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Abstract 

This empirical study deals with integration of Analytical Hierarchy Process (AHP) with 
multi-item inventory management using Part-Period Algorithm. Among many variables 
which affects inventory systems, this study considers the variables of lot-sizing rules, 
sequencing, demand pattern, coefficient of variations, and change over cost. AHP is used to 
pick a sequencing rule and performance criteria. This study describes the application of 
AHP methodology in the form of multiple tables that will assist production managers in a 
Group Technology environment, to minimize employee and machine idleness. It will help 
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managers make decisions on production order quantity, the sequence in which jobs should 
enter work centers, and in the determination of uniform production cycle times. 

Keywords: AHP, Inventory Management, Decision Making, Part Period Algorithm, Group 
Technology. 
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1. Introduction 

According to Decision Support System Resources (Powers, 2021), Analytical Hierarchy 
Process (AHP) is defined as “an approach to decision making that involves structuring 
multiple choice criteria into a hierarchy, assessing the relative importance of these criteria, 
comparing alternatives for each criterion, and determining an overall ranking of the 
alternatives”, AHP provides a recognized effective approach to deal with complex decision 
making by organizing and assessing alternatives against a hierarchy of multifaceted 
objectives. It tremendously reduces the decision-making cycle, and helps capture both 
subjective and objective evaluation measures (Parcom, 2007). It also provides a useful 
mechanism for checking the consistency of the evaluation measures and alternatives 
suggested by the decision-making. Saaty (1980), the developer of AHP, claims that AHP is 
“natural to our intuition and general thinking,” which combines logic and intuition and 
takes advantage of our ability to rank choices. Group Technology (GT) is described as a 
manufacturing philosophy in which similar parts are identified and grouped to take 
advantage of their similarities in design and manufacturing to eliminate waste in process  
and inventory, improve utilization of work centers and workforce, increase productivity 
and efficiency, gain competitive advantage and improve customers’ satisfaction (Denny, 
2021). After groups are formed in a GT environment, three associated questions to be 
answered are:  

(1) What is the priority ranking of each part or job within each group? 

(2) What portion of the forecasted demand should be produced in each run over a given 
planning horizon (for each part in a group)?  

(3) What should be the uniform cycles of production time? 

These questions are addressed by the integration of sequencing, scheduling, and uniform 
cycles of production time. Sequencing is concerned with allocation of jobs, orders, or 
activities to machine operations or resources in order to optimize performance criteria. 
Scheduling refers to decisions about timing and quantity of products to be produced.  A 
production cycle time is the time required to restart production of a product. A uniform 
production cycle time for several products is the time during which those products will be 
ready for reproduction.  

A production cycle for an order of size Qi for i = 1 to n jobs, will cover a fixed number of 

planning periods. In this empirical study, AHP is applied to decide which sequencing rule 
to use and integrate the sequencing rule with scheduling and subsequent formation of 
cycle of production within a group technology environment. Integration of sequencing and 
scheduling with GT and development of production cycles would provide managers tools 
in making decision on order quantity and utilization of work centers. In this research, it is 
assumed that groups have already been formed, and demand for each item within a group 
is forecast over a finite planning horizon.  Specifically, the questions address in this study 
are:  
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 What is the priority ranking of each job within each group in order to optimize 
performance criterion such as mean flow time? 

 What quantity of each product should be processed? 

 What is the length of the uniform production cycle time? 

Sequencing deals with the order jobs should be processed in a work center. There are 
many sequencing rules for processing N jobs in a work center. However, this study 
considers the five priority rules of First Come First Served (FCFS), Shortest Processing 
Time (SPT), Early Due Date (EDD), critical Ratio (CR) and Slack (S) time (Stevenson, 
2018). The performance of sequencing rules is measured by job flow time, job lateness or 
make span time. Flow time is the most commonly used method to measure the 
performance of a sequencing rule. 2 The flow time for a job is the sum of its waiting and 
processing time. This study is an effort to provide managers with tools in the form of 
multiple tables to assist them in deciding on order size, determine uniform production 
cycle time, and obtain the sequence for processing jobs within a product family in order to 
optimize flow time. Determination of production cycle would essentially lead to efficient 
utilization of work centers, minimization of employee idleness, and proper management of 
work centers. 

Pujawan (2003) examined characteristics of lot-sizing rules under lumpy demand. 3 In his 
study, he presented both analytical and experimental studies of lot-sizing rules for lumpy 
demand situations. The analytical study assumes that constant demand occurs for every 
fixed number of periods. In the experimental study, both quantities of demand and time 
between demands are can vary. Bahl, (1987) and Brahimi, (2006) have extensively studied 
the classification of lot sizing problems. However, Haddock and Hubicky (1989) argue 
that the most commonly used lot sizing technique in industrial contexts is the simple 
lot-for-lot rule, followed by fixed order quantity and fixed period quantity. 

Lot sizing heuristics analysis still represents an important field of research in operations 
research and management. Several authors have focused on classifying different solution 
approaches for various classes of lot sizing problems. The dynamic capacitated lot sizing 
problem is studied by Busckul et. al. (2010). Stochastic lot sizing problem is studied by 
Winands et. al. (2011), the rolling horizon lot sizing problem is studied by Tiacci and 
Saetta (2012) and the online lot sizing problem is discussed by Van den Heuvel (2010). 
For unconstrained lot sizing problem, Goren et. al. (2010) provided significant insights on 
specific solution techniques for genetic algorithms, and an evolutionary algorithm for 
solving unconstrained multi-level lot-sizing problem is discussed by Han et. al. (2012). 
The problem of neighborhood search techniques for solving incapacitated multilevel 
lot-sizing problem is addressed by Xiao (2012). Baciarello et al., (2013) used unique 
modelling methodology to examine eight of the topmost lot sizing algorithms that have 
been exhaustively tested on several different scenarios, and compared with Wagner and 
Whitin's optimal solution. 2 Wagner and Whitin (1958) solved the finite-period, 
deterministic single-item problem. Later authors have generalized the Wagner-Whitin 
model under different scenarios. Gelders et al. (1986) use solution method based on 
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heuristics like branch-and-bound. Suerie and Stadtler (2003) use time-oriented 
decomposition heuristics, while Meyer (2000) use meta-heuristic like Threshold Accepting 
and Simulated Annealing, and Gopalakrishnan et al. (2001) use Tabu search. Clark (2003) 
proposes the hybrid use of local search and integer programming. Also, some authors 
assumed that every product is produced in equal quantities at each production point (Doll 
1973, Goyal 1973, Haessler 1971 and 1976, Hodson 1970, Madigan 1968). 

2. Variables 

Integration of scheduling, sequencing, and production cycles times could result in many 
variables or factors influencing the problem under consideration. 2 However, the effect 
and importance of some variables outweigh others. The following five variables are 
discussed in this study and to generalize the result and finding, these variables are 
represented in the normalized or standardized form. 2 The variables or factors considered 
in this study are: 

  1. Demand Pattern 

  2. Coefficient of Variation (CV) 

  3. Changeover Cost 

  4. Lot-sizing Rules 

  5. Sequencing 

There can be an infinite number of demand patterns. However, this study considers six 
different patterns namely: Increasing (I), Decreasing (D), Concave (A), Convex (V), 
Seasonal (S), and Random (R) pattern. Coefficient of Variation (CV) is defined as a 
measure of relative variation which is independent of the scale of measurement (CV = s/x) 
(Miller 1985). The CV is used to represent the degree of fluctuations in the net 
requirement of a finished product (Berry 1972, Kaiman 1969, Karni 1982). Three different 
CVs are considered on the data generated for each of the six demand patterns listed earlier. 
These ratios are represented by Low (L), medium (M), and high (H) degrees which are set 
respectively as 0.12, 0.30, and 0.667. 2 These ratios relatively cover a broad range of 
demand variations. Changeover or setup cost occurs in the continuous process industry 
when switching from one product to another. The major components of changeover cost 
are setup (Co) and holding (Ch) costs. 2 In this study, three ratios of setup cost to holding 
cost are considered. To generalize the results, the ratios are normalized based on the 
magnitude of the average demand. The three cost ratios considered are 0.75, 1.50, and 3.00 
times the average demand. These ratios will cover a broad range of cost structure. Other 
researchers (Berry 1972, Collier 1980, Kaiman 1969, Veral 1985) have used these cost 
ratios in their studies of lumpiness. 

Several lot-sizing techniques for determining order quantities have received attention in 
literature.  In this paper, we use Part Period Algorithm (PPA) as the lot-sizing rule. The 
PPA is cost effective under conditions of known but varying demand rates (lumpy 
demand). This procedure does not ensure optimality but does approach optimal solution 
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(Davis 1975). 

3. Methodology 

The planning period in this study is arbitrarily chosen to be 10 periods, and the total 
demand for each demand pattern is set to be equal to 1000. This constraint is purposely 
introduced to enhance numerical comparability. To generalize the results, the demand for 
each period will be normalized by the ratio of (di/D), where di is the demand for period i 
and D = 1000 is the total demand. Six different demand patterns are used. The forecasted 
demands are scattered according to Increasing, Decreasing, Concave, Convex, Seasonal, 
and Random patterns, which are represented by I, D, A, V, S, and R respectively.   

The sequencing methods are compared and analyzed using AHP method. AHP requires 
respondents to rank the sequencing methods by using pair-wise comparisons and assigning 
a number representing weights, to each pair comparison. The numbers will be used to 
generate a matrix which will give the decision maker a tool to attack the larger problem. 

Table 1. Pairwise Comparison of FCFS, SPT, EDD, CR and S rules Based on Average 
Responses 

 FCFS SPT EDD CR S 

FCFS 1 1/3.44 2.91 3.82 3.09 

SPT 3.44 1 2.11 4.15 3.51 

EDD 1/2.91 1/2.11 1 1.91 1.55 

CR 1/3.82 1/4.15 1/1.91 1 1/2.11 

S 1/3.09 1/3.51 1/1.55 2.11 1 

Total 5.37 2.29 7.19 12.99 9.62 

A survey on the five sequencing rules of First Come First Served (FCFS), Shortest 
Processing Time (SPT), Early Due Date (EDD), critical Ratio (CR) and Slack (S) time was 
conducted on companies in both service and manufacturing industries in Northern 
Alabama and they were asked which rule is the preferable rule in their organization. The 
manager of each company had to do a pairwise comparison of each of the rules and rank 
them using a scale of 1 to 5, indicating the degree of preference, with 1 being equally 
preferred, 2 being moderately preferred, 3 being strongly preferred, 4 being very strongly 
preferred, and 5 being extremely preferred.   About 82 percentage of the service 
companies in the survey picked the FCFS rule as the preferred sequencing rule.  However, 
for the manufacturing companies, there were mixed preferences. AHP results in Table 1 
indicate that SPT is 2.11 times more preferred than EDD. Table 2 shows the average 
preference results, which are obtained by dividing each value in Table 1 by its total in that 
column. Table 2 shows that SPT is the most preferred rule followed by FCFS in 
sequencing jobs in a work center. The performance of each of the above sequencing rule 
could be measured by flow time (FT), job lateness (LT) or makespan time (MS). AHP is 
applied to find out which of these criteria is preferable by the mangers. Table 3 makes a 
pairwise comparisons. 
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Table 2. Ranking of FCFS, SPT, EDD, CR and S rules Based on percent Averages 

 FCFS SPT EDD CR S Averages 

FCFS .186 .127 .405 .294 .321 .267 

SPT .640 .437 .293 .319 .365 .411 

EDD .064 .207 .139 .147 .161 .144 

CR .049 .105 .073 .077 .049 .071 

S .060 .124 .089 .162 .104 .108 

TOTAL 1 1 1 1 1 1 

Table 3. Pairwise Comparison of FT, LT and MS rules Based on Average Responses 

 FT LT MS 

FT 1 3.3 4.15 

LT 1/3.3 1 2.80 

MS 1/4.15 1/2.80 1 

Table 4 represents the ranking of the three rules.  Based on percent average, flow time 
which measure the total waiting and processing time of a job, is the most preferable rules.   

Table 4. Ranking of FT, LT and MS rules Based on Average Responses 

 FT LT MS %Average 

FT .648 .709 .522 .626 

LT .196 .215 .352 .254 

MS .156 .077 .126 .120 

TOTAL 1 1 1  

In this paper, we consider the Shortest Processing Time (SPT) rule for sequencing N jobs 
in one facility and we use flow time as a measure of performance. The study is 
deterministic in nature and assumes demand is forecasted period by period over the finite 
planning horizon of ten periods. The forecasted demands are scattered according to 
Increasing, Decreasing, Concave, Convex, Seasonal, and Random patterns represented by 
I, D, A, V, S, and R respectively in Table 5. Also, each of the demand patterns is scattered 
with different slopes or coefficients of variations represented by Low (L), Medium (M), 
and High (H).  
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Table 5. The Original Demand Pattern 

Period 1 2 3 4 5 6 7 8 9 10 

I 

L 82 86 90 94 98 102 106 110 114 118 

M 55 65 75 85 95 105 115 125 135 145 

H 1 23 45 67 89 111 133 155 177 199 

D 

L 118 114 110 106 102 98 94 90 86 82 

M 145 135 125 115 105 95 85 75 65 55 

H 199 177 155 133 111 89 67 45 23 1 

A 

L 82 90 98 106 114 118 110 102 94 86 

M 55 75 95 115 135 145 125 105 85 65 

H 1 45 89 133 177 199 155 111 67 23 

V 

L 118 110 102 94 86 82 90 98 106 114 

M 145 125 105 85 65 55 75 95 115 135 

H 199 155 111 67 23 1 45 89 133 177 

S 

L 102 110 118 114 106 98 90 82 86 94 

M 105 125 145 135 115 95 75 55 65 85 

H 111 155 199 177 133 89 45 1 23 67 

R 

L 90 102 114 82 94 98 118 110 106 86 

M 75 105 135 55 85 95 145 125 115 65 

H 45 111 177 1 67 89 199 155 133 23 

The total demand for each demand pattern is set to be equal to 1000.  This constraint is 
purposely introduced in order to enhance numerical comparability. To generalize the result 

of this study, the demand for each period is normalized by the ratio of di/D where di is the 

forecasted demand for period i of each job and D = 1000 is the total demand for each 
pattern over the planning horizon of ten periods. After normalization, Table 6 was obtained. 
Integrating in the design, all the following variables of demand pattern, cost ratio, 
coefficients of variation, and PPA lot-sizing rule (6*3*3*1) will produce 54 different 
solutions. The jobs in this study are represented by their demand pattern. If there are N 
jobs to be sequenced in a facility, the N jobs can be classified and separated according to 
their forecasted demand pattern. Six jobs are considered in this study. 
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Table 6. The Normalized Demand Pattern 

Period 1 2 3 4 5 6 7 8 9 10 

I 

L .082 .086 .090 .094 .098 .102 .106 .110 .114 .118 

M .055 .065 .075 .085 .095 .105 .115 .125 135 .145 

H .001 .023 .045 .067 .089 .111 .133 .155 177 .199 

D 

L .118 .114 .110 .106 .102 .098 .094 .090 86 .082 

M .145 .135 .125 .115 .105 .095 .085 .075 65 .055 

H .199 .177 .155 .133 .111 .089 .067 .045 23 .001 

A 

L .082 .090 .098 .106 .114 .118 .110 .102 94 .086 

M .055 .075 .095 .115 .135 .145 .125 .105 85 .065 

H .001 .045 .089 .133 .177 .199 .155 .111 67 .023 

V 

L .118 .110 .102 .094 .086 .082 .90 .098 106 .114 

M .145 .125 .105 .085 .065 .055 .075 .095 115 .135 

H .199 .155 .111 .067 .023 .001 .045 .089 133 .177 

S 

L .102 .110 .118 .114 .106 .098 .090 .082 86 .094 

M .105 .125 .145 .135 .115 .095 .075 .055 65 .085 

H .111 .155 .199 .177 .133 .089 .045 .001 23 .067 

R 

L .090 .102 .114 .082 .094 .098 .118 .110 106 .086 

M .075 .105 .135 .055 .085 .095 .145 .125 115 .065 

H .045 .111 .177 .001 .067 .089 .199 .155 133 .023 

 

For example, optimal order quantities can be calculated for the PPA, high cost ratio, high 
coefficient of variation, with any of the six demand pattern (jobs). To obtain a common 
cycle of production, an adjustment rule is used as follow:  consider three jobs A, B, and C, 
where optimal order quantity is placed for different periods.  Figure 1 represents the 
above situation. 

 

 

Figure 1. Order Quantity for Jobs A, B, and C 

Job A places an order quantity to satisfy the demand for one period, job B places an order 
quantity to carry over two periods and job C places an order quantity to carry over three 
periods.   

  Period 
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Figure 2. Order Quantity Adjustment for Jobs A, B, and C 

In order to form common cycle of production, total cost will be calculated as though all 
three jobs carry the demand over the total number of periods under consideration. It will 
be done for one period, two periods, and finally for three periods.  The total costs will be 
compared and the planning horizon which results in the least total cost becomes the cycle 
of production. This method will be continued for the calculation of the next cycle of 
production. The cycles of production may or may not be the same. Figure 2 represents this 
situation. 

4. Results 

A program has been developed to analyze the four-way interaction of the following 
variables, demand pattern, cost ratio, coefficients of variation, and PPA lot-sizing rule. For 
example, order quantities can be calculated for the PPA Algorithm, high cost ratio, high 
coefficient of variation, with six demand patterns (jobs). The result is presented in Table 7. 
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Table 7. The Order Quantity Without Cycles of Production Adjustment 

Period 1 2 3 4 5 6 7 8 9 10 

I 69   156  244  155 177 199 

D 199 177 288  200  136    

A 135   133 177 199 266  90  

V 199 266  136    222  177 

S 266  199 310  158    67 

R 156  245   89 199 288  23 

orders for each job. As can be observed, all the jobs enter the work center at different time 
periods. The order quantities represent different reentrance period for each job. For 
example, job I places an order of size 69, 156, 244, 155, 177, and 199 in periods 1, 4, 6, 8, 
9, and 10 respectively; job D places an order of size 199, 177, 288, 200, and 136 in periods 
1, 2, 3, 5, and 7 respectively. A uniform cycle of production time is the time in which an 

order of size Qi, for i=1 to 6 jobs, will cover a fixed number of planning horizon. To 

obtain a uniform cycle of production, the following adjustment is made. The first cycle of 
production starts at period 1. The decision to be made is how much of each job should be 
produced so that all the jobs reenter the work center simultaneously. In PPA, the decision 
as to when and how much to produce is based on comparison of EPP (Economic Part 
Period) to CPP (Cumulative Part Period). The incremental part period (IPP) is defined as 
the number of parts held in inventory multiplied by the number of periods over which they 
are held. The cumulative part period (CPP) is the summation of IPP over the time. The 
Economic Part Period (EPP) is the number of periods it takes to make order cost and 
holding cost equal. The EPP can be obtained by dividing order cost by inventory holding 
cost per part, per period. Hence, the decision as to when and how much to order is 
obtained by comparing CPP to EPP.  When the CPP value is first greater than the EPP 
value an order should be released. The order quantity Q will be the accumulated demand 
up to the time for the next order (CPP<EPP). 

The same decision criteria will be used for development of the cycles of production for 
PPA, where demand for each period will be the sum of demands for all the jobs over that 
period. For example, the total demand in period 1 for jobs I, D, A, V, S, and R, for high (H) 
CVs would be: 

1+199+1+199+111+45 = 556 

Therefore, the demand for each period, for all the jobs, would be: 

Period 1 2 3 4 5 6 7 8 9 10 

Demand 556 666 776 578 600 578 644 556 556 490 

The ordering cost for six different jobs would be the sum of ordering costs for all the jobs 

over that period. The ordering cost for each cycle of production would be Co = 6(300) = 

1800. Therefore, EPP=1800. The cycles of production will be formed where carrying over 
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a given period is not more economical than ordering in that period (CPP>EPP). 

Period Demand Q IPP CPP 

1 556 556 278 388 

2 666 1222 666(1+5) = 999 1277 

3 776 1998 776(2+5) = 1940 321 > EPP = 1800 

The first cycle of production is formed in period 1 and produces enough to satisfy the 
demand for periods 1 and 2.  All the jobs reenter the work center in period 3.   To 
decide how many periods will be covered in the second cycle of production, the following 
analysis will be performed: 

Period Demand Q IPP CPP 

1 776 776 388 388 

2 578 1354 578(1+5) = 867 1255 

3 600 1954 600(2+5) = 1500 2755 > EPP = 1800 

Therefore, the second cycle of production starts in period 3 and produces enough to satisfy 
the demand for periods 3 and 4.  The above procedure continues for the successive 
periods and finally the following table will be obtained. 

Table 8. The Order Quantities with Cycles of Production Adjustment 

Period 1 2 3 4 5 6 7 8 9 10 

I 24  112  200  288  376  

D 376  288  200  112  24  

A 46  222  376  266  90  

V 354  178  24  134  310  

S 266  376  222  46  90  

R 156  178  156  354  156  

The above table indicates the order quantities for each job at the beginning of each cycle.  
In order to generalize the results, tables are developed in the form of normalized data 
variables.  It can be easily demonstrated that the normalized data will have the same 
result as the original data.   

Table 9. The Final Normalized Result 

Period 1 2 3 4 5 6 7 8 9 10 

I .024a  .112a  .200d  .288e  .376f  

D .376f  .288e  .200c  .112b  .024a  

A .046b  .222d  .376f  .266d  .090b  

V .354e  .178b  .024a  .134c  .310e  

S .266d  .376f  .222e  .046a  .090c  

R .156c  .178c  .156b  .354f  .156d  
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The generalization is made for the series of demand patterns with the same slope or 
coefficient of variations used in this study. For other cases, the same methodology can be 
used to develop tables to suit specific situations. The final normalized result is shown in 
Table 9. 

The superscripts a, b, c, d, e, and f are used for the jobs in each cycle to represent the 
sequence in which the jobs should enter the work center.  The order is based on the 
Shortest Processing Time (SPT) sequencing rule. Table 5 represents the final normalized 
result of the above example. Since the developed tables are based on the normalized 
quantities, for determination of the exact order quantities, normalized order quantities 
should be transformed to original order quantities should.  The transformation from the 
normalized order quantity to original order quantity would be: 

Order Quantity =  (# in a cell)(total demand) (K/average demand) 

Therefore, for the above example; 

Order Quantity = (# in a cell) (1000) (K/100)     (1),  

where K is the average demand parallel to any of the demand patterns examined in this 
study. 

The average demand used for the demand patterns in this study is 100.  Therefore, 

(K/100) is the magnitude or the ratio of any of the lines parallel to the demand pattern 

under consideration.  The numbers in the cells are normalized by the total demand of 
1000 over the planning horizon of 10 periods.  Hence, the product of (# in a 

cell)(1000)(K/100) results in the original order quantity for any scale or magnitude within 

the class of lines parallel to the examined demand pattern. 

For example, consider the demand with the forecasted demand quantity that is five times 
as high as the demand used in our study (K=500).  The order quantities will be obtained 
by utilizing formula (1) in Table 5. The normalized result in Table 10, which indicates 
timing, quantity, sequencing, and production cycles are obtained. 

Table 10. The Final Normalized Result 

Period 1 2 3 4 5 6 7 8 9 10 

I 120a  560a  1000d  1440e  1880f  

D 1880f  1440e  1000c  560b  120a  

A 230b  1110d  1880f  1330d  450b  

V 1770e  890b  120a  670c  1550e  

S 1330d  1880f  1110e  230a  450c  

R 780c  890c  780b  1770f  780d  
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5. Impact on cost 

The total cost before and after the cycles of production adjustment for each situation is 
recorded for the three costs ratio of: Low=0.75, Medium=1.50, and High=3.00. Three 
levels of cost ratios represented as Low (L), Medium (M), and High (H), and three 
coefficients of variation (slope) are used. The comparison of costs reveals that the 
magnitude of total cost has changed in most cases when forming cycles of productions.  
In some cases, it has increased and in some cases it decreased.  This result was expected 
since PPA is not an optimization technique.  However, by forming cycles of production 
for a group of jobs in a period, the work center is utilized for that group in that period only. 
During other periods where the cycle is not formed, labor could be scheduled for other 
tasks in the work center and machines could be scheduled to perform other jobs, thus 
utilizing the work center for other tasks and activities. This will result in reducing 
employee and machine idleness, and work center utilization would go up. 

Table 11. Total Cost Comparison for Before and after the Cycles of Production Adjustment 

Cost 

Ratio 

Before 

Cycles 

After 

Cycles 

3.00 

H 15095 14868 

M 14985 14940 

L 14976 14976 

1.50 

H 10336 12000 

M 11320 12000 

L 12000 12000 

0.75 

H 7042 7500 

M 7500 7500 

L 7500 7500 

6. Conclusion 

The integration of AHP with scheduling, sequencing, and uniform production cycle in 
multi-product production facilities has been introduced and discussed in this paper. Also, 
the concept of uniform cycles of production time was introduced. A methodology to 
develop tables, for the Part Period Algorithm (PPA) rule to account for the effect of 
uniform production cycles has been demonstrated. Based on the results of each case, 
appropriate tables were developed to assist production managers in making decisions 
concerning order quantity of jobs at the beginning of each cycle, the timing of orders for 
each job, and the processing sequence of jobs. Once the tables are developed, a production 
manager can properly schedule tasks in the work center to minimize waste of both 
employee and machine times. Savings in employee time could be used for other tasks in 
the work center and savings in machine time could be used to perform other jobs. 
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