (Zhang et al., 2021). These concerted efforts are expected to refine the model's 
accuracy (sensitivity/specificity) and its applicability in personalizing clinical procedures. 

5. Conclusion 

This study identified edema degree, rapid respiration, lower blood pressure, 
hypoalbuminemia, and an interaction between EF and BNP as key factors associated with 
first-attempt radial artery puncture failure in HF patients. A logistic regression model based 
on these factors provided a fair and clinically interpretable prediction tool. Ensemble learning 
models showed modest potential but without clear superiority in this context. The developed 
model can aid in pre-procedural risk stratification, paving the way for more individualized 
and precise clinical procedures to improve patient comfort and procedural efficiency. 
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