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Abstract 

The effects of mean ability difference (MAD) and short tests on the performance of various 
DIF methods have been studied extensively in previous simulation studies. Their effects, 
however, have not been studied under multilevel data structure. MAD was frequently observed 
in large-scale cross-country comparison studies where the primary sampling units were more 
likely to be clusters (e.g., schools). With short tests, regular DIF methods under MAD-present 
conditions might suffer from inflated type I error rate due to low reliability of test scores, which 
would adversely impact the matching ability of the covariate (i.e., the total score) in DIF 
analysis. The current study compared the performance of three DIF methods: logistic 
regression (LR), hierarchical logistic regression (HLR) taking multilevel structure into account, 
and hierarchical logistic regression with latent covariate (HLR-LC) taking multilevel structure 
into account as well as accounting for low reliability and MAD. The results indicated that 
HLR-LC outperformed both LR and HLR under most simulated conditions, especially under 
the MAD-present conditions when tests were short. Practical implications of the 
implementation of HLR-LC were also discussed.  
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1. Introduction 

Measurement invariance (MI) is one of the most important aspects of item validity (Millsap, 
2011). Examination of MI detects unfavorable effects of secondary factors due to group 
membership on the performance of the studied item measuring the target ability. A variety of 
differential item functioning (DIF) methods have been developed to test for MI. Recently, the 
performance of several DIF methods have been examined and compared under the multilevel 
data structure, where the local independence assumption was violated (French & Finch, 2010, 
2013; Jin, Myers, & Ahn, 2014). Results of these studies have shown that standard DIF 
methods that did not account for multilevel data structure may or may not perform 
equivalently as modified DIF methods that accounted for multilevel data structure under 
specific conditions. These simulation studies, however, left out some important factors that 
are observed rather frequently in practice. The current study included these factors to provide 
a more complete literature on the performance of DIF methods under the multilevel data 
structure.  

It is well known that applying standard statistical tests to multilevel data inflates type I error 
rate due to the violation of the independence assumption (Raudenbush & Bryk, 2002). In DIF 
analysis, the standard statistical test logistic regression (LR) and Mantel-Haenszel test (MH) 
have been shown to be not as effective as hierarchical logistic regression (HLR) in 
controlling type I error rate because LR and MH do not model random effects due to clusters 
(French & Finch, 2010, 2013). Jin et al. (2014) extended French and Finch’s study by 
showing that HLR outperformed LR when the intraclass correlation (ρ) was medium to large 
(e.g., ρ > 0.25), but LR performed equally well as HLR when ρ was small to medium (e.g., ρ 
< 0.25). Their findings were based on the sufficiency of the covariate (i.e., the total score), 
which, by convention, is called the matching variable in DIF analysis. As Jin et al. 
demonstrated, when the covariate was a sufficient estimate of the latent ability (θ), it can be 
an accurate estimate of θ, as well as being able to maintain the multilevel structure of θ (i.e., 
ρ of the covariate is close to ρ of θ). Therefore, most between-cluster variance can be 
explained by the covariate. LR, under such a circumstance, can perform equivalently as HLR 
because little between-cluster variance was left for multilevel modeling in HLR.  

The sufficiency of the covariate can be compromised under certain conditions, where the 
covariate cannot maintain the multilevel structure of θ, meaning that ρ of θ cannot be closely 
estimated by ρ of the covariate. One of these conditions is low reliability of the covariate. 
Under multilevel data structure, ρ can be interpreted as the correlation between individuals 
within the same cluster (Bock, 1989). The estimated correlation, however, can be attenuated 
by low reliability of scores (Crocker & Algina, 1986; Murphy & Davidshofer, 1988; 
Zimmerman & Williams, 1977), leading to underestimated ρ. One of the factors causing low 
reliability is test length. Previous studies have shown that reliability of a short test was 
generally lower than that of a long test (e.g., Cronbach, 1951; Tavakol & Dennick, 2011). In 
DIF analysis, test length was a commonly manipulated factor in simulation studies, and 
results of these studies have shown that inflated type I error rate was more frequently 
observed for short tests (e.g., Fidalgo, Mellenbergh, & Muniz, 2000). With short tests, 
especially for standard DIF methods, results of multilevel DIF analysis might be inaccurate 
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due to low reliability of the covariate as it cannot maintain the multilevel structure of θ. One 
of the current study’s goals, therefore, is to investigate the effect of short tests, which has not 
been examined in previous multilevel DIF analysis studies, on the performance of both 
standard DIF method (i.e., LR) and DIF method accounting for multilevel data structure (i.e., 
HLR).  

Another consequence of compromised sufficiency of the covariate is that the matching ability 
of the covariate can be adversely affected, resulting in inaccurate DIF analysis. For some DIF 
methods (e.g., LR), the function of including the total score as the covariate in DIF analysis is 
to match θ between focal and reference groups (i.e., population of interest and mainstream 
population) to make sure that the true difference in θ is not contaminated by DIF (Osterlind & 
Everson, 2009). In order to match θ accurately, the covariate needs to be an accurate estimate 
of θ reflecting the true difference between groups, as well as being able to maintain the 
multilevel structure of θ for each group. Lower reliability (e.g., due to relatively shorter test) 
could attenuate the estimated effect of the true mean difference between groups (e.g., 
non-significant regression coefficient of the covariate in LR, leading to failure in controlling 
mean difference between groups). A factor normally referred to as mean ability difference 
(MAD) was often included in previous simulation studies to investigate the matching ability 
of the covariate. Previous studies have shown that inflated type I error rate was observed 
more frequently when there was MAD between groups (e.g., Finch, 2005).  

The effect of MAD has not been investigated in multilevel DIF analysis. Situations where 
MAD is present are not uncommon in large-scale international achievement assessments. For 
example, the primary sampling units of Trends in International Mathematics and Science 
Study (TIMSS) were schools within each country (Liu, Wu, & Zumbo, 2006). TIMSS scores 
can be quite different from country to country due to different curriculum designs or 
education systems (Hagiwara & Matsubara, 2012). It is very important for the educators to 
understand the distinctions between the true difference in TIMSS scores across countries and 
DIF caused by secondary factors (e.g., cultural characteristics, Wu & Ercikan, 2006) before 
any high-stakes education policy is made (e.g., adoption of foreign education or testing 
system). The second goal of the current study, therefore, is to examine the effect of MAD on 
the performance of both LR and HLR under multilevel data structure.  

2. Logistic Regression and Hierarchical Logistic Regression 

Swaminathan and Rogers (1990) had adopted LR for detecting both uniform and nonuniform 
DIF. Uniform DIF indicates consistent change between reference and focal groups across θ, 
whereas nonuniform DIF indicates inconsistent change. The current study focused on 
uniform DIF detection to be consistent with previous studies for comparison purposes. The 
LR model is written as,  

 (1) 

Where,                    for person i, and g is the logit link. Gi = 1 for focal group and 
Gi = 0 for reference group. The significance test of the regression coefficient γ1 in Equation (1) 
is used to determine the presence of uniform DIF. Xi is the covariate (i.e., the total score) to 
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match θ between groups.  

When data were sampled from clusters, HLR was recommended for DIF analysis by 
researchers to account for dependency between person level scores (French & Finch, 2010, 
2013; Jin et al., 2014), especially when ρ was medium to large. The HLR model is written as,  

(2) 

Where, Gj = 1 for focal group and Gj = 0 for reference group, Xij is the person level covariate 
(i.e., the total score), and the random components            . The regression coefficient 
γ01 is used to determine the presence of DIF in terms of significance test. The current study 
focused on the grouping variable being at the cluster level (e.g., country, Klieme & Baumert, 
2001) instead of person level (e.g., gender, Taylor & Lee, 2012) because previous studies 
have shown that type I error rate can be well maintained at the nominal level when the 
grouping variable was at the person level, but was inflated when the grouping variable was at 
the cluster level (e.g., French & Finch, 2010).  

For both LR and HLR, the covariate was included at the person level to match θ between 
groups. According to Jin et al. (2014), LR and HLR performed equivalently when ρ was 
small to medium with no MAD, given that the person level covariate was a sufficient 
estimate of θ for both reference and focal groups. The authors of the current study 
hypothesized that with short tests and the presence of MAD, both DIF methods, especially 
LR, will be more likely to fail to control type I error rate at the nominal level, because the 
presence of MAD between groups might be falsely classified as DIF, especially when the 
reliability of the covariate is low due to fewer items in a test.  

3. Hierarchical Logistic Regression with Latent Covariates (HLR-LC)  

One solution to account for low reliability of the covariate is to use the latent variable 
approach, which has been demonstrated by researchers as advantageous when the covariate 
was not reliable (Asparouhov & Muthén, 2006; Bollen, 1989; Ludtke et al., 2008). By 
adopting the latent covariate approach, the authors of the current study proposed HLR with 
latent covariates (HLR-LC) for multilevel DIF detection to account for low reliability as well 
as the presence of MAD at the cluster level. HLR-LC is modeled as,  

(3) 

Where, the observed person level covariate Xij in Equation (2) is decomposed into two 
unobserved latent components: the within-cluster latent covariate (θijw) and the 
between-cluster latent covariate (θijb). HLR-LC was expected to control type I error rate more 
effectively than HLR and LR in three aspects. First, the multilevel data structure can be 
explicitly modeled by HLR to account for the violation of the independence assumption. 
Second, measurement error due to low reliability can be modeled by decomposing the 
covariate into two latent components at both within- and between-cluster levels. Third, in 
addition to the grouping variable (Gj), θijb in HLR-LC is included to model MAD at the 
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cluster level.  

4. Hypotheses for the Current Study 

When MAD is present with short tests, the following hypotheses regarding the performance 
of the three DIF methods, LR, HLR, and HLR-LC are: (1) LR may not perform equivalently 
as HLR even when ρ is small to medium as shown in previous studies; (2) HLR-LC would 
outperform LR and HLR with respect to significance tests. Results of the current study are 
expected to expand the existing literature on multilevel DIF analysis in two ways. First, the 
current study attempts to investigate the effects of short tests and MAD on the accuracy of 
DIF detection of LR and HLR, which have not been studied in previous multilevel DIF 
analysis. Second, the current study also provides supporting evidence for HLR-LC as an 
effective DIF method when tests are short and MAD is present under multilevel data 
structure.  

5. Methods 

Six factors were manipulated in the current Monte Carlo study to investigate the comparative 
performance of LR, HLR, and HLR-LC. Levels within each factor were selected to replicate 
conditions generated in previous studies (e.g., studies with longer tests and no MAD) as close 
as possible for comparison purposes. Test length (2 levels), mean ability difference (2 levels), 
intraclass correlation (4 levels), DIF size (2 levels), number of clusters (3 levels), and sample 
size within each cluster (3 levels) were crossed to create 288 conditions. Each condition was 
replicated 1000 times. Item responses were generated by incorporating the manipulated 
factors under the Rasch model using the R package for statistical computing (R core Team, 
2013). Item parameters were obtained from a subset of item parameters in Narayanan and 
Swaminathan (1996). The item difficulty parameters ranged from -2.7 to 1.68. Uniform DIF 
(i.e., difference in difficulty parameters) reflecting different DIF size was generated to be 
consistent with previous studies.  

5.1 Manipulated Factors 

Tests with 5 and 10 items were generated to represent short tests as compared to previous 
studies with long tests (e.g., 20-item test, Jin et al., 2014). The number of items selected was 
within the range of short tests defined in previous research (e.g., Woods, 2009). In practice, 
tests, especially tests containing several testlets measuring different sub-domains, normally 
contain fewer items. Because of the unidimensionality assumption, DIF analyses were often 
conducted on each sub-domain instead of on the entire test (Jiao et al., 2012). Within the 5- or 
10-item test, one studied item was generated to be a DIF-free or DIF-present item when 
computing type I error rate and power, respectively. The rest of the items on the tests were 
generated to be DIF-free because DIF contamination was not of primary interest and was not 
manipulated in the current study.  

For the MAD-absent condition, θ of both reference and focal groups was generated from 
N~(0, 1). For the MAD-present condition, θ of the reference group was generated from N~(0, 
1), whereas θ of the focal group was generated from N~(-1, 1). The one standard deviation 
difference in θ between the reference and focal groups was commonly observed in previous 
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simulation studies (e.g., Finch, 2005; Oort, 1998).  

Four levels of ρ were simulated to cover a wide range of ρ observed frequently in empirical 
studies (Hedges, 2007; Hedges & Hedberg, 2007; Liu et al., 2006). The four levels are 0.1, 
0.2, 0.3, and 0.4. Levels of ρ were generated by adding different magnitudes of random 
effects due to clusters to θ values thus generating item responses. Two levels of DIF size were 
generated to represent commonly observed small to medium DIF size (0.3) and medium to 
large DIF size (0.6) for the purpose of computing power (DeMars, 2009; Jodoin & Gierl, 
2001).  

Two factors were manipulated to generate different levels of sample size. Three levels of 
number of clusters were generated to reflect small (30), medium (50), and large (100) number 
of clusters. Three levels of sample size within each cluster were generated to reflect small 
(10), medium (30), and large (50) sample size within each cluster. The sample size 
parameters were set close to parameters of previous multilevel DIF analysis studies for 
comparison purposes.  

5.2 Evaluation 

The analyses of LR, HLR, and HLR-LC were conducted using Mplus 7.1 (L. K. Muthén & B. 
O. Muthén, 2013). Maximum likelihood estimation was implemented for all three methods. 
Type I error rate and power were reported as outcomes to evaluate the comparative 
performance of these three methods, where Type I error rate was calculated as the ratio of the 
number of DIF-free items falsely identified as DIF-present items to the number of 
replications. Power was calculated as the ratio of the number of DIF-present items correctly 
identified as DIF-present items to the number of replications.  

6. Results 

6.1 Type I Error Rate 

Table 1 provides type I error rate and its standard deviation (SD) aggregated across 
conditions for each level of the manipulated factors. Across most of these conditions, 
HLR-LC outperformed both HLR and LR in terms of controlling type I error rate at the 
nominal level of 0.05. Conditions where HLR-LC exhibited some level of inflated type I 
error rate were shorter tests (i.e., 5-item test), small ρ (i.e., 0.1), large number of clusters (i.e., 
100), and small samples within each cluster (i.e., 10). Among all the manipulated factors, 
MAD appeared to be the most influential factor because type I error rate was much more 
stable under the MAD-absent conditions (i.e., SD: 0.008-0.037) than under the MAD-present 
conditions (SD: 0.077-0.264). In addition, the differences in SDs between MAD-present and 
MAD-absent conditions were the largest as compared to the SD differences between levels of 
the other factors. Test length, although not as influential as MAD, appeared to have a 
relatively larger effect on the performance of the three DIF methods than ρ and sample size.  
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Table 1. Averaged type I error rate across conditions (standard deviations aggregated across 
conditions)  

Factors Levels LR HLR HLR.LC 

Test length 
5 0.474 (0.394) 0.436 (0.408) 0.085 (0.079) 

10 0.331 (0.323) 0.311 (0.323) 0.051 (0.024) 

Mean ability 
no 0.089 (0.037) 0.055 (0.009) 0.041 (0.008) 

yes 0.716 (0.264) 0.692 (0.27) 0.095 (0.077) 

Intraclass 

0.1 0.431 (0.404) 0.415 (0.407) 0.101 (0.101) 

0.2 0.415 (0.382) 0.392 (0.388) 0.068 (0.049) 

0.3 0.397 (0.36) 0.363 (0.365) 0.054 (0.028) 

0.4 0.368 (0.327) 0.324 (0.333) 0.049 (0.016) 

Number of 

30 0.33 (0.308) 0.294 (0.302) 0.049 (0.026) 

50 0.401 (0.362) 0.371 (0.366) 0.064 (0.047) 

100 0.477 (0.414) 0.455 (0.428) 0.091 (0.087) 

Sample size 

10 0.271 (0.266) 0.253 (0.262) 0.081 (0.077) 

30 0.436 (0.38) 0.405 (0.386) 0.066 (0.057) 

50 0.501 (0.405) 0.462 (0.424) 0.057 (0.044) 

 

To better understand the effects of MAD and test length at each level of the other 
manipulated factors, type I error rate was plotted for both conditions of MAD across levels of 
test length, ρ, number of clusters, and sample size within each cluster. Figure 1 shows that 
under the MAD-absent condition, HLR and HLR-LC were able to control type I error rate 
consistently across levels of ρ even with shorter tests (i.e., 5-item test). LR, on the other hand, 
exhibited inflated type I error rate as ρ increased and the magnitude of inflation was greater 
when the test was shorter. Under the MAD-present condition, HLR-LC outperformed both 
HLR and LR across levels of ρ. HLR and LR exhibited greater type I error inflation, 
especially with shorter tests. In summary, test length seemed to have no effect on HLR and 
HLR-LC under the MAD-absent condition, but had an effect on LR and HLR under the 
MAD-present condition. HLR-LC was able to control type I error rate under the 
MAD-present condition, and was slightly conservative under the MAD-absent condition 
across levels of ρ. The inflation of type I error rate of LR, however, was greater as test length 
decreased and as ρ increased.  

Figures 2 and 3 show the effects of MAD and test length with sample size factors. Under the 
MAD-absent condition, the number of clusters seemed to have no effect on the relative 
performance of LR, HLR, and HLR-LC. Under the MAD-present condition, as the number of 
clusters increased, type I error rate of HLR and LR also increased. With relatively longer tests 
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(i.e., 10-item test), HLR-LC was able to maintain type I error rate at different levels of 
number of clusters. On the other hand, sample size within each cluster had no effect on HLR 
and HLR-LC, but had an effect on LR under the MAD-absent condition. As sample size 
within each cluster increased, type I error of LR also increased with a greater magnitude of 
inflation with shorter tests. Under the MAD-present condition, as sample size within each 
cluster increased, type I error rate of HLR and LR also increased. With relatively longer tests 
(i.e., 10-item test), HLR-LC was able to maintain type I error rate at different levels of 
sample size within each cluster. In summary, the two sample size related factors had greater 
effects on LR and HLR than on HLR-LC.  

 

 

Figure 1. Effects of test length and MAD at each level of intraclass correlation 
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Figure 2. Effects of test length and MAD at each level of number of clusters 

 

 

Figure 3. Effects of test length and MAD at each level of sample size within each cluster 
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6.2 Power 

Table 2 provides power and its standard deviation (SD) aggregated across conditions for each 
level of the manipulated factors. For both LR and HLR, power exceeded the acceptable level 
of 0.8 across all levels of the manipulated factors, which was not meaningful because of 
inflated type I error rate, especially for LR. HLR-LC appeared to be powerful under most 
conditions except when levels of sample size related factors were small (i.e., 30 clusters and 
10 individuals within each cluster). The effects of most manipulated factors on the 
performance of the three DIF methods were consistent: as DIF size, test length, number of 
clusters, and sample size within each cluster increased, power also increased for all three DIF 
methods; as ρ increased, power of the three DIF methods decreased. As for the effect of 
MAD, power of LR and HLR was greater under the MAD-present condition than under the 
MAD-absent condition, which again might not be trustworthy because of the greater 
magnitude of type I error inflation under the MAD-present conditions for both LR and HLR. 
Power of HLR-LC under both MAD-absent and MAD-present conditions was quite similar.  

 

Table 2. Averaged power across conditions (standard deviations aggregated across conditions) 

Factors Levels LR HLR HLR.LC 

DIF size 
0.3 0.901 (0.170) 0.878 (0.189) 0.797 (0.218) 

0.6 0.992 (0.027) 0.989 (0.035) 0.975 (0.056) 

Test length 
5 0.945 (0.133) 0.926 (0.157) 0.887 (0.180) 

10 0.948 (0.127) 0.941 (0.136) 0.885 (0.184) 

Mean ability 

 difference 

no 0.905 (0.169) 0.881 (0.188) 0.890 (0.193) 

yes 0.988 (0.044) 0.986 (0.049) 0.882 (0.170) 

Intraclass 

correlation 

0.1 0.956 (0.121) 0.951 (0.130) 0.890 (0.178) 

0.2 0.949 (0.129) 0.939 (0.141) 0.888 (0.180) 

0.3 0.944 (0.132) 0.929 (0.149) 0.887 (0.181) 

0.4 0.937 (0.139) 0.914 (0.165) 0.880 (0.192) 

Number of 

 clusters 

30 0.900 (0.176) 0.876 (0.197) 0.781 (0.229) 

50 0.953 (0.118) 0.940 (0.134) 0.901 (0.158) 

100 0.987 (0.044) 0.984 (0.052) 0.976 (0.056) 

Sample size within 

each cluster 

10 0.871 (0.194) 0.856 (0.209) 0.764 (0.238) 

30 0.976 (0.062) 0.963 (0.093) 0.926 (0.123) 

50 0.992 (0.026) 0.981 (0.061) 0.968 (0.068) 
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To examine the effects of MAD and test length at each level of the other manipulated factors, 
plots similar to Figures 1, 2, and 3 were created for power of LR, HLR, and HLR-LC at each 
level of DIF size. Figure 4 shows that ρ had not effect at each level of MAD and test length 
on power for all three DIF methods. Figure 5 shows that as number of cluster increased, 
power of all three DIF methods also increased. Figure 6 shows similar pattern as in Figure 5, 
where power of all three DIF methods increased as sample size within each cluster increased. 
Figures 4, 5, and 6 were created for DIF size = 0.3. When DIF size = 0.6, the patterns of the 
effects of MAD and test length at each level of ρ and sample size related factors were 
consistent except that power for DIF = 0.6 were higher than power for DIF size = 0.3. Figures 
for DIF size = 0.6 were not included but are available upon request.  

 

 

Figure 4. Effects of test length and MAD at each level of intraclass correlation 
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Figure 5. Effects of test length and MAD at each level of number of clusters 

 

 

Figure 6. Effects of test length and MAD at each level of sample size within each cluster 
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7. Discussion 

The current study evaluated two hypotheses regarding the comparative performance of LR, 
HLR, and HLR-LC with multilevel data. The first hypothesis stated that LR may not perform 
equivalently as HLR even when ρ was small to medium, which was confirmed by the results 
of the current study. Jin et al. (2014) have shown that LR performed equivalently as HLR 
with multilevel data when ρ was small to medium with no MAD between groups for 
relatively longer tests. The results of the current study showed that HLR outperformed LR 
regardless of the magnitude of ρ when MAD was present with shorter tests. As previously 
discussed, short tests might suffer from low reliability, therefore affecting the matching 
ability of the covariate in DIF analysis. The large effect of MAD on type I error inflation of 
LR indicated that information provided by short tests was not sufficient to match   across 
groups, so that the true difference in θ between groups was contaminated by DIF, leading to 
inflated type I error rate.  

The findings of the current study have important practical implications for both educational 
and psychological assessments. Researchers have proposed methods to optimize reliability 
when shorter tests were desirable (e.g., saving administration time, Raykov, 2014) or 
inevitable (e.g., long tests consisting of several sub-domains of the latent trait). Prilleltensky 
et al. (2015) recently developed a 21-item scale measuring the overall well-being. Seven 
sub-domains (e.g., psychological well-being) were included in the scale and each sub-domain 
was measured by only 3 items. For scales like these, DIF analysis employing standard DIF 
methods (e.g., LR) on each sub-domain would be problematic, especially when such a scale 
is to be used to collect data for cross-country comparisons, where MAD is likely to occur due 
to different cultural characteristics. Complex modeling of DIF can be conducted to account 
for the unidimensionality and independence assumption violations, for example, 
multilevel-multidimensional IRT DIF analysis (Walker, Zhang, & Surber, 2008), or multilevel 
testlet analysis (Jiao et al., 2012). These types of analyses, however, require more technical 
work from applied researchers.  

The current study provided a relatively simple yet effective DIF method when MAD was 
present for short tests with multilevel data. The evaluation of the second hypothesis 
confirmed that HLR-LC was a more effective DIF method than both LR and HLR under most 
of the simulated conditions. From a practical perspective, implementation of HLR-LC is 
especially beneficial to situations where MAD is present for large scale analysis. For example, 
TIMSS was conducted in more than sixty countries, and the data collected were multilevel in 
nature. Liu et al. (2006) showed that the intraclass correlation of TIMSS mathematics scores 
could be as high as 0.62 (e.g., Hong Kong). Previous DIF analysis on TIMSS scores used 
standard DIF methods (e.g., Mantel-Haenszel test or LR) without taking the multilevel data 
structure into account (Innabi & Dodeen, 2006; Klieme & Baumert, 2001; Wu & Ercikan, 
2006). Results of these studies might be questionable unless the magnitude of intraclass 
correlation was examined and MAD was negligible. The current study provided supporting 
evidence for implementing HLR-LC in large scale cross-country comparison studies, where 
HLR-LC can help maintain type I error rate at the nominal level, and distinguish DIF from 
true MAD between groups as well.  
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Based on the results of the current study, another practical implication for researchers is that 
short tests for cross-country comparison studies are generally not recommended, especially 
when MAD is present. In the current study, DIF contamination was not manipulated, a single 
studied item was included with the rest of the items being DIF-free. In practice, it is possible 
that multiple items can be DIF-present within a short test. Although item purification 
procedures can be conducted in advance (Wang, Shih, & Yang, 2009) and the purified covariate 
(i.e., total score computed after excluding DIF-present items) can be used in HLR-LC to match 
θ between groups, with tests being short, the purified covariate might be difficult to cover a 
wide range of θ. One possible solution is to use multiple indicators multiple causes (MIMIC) 
model, which is robust against DIF contamination (Finch, 2005). In addition, the MIMIC 
model, like the HLR-LC method, is also a latent variable approach where group members are 
matched based on θ instead of on observed total scores as in LR and HLR. To ensure the 
accuracy of DIF analysis under frequently observed situations in practice as much as possible, 
future research can extend the current study by comparing these two latent variable approaches 
after including DIF contamination as an additional factor. Finally, future research can be 
further beneficial to the literature on DIF when effect size estimates of the three DIF methods 
are examined and compared to control for the meaningless high power due to inflated type I 
error rate.  
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