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Abstract 

Plant-soil microbial feedback loops play an important role in the establishment and 

development of plant communities. Microbial soil communities, including pathogens, 

plant-growth-promoting rhizobacteria and their reciprocal interactions, can influence plant 

health and nutrient cycling in many ways. We are proposing a model that accounts for 

cheatgrass (Bromus tectorum) invasion success and long-term persistence in both disturbed 

and undisturbed sites. In this model cheatgrass alters soil microbial communities that favor 

nitrifying microorganisms, resulting in elevated NO3
- 
levels. Increased NO3

-
 levels, coupled 

with B. tectorum life history and climatic and edaphic conditions in the semi-arid western 

U.S., result in long-term persistence of this invasive annual. In ecosystems that lack major 

precipitation during the growth season, B. tectorum induced shifts in the nitrifier community 

result in accumulation of plant available nitrogen during the summer when native perennials 

are primarily dormant. Increased NO3
-
 levels can be efficiently utilized by cheatgrass ahead 

of native perennials during fall and winter. Restoration and management efforts must be 

guided by a thorough understanding of soil microbe-cheatgrass interactions to avoid nutrient 

flushes resulting from freeze-thaw and wet-dry cycles that benefit this invasive grass. 
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1. Introduction  

Alien invasive species pose an ever-increasing worldwide problem and have the potential to 

change plant community composition, nutrient cycling, soil properties, plant productivity and 

even human health ( Eviner et al., 2010; Mack et al., 2000). In this paper we propose the 

potential involvement of the microbial community in successful plant invasion. Bromus 

tectorum has been introduced into the western U.S. in the late 1800s and has since invaded 

millions of hectares in the Intermountain West of the U.S. (Belnap & Phillips, 2001; Eviner et 

al., 2010; Hulbert, 1955). Cheatgrass is a winter annual that germinates in the fall through 

spring and completes seed maturation in June, ahead of most perennial grasses. It is usually 

completely senesced by the end of June (Klemmedson & Smith, 1964; Mack & Pyke, 1983; 

Thill et al., 1984).  

Often physiological properties and the life history of B. tectorum and its interactions with soil 

abiotic components are used to explain its success as a persistent invader (Belnap & Phillips, 

2001; Hulbert, 1955; Norton et al., 2004; Thill et al., 1984). Furthermore, an increase in the 

fire cycle induced by cheatgrass has been implicated in supporting invasion (D’Antonio & 

Vitousek, 1992). However, these parameters do not completely explain the long-term success 

of cheatgrass as a dominant invasive species in western rangelands. How would we, for 

example, explain the lack of successional progression and re-colonization by native plants in 

sites that are not affected by frequent fire cycles and that experience wet periods during late 

spring and summer – conditions that should favor the establishment of perennial species? 

Interestingly Klironomos (2002) points out that competition, resource partitioning, dispersal 

ability and predation tolerance are not sufficient indicators to account for relative abundance 

of plant species at the community level. He argues that plants have the ability to structure soil 

biota that in turn have the ability to regulate plant community structure. 

2. Plant-Soil Microbial Community Interactions 

Soil microorganisms are an integral part of ecosystems and play a central role in nutrient 

cycling. They have been in the past mostly neglected as a direct player in plant soil 

interactions. A surprising fact given that one gram of soil can contain 10
9
 microbes with at 

least 10,000 different species (Gans et al., 2005). Plants and soil biota are linked through 

intricate feedback mechanisms that can manifest themselves in positive or negative ways 

(Wardle et al., 2004). Several studies have shown that plant community composition can 

change the soil microbial composition (Bardgett et al., 1999; Grayston et al., 1998, 2001; 

Innes et al., 2004; Porazinska et al., 2003). Conversely, microorganisms can enhance plant 

growth as in the case of mutualistic symbionts and plant-growth-promoting bacteria, or 

impact plants in a negative manner as in the case of plant pathogens (Griffiths et al., 1999; 

Lugtenberg & Kamilova, 2009; Mabood et al., 2008; Rudrappa et al., 2008).  

More specifically, in the case of B. tectorum Bolton et al. (1993) noted an increase in 

culturable soil heterotrophs, actinomycetes and fungi in a cheatgrass invaded Great Basin 

shrub-steppe community. In a southwestern Utah grassland community Belnap and Phillips 

(2001) observed an increase in both soil fungal numbers and species in B. tectorum invaded 

sites. In a later study utilizing molecular biology tools Hawkes et al. (2006) described a shift 
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from Glomus spp. mycorrhizal fungi to saprophytic and pathogenic genera in the invaded 

sites. In a different location Kuske et al. (2002) analyzed soil microbial communities with 

terminal restriction fragment analysis and identified distinct bacterial communities between 

biological soil crust covered soils, native grass communities and cheatgrass invaded sites. 

Nutrient cycling has also been shown to be impacted by B. tectorum invasion. Total soil 

nitrogen and extractable nitrogen has been found to increase in several studies (Belnap et al., 

2005; Blank, 2008; Bolton et al., 1990, 1993; Booth et al., 2003; Hooker et al., 2008; Norton 

et al., 2004; Stark & Norton, 2015), although Svejcar and Sheley (2001) observed no change. 

Looking at the individual nitrogen ions NH4
+
 and NO3

-
, cheatgrass invaded sites ranged from 

increased soil concentrations to no change to decreased amounts (Adair and Burke, 2010; 

Belnap et al., 2005; Blank, 2008; Booth et al., 2003; Evans et al., 2001; Hooker et al., 2008; 

Norton et al., 2004; Stark & Norton, 2015; Svejcar & Sheley, 2001).  The observed 

variability can be due to different sampling methods and sampling dates. For example, soil 

NO3
-
 levels have been shown to vary throughout the year and peak during summer (Adair and 

Burke, 2010; Booth et al., 2003; Hooker et al., 2008; Svejcar & Sheley, 2001). 

3. Invasion Success of Bromus tectorum and Below-Ground Interactions 

How can plant-soil microbial interactions be relevant to invasion of western U.S. lands by B. 

tectorum? In addition to physiological and phenotypic traits cheatgrass interacts with soil 

microbial communities inducing shifts in microbial populations (Figure 1). Plants provide 

carbon rich nutrient sources to the soil microbial community in the form of root exudates, 

sloughing off of root cells and root hair death (Hartmann et al.. 2009; Mabood et al., 2008). 

Besides supplying carbon rich compounds, plants release antimicrobial metabolites in their 

exudates that can be species specific (Dakora & Phillips, 2002; Griffiths et al., 1999). 

Therefore, plants may be able to engineer site conditions utilizing soil microbes to provide 

positive feedbacks. Although these potential plant microbe interactions have not been 

specifically investigated in B. tectorum dominated communities, the observed changes in 

microbial communities, when compared to native grass and shrub associations, support the 

hypothesis of cheatgrass soil microbe interactions (Belnap & Phillips, 2001; Bolton et al., 

1993; Booth et al., 2003; Hawkes et al., 2006). Klironomos (2002) suggested a release from 

microbial pathogens as a potential mechanism for the success of invasives. This has also been 

proposed to play a role in cheatgrass invasions and may find support in the observation that 

cheatgrass was found to have less fungal infections than native grasses (Belnap & Phillips, 

2001). Another potential mechanism, that is not necessarily exclusive from a proposed 

pathogen release hypothesis, is the association of plants with plant-growth-promoting 

rhizobacteria that colonize the rhizosphere and protect plant roots from pathogenic 

microorganisms through competition with pathogenic bacteria or result in induced systemic 

resistance in plants (Lugtenberg & Kamilova, 2009). Specific plant microbe associations can 

be the result of root exudate composition unique to plants benefitting from interactions with 

plant-growth-promoting bacteria. Interestingly, cheatgrass invasion has been found to 

increase fungal numbers, fungal species and actinomycetes (Belnap & Phillips, 2001; Bolton 

et al., 1993). Besides being involved in the detritus decomposer chain, actinomycetes have 

members, such as the streptomycetes, that produce a variety of antibiotics and have also been 
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implicated in the induction of plant defenses (Mabood et al., 2008, Tarkka et al., 2008). 

 

Figure 1. Belowground feedbacks driven by Bromus tectorum invasion. Belowground 

microbial communities are engaged in an intricate feedback network with each other and 

plants in the aboveground domain. The feedback interactions can be positive (+) as in the 

case of plant growth promoting rhizobacteria, neutral, or negative (-) as with pathogens. 

Cheatgrass invasion can drive belowground changes in microbe communities through dead 

root mass or root exudates. Altered belowground communities may exert direct negative 

feedbacks (-) on perennial shrubs and bunchgrasses or have indirect effects through 

modification of communities supporting perennial plant establishment and survival. 

An increase in total soil nitrogen has been described in the majority of studies looking at the 

impacts of B. tectorum invasion. Looking at changes in the individual soil available nitrogen 

forms NH4
+
 and NO3

-
 the picture becomes more complex, though. The increase in NH4

+
 

observed in some studies, together with increased nitrogen mineralization rates indicate a 

positive response by microbial populations to additional plant mass provided through 

cheatgrass invasion with subsequent increase in ammonification. Bromus tectorum invasion 

changes land cover from intermittent plant cover by shrubs and bunchgrasses with bare, or 

biological soil crust covered interspaces to a homogeneous annual grass cover. Belnap and 

Philips (2001) have observed an increase in aboveground plant litter by a factor of 2.2 to 2.8 

in semi-arid grasslands invaded by B. tectorum. Although nutrient input from leaf litter 

composition is considered to be negligible in arid and semi-arid environments (Austin & 

Vivanco, 2006; Collins et al., 2008) cheatgrass provides a large root mass  that is turned 

over on an annual basis (Belnap & Phillips, 2001; Norton et al., 2004). Decomposable 

organic matter in the form of cheatgrass roots provides soil microbial communities with 
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increased substrate availability for mineralization that subsequently becomes available as 

NH4
+
. Observed increases in bacterial biomass, bacterial heterotrophs, actinomycetes and soil 

fungi support this hypothesis. Actinomycetes can break down complex polymers such as 

chitin and lignin and members of this group have been shown to mediate infections by plant 

pathogens while other actinomycetes show plant protecting properties through the induction 

of plant resistance (Schrey & Tarkka, 2008). The increase of acidobacteria observed by 

Kuske et al. (2002) is of similar interest. Although the phylum acidobacteria has only recently 

been described and very little information is available about this bacterial group, its members 

are primarily found in soil and appear to be involved in the cycling of complex substrates 

such as cellulose and chitin and have been postulated to be able to tolerate fluctuations in soil 

water content (Ward et al., 2009). Cheatgrass has been shown to form a dense shallow, very 

fine root system (Belnap & Phillips, 2001; Norton et al., 2004) and the roots display a 

relatively high C:N ratio comparable to native perennials (Blank, 2008; Evans et al., 2001; 

Paschke et al., 2000, Svejcar & Sheley, 2001). Despite its high lignin content (Evans et al., 

2001) this root mass provides nutrients for the detritus food chain, especially organisms such 

as fungi and actinomycetes, that can readily utilize recalcitrant plant material (Ward et al., 

2009; Schrey & Tarkka, 2008; Sylvia et al., 2005). Several studies have shown that the 

carbon and nitrogen content of B. tectorum roots is similar to native perennial grasses and 

shrubs and can, therefore, serve as a suitable substrate for mineralization (Evans et al., 2001; 

Monaco et al., 2003; Paschke et al., 2000). Furthermore, the alkaline conditions in arid and 

semi-arid lands of the western U.S. favor high oxidative enzyme potentials (Collins et al., 

2008). Oxidative soil enzymes are excreted by soil microorganisms and facilitate the 

breakdown of organic matter in arid soils at water potentials that would restrict microbial 

activity. 

The above described mechanisms result in elevated soil NH4
+
 levels. Why do we then not see 

a consistent increase in NH4
+
 as a result of cheatgrass invasion? Three possible scenarios can 

account for this. Ammonium uptake by plants or microorganisms, NH4
+
 volatization or 

nitrification. Little information about NH4
+
 utilization by sagebrush steppe plant communities 

is available. Ammonium volatization can be significant in alkaline soils because ionic NH4
+
 is 

transformed into gaseous NH3 at high pH (Schlesinger et al., 1990). We would like to argue 

that the major route for NH4
+
 consumption in cheatgrass invaded sites is through nitrification. 

This hypothesis is supported by findings of increased soil NO3
-
 levels, especially during the 

summer when cheatgrass has senesced and perennial grasses are dormant due to lack of 

precipitation and, therefore, increased NO3
-
 cannot be utilized by plants and is left 

accumulating in the soil. Hawkes et al. (2005) have found that exotic annual grasses grown in 

field plot experiments in California doubled nitrification rates compared to native grasses and 

forbs. This increase in nitrification was accompanied by the development of distinct 

ammonia-oxidizing bacteria communities in soils with exotic annuals compared to natives 

and bare soil. Nitrification of NH4
+
 to NO3

-
 is a two-step process that involves the production 

of NO2
-
 by ammonia oxidizing bacteria (AOB) which in turn serves as substrate for nitrite 

oxidizing bacteria (NOB) that produce NO3
-
 (Figure 2). Both bacterial groups are 

chemolithoautotrophs of oxygenic environments that utilize the inorganic nitrogen 

compounds as energy sources and CO2 as their carbon source (Prosser, 2011; Starkenburg et 
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al. 2011). The combination of alkaline soils in the western U.S. and biomass input from 

cheatgrass invasion form an advantageous environment for nitrifiers. Norton and et al. (2004) 

described reduced bulk density of cheatgrass invaded soils and Kyle et al. (2007) 

demonstrated that B. tectorum cover is negatively related to soil compaction, but not with 

native plant cover. This would favor gas exchange and provide a favorable O2 and CO2 

environment for AOBs and NOBs. Furthermore, the alkaline environment of the soils does 

serve as a buffer system for the nitrification process, which liberates protons. Acidic 

environments have been shown to inhibit nitrifiers (Prosser, 2011; Starkenburg et al. 2011). 

Differences in soil characteristics may also explain differences in NO3
-
 levels found in the 

field. Ammonium can be adsorbed at negative mineral surfaces as found for example in clays, 

leading to local accumulation of NH4
+
 (Prosser, 2011). This together with the finding that 

AOBs form biofilms on the surface of soil particles can provide natural “nitrification 

reactors”, where the efficient coupling of NO2
-
 oxidation between AOBs and NOBs occurs in 

a capsular matrix that hosts both bacterial groups (Starkenburg et al., 2011). Kindaichi et al. 

(2004) have shown a close spatial association of nitrifying bacteria and heterotrophic bacteria 

in biofilms, forming a spatially coupled system for oxidation of  NH4
+
 to NO3

-
. It is 

conceivable that nitrifier-heterotroph aggregates do exist on soil particles and plant root 

surfaces similar to biofilms formed by plant-growth-promoting rhizobacteria and pathogens 

(Bais et al., 2006; Lugtenberg & Kamilova, 2009). Nitrifying bacteria could be accumulated 

and primed by B. tectorum roots through the interaction with root exudates. A direct and 

specific interaction can occur through low molecular organic substrates. Although both AOBs 

and NOBs have been considered to be obligate chemolithoautotrophs, recent evidence is 

accumulating that they can utilize organic compounds for growth, albeit at much lower 

growth rates than with NH4
+
 or NO2

-
 (Sayavedra-Soto & Arp, 2011; Starkenburg et al., 2011). 

The utilization of organic substrates is interpreted as a survival strategy during low 

availability of inorganic nitrogen. Primed nitrifier-heterotroph communities would then be in 

place within the cheatgrass rhizosphere to mineralize dead root matter and turn it into NO3
-
 

upon plant senescence. An argument that would speak against this scenario is the depletion of 

soil moisture towards the end of spring and early summer that, besides restricting plant 

growth, may negatively affect bacterial activity. However, Davidson et al. (1990) have shown 

nitrification activity down to a water potential of – 1.5 MPa in a California annual grassland. 

Also of interest is the recent finding that prokaryotes of the domain Archaea have the ability 

to oxidize NH4
+
 and have been implicated as major contributors to nitrogen cycling (Urakawa 

et al., 2011). They have the ability to utilize heterotrophic carbon sources similar to AOB. It 

is intriguing to note that Archaea are best known for inhabiting extreme environments, from 

hot geothermal springs to haline soils. The NO3
-
 thus accumulated in arid and semi-arid sites 

during the summer will be available for cheatgrass seedlings in the fall and spring when 

favorable soil water conditions allow for germination and seedling establishment. 
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Figure 2. Effects of B. tectorum invasion on nitrogen cycling. The additional biomass 

provided by cheatgrass roots is being turned over on an annual basis, providing substrate for 

nitrifiers in the form of NH4
+
. Abiotic, edaphic conditions and B. tectorum-soil microbe 

interactions favor nitrifiers and result in increased NO3
-
 production. 

Wet-dry cycles can also increase nitrogen cycling. Saetre and Stark (2005) have shown that 

re-wetting of soils in the Intermountain West increases NO3
-
 under cheatgrass to a much 

greater extent than under sagebrush. In the spring B. tectorum may benefit from nitrogen 

flushes due to freeze-thaw cycles that have been demonstrated in alpine environments 

(Lipson et al., 1999). Bilbrough and Caldwell (1997)  have shown that cheatgrass can 

exploit spring time nitrogen pulses in a Great Basin environment. Although Pseudoroegneria 

spicata, and to a lesser extent Artemisia tridentata ssp. vaseyana, were also able to benefit 

from nitrogen pulses their response set in much later compared to B. tectorum. Therefore, 

cheatgrass appears to be able to utilize spring-time nitrogen pulses more efficiently than 

native vegetation.  

The coupling of cheatgrass establishment, senescence, and NO3
-
 accumulation results in a 

positive feedback between B. tectorum and the soil microbial community. It is of interest that 

cheatgrass does not show an expansion in the Great Plains region that is as dramatic as in the 

Intermountain West and infestations remain very limited to heavily disturbed sites (Bradford 
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& Lauenroth, 2006). The explanation for this could be the fact that warm season grasses 

dominate in the Great Plains region. Elevated summer NO3
-
 would most likely be utilized by 

warm season grasses that are in their peak growth season during this time in the Great Plains.  

Changes in microbial communities as a result of cheatgrass invasion can alter the 

competitiveness of B. tectorum with native bunchgrasses and shrubs and provide an 

explanation for the observations of cheatgrass invading sites with no apparent or documented 

anthropogenic disturbance. In this scenario cheatgrass may take advantage of increased 

nutrient and water availability by colonizing islands of fertility, using shrubs and 

bunchgrasses as nurseries. Spatial differences in nutrient distribution within perennial 

shrub-grass communities have been documented (Schlesinger et al., 1996). Ibañez and 

Schupp (2001) have found a positive effect of Artemisia tridentata on seedling establishment 

of Cercocarpus in dry years, but not in wet years with sagebrush seemingly acting as a 

nursery shrub. However, the nursery effect is variable and may be dependent on the species 

involved. For example, a study looking at seedling establishment and survival of Agropyron 

desertorum and Pseudoroegneria spicata under sagebrush showed a negative interaction 

(Huber-Sannwald & Pyke 2005). Once established in the vicinity of shrubs cheatgrass can 

re-engineer soil site conditions in its favor through modification of the soil microbial 

communities, while at the same time orchestrating negative feedbacks between the soil biota 

and perennial species leading to the subsequent demise of perennials. Hawkes et al. (2006)  

have documented a shift from arbuscular mycorrhizal fungal Glomus species to the 

saprophytic and pathogenic fungi Alternaria, Phoma, and Sporobolomyces in cheatgrass 

invaded grasslands. Once locally established, cheatgrass modifies soil conditions from the 

colonization centers radiating out into adjacent areas not covered by vegetation through 

belowground plant-microbe interactions, providing the conditions for subsequent expansion. 

Competing bunchgrasses are gradually displaced through competition for resources.  

4. Lessons for Rangeland Rehabilitation 

A thorough understanding of plant-soil microbe interactions is not only essential for 

understanding resistance, resilience and changes in ecosystems, but will also assist land 

managers in rehabilitation efforts of invaded areas. The interactions described above may 

help to understand the continued success of cheatgrass as well as challenges encountered with 

rehabilitation projects targeting B. tectorum invaded sites. Approaches to rehabilitate areas 

invaded by cheatgrass and other invasives have included the addition of carbon in the form of 

sugar, straw, sawdust, mulch, biochar or activated charcoal (Beckstead & Augspurger, 2004; 

Kulmatiski, 2011; Mazzola et al., 2008; Ohsowski et al., 2012, Paschke et al., 2000). The idea 

behind these applications is that added carbon immobilizes nitrogen in soil bacteria by 

increasing the C/N ratio (Perry et al., 2010). This approach, though, has not always been 

successful in long-term restoration of native or non-native perennials and studies using 

woodchips from masticated pinyon-juniper woodland even resulted in increased B. tectorum 

cover (Mazzola et al., 2008; Owen et al. 2009). The timing of carbon applications is crucial 

since nitrogen accumulated in soil microbes can be released by freeze-thaw or wet-dry cycles 

resulting in nutrient flushes that, if superimposed on cheatgrass active growth periods, could 

foster the growth of this invasive instead of decreasing it. Pulsed application of carbon in the 
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form of sugar has been shown to result in the death of half of the microbial biomass within 20 

days. The decline in microbes was likely due to the carbon pulse breaking dormancy of soil 

microorganisms that subsequently died due to nutrient exhaustion (Wu et al.,  1993). This 

finding may point at the need of continuous low level carbon addition in order to be effective 

in immobilizing nitrogen long-term. This hypothesis may be supported by the fact that 

sucrose applications spread out evenly from April to October resulted in successful 

restoration of short-grass steppe in Colorado (Paschke et al., 2000). 

Another approach for controlling B. tectorum invasion is the use of cheatgrass-specific 

pathogens. If cheatgrass has evaded its natural pathogens with the invasion of new territory 

the introduction of specific pathogens can restore the competitiveness of native species. 

Promising research has shown the potential of Pseudomonas fluorescens D7 to reduce root 

growth in B. tectorum while not in most other species tested (Kennedy et al., 2001). Meyer et 

al. (2008) have investigated three pathogens – head smut (Ustilago bullata), chestnut bunt 

(Tilletia fusca), and black-fingers-of death (Pyrenophora semeniperda) - in order to explore 

their ability to selectively attack B. tectorum seeds or seed production. An approach targeting 

cheatgrass seeds can be used in conjunction with other control and restoration efforts to 

deplete the cheatgrass seedbank. However, a thorough understanding of potential effects of 

introduced microbes on the overall ecosystem function is necessary since risks exist with this 

kind of control approach (Van der Putten et al., 2007). A chemical intervention, although 

indirect, could be the application of the agricultural ammonia oxidation inhibitor nitrapyrin, 

although its efficacy needs to be tested in rangeland environments, since it was shown that 

biofilm formation reduces its effect (Prosser, 2011; Sayavedra-Soto & Arp, 2011).  

5. Conclusions and Outlook  

We are currently in the descriptive phase for understanding microbial soil communities and 

their interactions with plants. In order to extend our knowledge to the functional level we need 

to develop approaches that tie functional measurements to microbial identities. Past 

approaches at this were limited to microorganisms that can be isolated and maintained in 

culture. New DNA-based approaches have extended our reach beyond non-culturable 

organisms and these activities need to be linked to functional analyses in order to gain a 

framework for soil microbe-plant interactions and the players involved. Such a framework will 

enable us to describe, analyze and predict soil microbe-plant interactions driven by plant 

invasions and will provide scientists and managers with the tools to better manage 

invasion-prone environments as well as target microbe-plant interactions for rehabilitation 

purposes. We suggest that B. tectorum invasion in the western U.S. modifies the soil 

microbial composition and nitrogen cycles in its favor. Cheatgrass interacts with soil 

microbes to change nitrogen cycling with the result of increased NO3
-
 due to positive 

interactions with nitrifying bacteria. Bromus can capitalize on increased NO3
-
 levels in the 

fall, as well as on nitrogen pulses in the spring time because its life history is synchronized 

with the timing of these events. Furthermore, B. tectorum may interact more directly with the 

soil microbial communities by benefiting from plant-growth-promoting rhizobacteria, release 

from pathogens, and/or feedbacks with the soil microbial community to develop negative 

feedbacks, such as reduction in arbuscular mycorrhizal fungi, for native plant species. These 
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hypotheses are testable and may spur future research into the interaction between B. tectorum 

and soil microbes and its role as a successful invader in the western US. The insights into 

cheatgrass-soil microbe-native plant interactions also allows for fine-tuning existing 

management approaches. 
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C: carbon 
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O2: oxygen 
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-
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-
: nitrite ion 
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