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Abstract 

The recent explosion in the speed and connectivity of the Internet has opened up the 
possibility of millions and possibly billions of devices connected together. Combined with the 
development of small, low power devices, new paradigms in the field of computing have 
opened up. Traditional passive electronic devices now have rudimentary computing 
capabilities. The resulting Internet of Things (IoT), comprised of smart interconnected 
devices is improving our ability to gather ambient information and make informed decisions 
that directly benefit humanity. However, the ubiquity of these devices also presents an 
interesting scenario wherein the devices can perform limited general-purpose computations 
when they are not performing their primary functions. A computational task divided into a 
large number of smaller, micro tasks, each of which take only a few CPU cycles to complete. 
By distributing these tasks over a large number of devices, we can achieve a substantial 
amount of computation with seemingly modest devices. In this work, we explore a 
mechanism to enable such massively parallel computations in low powered commodity 
hardware devices through fine-grained task parallelism.   

Keywords: Cloud Computing, Internet of Things (IoT), Machine-to-Machine 
Communications (M2M), Resource Allocation, Fine grained Task Parallelism, Virtual 
Machines, Geographic localization.  

 

www.macrothink.org/npa 72 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2016, Vol. 8, No. 4 

1. Introduction  

The explosive growth of the Internet in recent years has given rise to a plethora of 
applications. These applications benefit from running on computing devices that are usually 
connected and being able to exchange information through a myriad of wired and wireless 
connections. Traditional devices that had a singular purpose now have computing and 
networking capabilities. This has given rise to the paradigm of the Internet of Things wherein 
everyday mundane objects like toasters and refrigerators are becoming smart thanks to their 
embedded processing power and Internet connectivity [1] [2] [3]. Given the sheer numbers of 
these devices, a large cluster of such low powered devices can deliver substantial processing 
power [4]. Traditional cluster computing relies on a fixed set of nodes, connected through 
proprietary interconnects and running a highly customized operating system. This has 
generally made cluster computing a forte of universities and other research institutes with 
large budgets. A large number of low powered devices are able to work together on a 
particular computational problem and possibly deliver results faster than a single 
conventional high performance computer. With the prevalence of network connectivity, 
today's clusters can have hundreds or thousands of machines and can therefore target 
computations of increasing complexity. Computers from all across the world can be 
connected and take part in large-scale computations [5] [6]. However, while processor speeds 
have steadily increased, the network bandwidth varies considerably in various parts of the 
world and is a significant hindrance to the growth and popularity of collaborative computing. 

Traditional grid computing initiatives have tried to circumvent the network connectivity 
problem by eliminating peer-to-peer communication altogether [7] [8]. A central server splits 
the task into chunks and assigns them a unique identifier. Nodes taking part in the 
computation connect to this central server, download a chunk and start their computation. 
Independent computations run on each chunk. Once a particular node finishes its computation, 
it uploads the results back to the server. Once all the chunks have finished computation, the 
server assembles the computed chunks to get the result [9]. While this alleviates the problem 
of network latency, it suffers from a number of problems. A client only contacts the server to 
download new chunks or to report completed tasks. The server has no way of knowing the 
progress of the chunks in each client. Thus, a computational task might have to wait for one 
slow client or risk delay due to network failure for a single client. Servers generally set a 
timeout for all chunks in order to take care of this problem. If the client does not contact the 
server with the completed work before the timeout, the server considers the chunk lost and 
sends out another copy of the chunk. Therefore, this eliminates the problem of one node 
slowing down the whole computation at the cost of adding a finite amount of delay for every 
chunk.  

If, a mechanism were available such that the nodes are able to communicate in real time 
with each other and the server, it would greatly improve on the aforementioned problems. All 
the nodes would be able to work more efficiently since they would be working on smaller 
data sets. Continuous exchange of data between the peers would ensure identification of slow 
performing nodes and less demanding tasks to the identified nodes. The system would also 
recover from failures early and be able to roll back quickly since the server is aware of the 
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current progress of the task in all the different nodes. While, the current global network 
latencies are not comparable to a dedicated computing cluster, we can exploit the current 
global network behavior in order to improve on the throughput.  

In this work, we evaluate mechanisms to enable distributed computing using low 
powered commodity hardware by reducing network latencies in a globally distributed 
computational grid. Based on the nature of computation, the resources dedicated for a 
particular task being executed change thereby making our system elastic. This elasticity 
makes it possible to take advantage of increased computational power when available and 
rollback and resume computations when the available computation power dwindles. We also 
extend our study to evaluate a method to improve the computation time by bringing together 
devices through geographic and network localizations.  

The paper is structured as follows: Section 2 discusses the background about parallel 
computation and the differences between theoretical and achievable speedups. We also 
discuss the relationship between network latency and geographic proximity. We then extend 
these ideas to show how fine-grained parallelism over the network speeds up computations. 
Section 3 describes our geographically distributed grid and the experimental setup for the 
simulations. Section 4 discusses the results and the speedups achieved from our mechanism. 
Section 5 discusses our future work and concludes the paper. 

  

2. Background and Related Work 

The availability of a multitude of internet-connected devices opens up the possibility of 
performing massively parallel computations. Small low-powered commodity devices can be 
grouped together to build vastly powerful computing engines. These commodity devices 
range from Network Attached Storage (NAS) devices to intrusion detection and monitoring 
devices to refrigerators and toasters of tomorrow. While these devices often have relatively 
weak CPUs, since they are only required to perform a single task, they generally have long 
idle periods and thereby spare CPU cycles. These CPU cycles can be utilized to perform 
small computations which when performed in parallel can produce a substantial computation 
throughput. This is an idea that we will explore in this work. We envisage an open system 
that harnesses the spare CPU cycles of small low powered devices to provide a significant 
computational engine.  

However, we should realize that performance improvements in computations are not 
always directly proportional to the level of parallelism achieved. Again, many performance 
improvements in traditional computer programming relates directly to temporal and spatial 
localizations. High performance computer code relies on these localizations to extract the 
best possible performance from the hardware it is running on. Since our approach involves 
splitting a large computational workload into multiple smaller workloads, we have to ensure 
that we utilize the location affinities. As these smaller workloads divided across multiple 
devices working in varied geographic locations, we take into account the geographic 
proximity of these devices while splitting and assigning the workloads. In this section, we 
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would give a brief background on the amount of actual performance improvements possible 
through parallelism. We then show how we have improved the performance through 
fine-grained parallelism and geographic localization. 

2.1 Theoretical and achievable gains in parallel computation 

The nature of computer programs dictates that the performance gains arising from 
executing a program in parallel are not always linear. This is because introducing 
concurrency only affects parts of a program. Therefore, the actual gains in performance are 
usually lower than expected from a naive ballpark analysis. Consider a program that performs 
multiple database lookups over a network. Introducing concurrent database access into the 
program would only improve the performance by a percentage related to the percentage of 
time that is spent for the database access over the network. If the fraction of the overall 
execution time spent by the program accessing the database is low, we might not actually see 
any appreciable improvements in performance. The performance gain in a computing 
environment is limited by the fraction of the time that the computation can actually speed up. 
For any computation, there would always be certain areas that cannot execute in parallel. 
Therefore, the theoretical speedup achieved from parallelism is always the sum of the time 
that the computation runs in parallel and the time it has to run in sequential mode as shown in 
Equation 1. 

 
  affected

new unaffected

Execution time
Execution time Execution time

Improvement
= +   (1) 

The relationship in Equation 1 is Amdahl's Law [10]. Therefore, the new execution time 
is the sum of the execution time of the parts of the program that are unaffected by the 
introduced concurrency and the improvement on the execution times in the parts of the 
program that could be successfully executed in parallel. 

Therefore, the speedups achievable in a parallel computing scenario is computed as a 
function of the percentage of execution time that can be made parallel and the number of 
processors as shown in Equation 2: 

1

1
Speedup PP

N

=
− +

         (2) 

Where, P is the percent of execution time that is parallel and N is the number of 
processors. One way to improve the speedup is to increase the number of processors such that 
a larger amount of the computation runs in parallel. Now, as N approaches1, the achievable 
speedup only becomes a function of the percentage of execution that can be run in parallel as 
shown in Equation 3: 

1
1

Speedup
P

=
−           (3) 
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This is because as the number of processors approaches ∞, the ratio of the percentage of 
execution time that can be made parallel and the number of processors approaches 0 as 
shown in Equation 4: 

lim 0
N

P
N→∞
=           (4) 

Therefore, merely increasing the level of concurrency in computation does not 
necessarily improve its throughput. In order to achieve an optimum level of throughput a 
number of factors require fine-tuning to work in tandem. A combination of fine-grained 
parallelism and efficient techniques to reduce network latency would be essential in 
improving the overall throughput. We explore these approaches in this work through network 
localization and our metrics for distributing workloads to the most eligible nodes. 

2.2 Network latency and Geographic localization 

Studies on localization in peer-to-peer systems have mainly concentrated on file sharing 
systems aiming to reduce inter-ISP traffic since that is the major cause of bottlenecks on the 
Internet. Le Blond et al. have conducted experiments with a large number of peers and have 
shown that high localization is able to reduce inter-ISP traffic by two orders of magnitude 
[11]. Karigiannis et al. have shown that even simple mechanisms to enable locality awareness 
in peer to peer networks can substantially improve the network performance and approximate 
it to a perfect world-wide caching infrastructure [12] [13]. Implementing these changes 
require the peer discovery mechanisms to be modified such that neighboring peers are 
prioritized over others in the swarm [14] [15]. While these studies focus on improving 
throughput in bulk data transfers in file sharing systems, our study is towards fine-grained 
task parallelism on the Internet and involving limited data transfers with more emphasis on 
latency minimization. 

In any distributed system, the key to performance is minimization of latency. This is 
especially important in a geographically distributed system wherein the network parameters 
that govern the actual latencies are difficult to control, unlike in a conventional computational 
grid. Geographic distances are directly proportional to the network latencies since messages 
have to traverse more autonomous system boundaries. Although certain autonomous systems 
have direct connections between them, the Internet as a whole behaves quite similarly to 
national and geographic boundaries. Therefore, in order to make the most effective usage of 
the computing nodes, we need to detect and group together nodes that have minimal latencies, 
possibly in the same autonomous system. 

We therefore attempt to identify the nodes that are geographically close and group them. 
However, as mentioned previously, sometimes seemingly distant autonomous systems might 
have lower latencies owing to the peering policies between the network providers and 
multiple network connections between two autonomous systems. Moreover, the peering 
policies between two autonomous systems change based on the nature of the current Internet 
traffic between them. For example, when a popular sporting event such as the Olympics 
streams simultaneously across the world, network providers enter into multiple peering 
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agreements with the providers in the host country in order to route the temporary increase in 
network traffic efficiently for the duration of the event. These agreements might call for 
redundant and/or high capacity, low latency links between the network providers. Hence, the 
nature of Internet traffic is always in a state of flux and the true latency depends on a number 
of factors. It is almost impossible to come up with fixed numbers for the traffic quality on the 
Internet. We therefore take into account the real-time network latencies between the various 
autonomous systems and continuously perform a weighted average over all these factors to 
come up with a metric for the actual proximity between two devices. We explain this process 
in more detail in Section 4. As autonomous systems have unique identifiers for all their 
component nodes, we can use this to our advantage. 

We would now attempt to establish a relationship between the geographic proximity of 
two computing nodes on the internet and their perceived network latencies. The proximity of 
two points on the earth is determined using the Haversine formula [16]. 

Consider, two computing nodes X1 and X2 and their corresponding latitude and longitude 
as X1(lat1, lon1) and X2(lat2, lon2). The actual geographic distance between the nodes is the 
great-circle distance, which is the shortest distance between two points on the surface of the 
Earth as measured along the surface of the Earth. We can get an estimate of the great-circle 
distance between the nodes as a function of the Earth’s radius and the geographic coordinates 
(latitude and longitude) for a point on the Earth as shown in Equation 5: 

d R c=             (5) 

Where, R is the Earth’s mean radius of 6,373 km (3961 mi) and the parameter c is in 
Equation 6: 

2 arctan 2( a , 1 a )c = −        (6) 

 The parameter “a” is determined from the geographic coordinates of the two points on 
the surface of the Earth as shown in Equation 7: 

2 21 2 1 2
1 2

~ ~sin cos( ) cos(lat ) sin
2 2

lat lat lon lona lat= +       (7) 

 The parameter arctan2(y, x) is evaluated based on the values of the other parameters as 
shown in Equation 8. Computing this value for two points on the surface of the Earth gives us 
an estimate of the great circle distance between them and therefore their proximity. 
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2.3 Fine grained parallelism and computational workloads 

Given the fact that our system targets smaller, modest computing devices, in order to 
perform an effective computation, run, they should effectively be computing a thin slice of 
the total computation since almost of them would be constrained by the CPU and the 
available physical memory. Our approach is to determine the individual fine-grained 
computations that comprise the overall task. While the overall task might have been, too 
resource intensive for any of these devices to handle, these much smaller sub tasks can 
effectively run on these devices with an acceptable turnaround time. These fine-grained tasks 
comprise of only a few machine instructions that can run repeatedly and efficiently on these 
individual resource constrained devices. 

In order to evaluate the performance of our system we have used general-purpose 
computing tasks distributed across the computing nodes. Signal processing applications use 
the Discrete Fourier Transform (DFT) to convert signals between the time and frequency 
domains. We will show later how the DFT is suited for fine grained parallelism and how we 
have exploited this property to run massively parallel DFT computations with large input 
arrays. The DFT, X(k) of a finite signal of discrete length x(n) is [20]: 

21

0
( )

i knN
N

n
n

X k x e
π−−

=

=∑          (9) 

 The original signal for the DFT computation is [20]: 

21

0
( )

i knN
N

k
k

x n X e
π−

=

=∑          (10) 

 Since we have assumed a periodic signal with a period that is equal to the length of the 
signal sequence x(n), the DFT has a finite boundary. Now, in order to compute the DFT of a 
finite length signal of length N, we need to perform 4N2 multiplications and N(4N-1) 
additions, which give us a time complexity of O(N2). Therefore, in order to improve the 
performance, we need to run the DFT computations in parallel. Parallel Fast Fourier 
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Transform computations take advantage of multiple processing nodes that can run 
computations independently of each other to achieve an improved throughput. Cooley and 
Tukey in their seminal paper have shown that the Discrete Fourier Transformation 
computation decomposes into two smaller transforms as in Equation 11 [17] [18]:  

21
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 The decomposition of this DFT breaks down the transform into two smaller transforms 
based on the odd and even numbered values. These two computations can be performed 
independently of each other and thereby improve the computation time. Independent 
computations are important since these can run on separate devices with minimum 
communication requirements between the computing nodes. 

 Now, using mathematics we can further reduce the computations for the XN+k term as 
shown in Equation 12: 
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       (12) 

 Now, the ei2πn term in Equation 12 evaluates to 1 for all values of n. Utilizing this 
property, we can get two interesting relations for the XN+k and the Xk+i terms as shown in 
Equations 13 and 14: 

N k kX X+ =           (13) 

 And, 

k i kX N X+ =          (14) 

 This relation is the symmetry property of Fast Fourier Transforms. The values of k and n 
are in the ranges as shown in Equations 15 and 16: 

        0 k N≤ <           (15) 
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0
2
Nn M≤ < ≡          (16) 

Utilizing this property eliminates half of the computations and we get a complexity of 
O(N/2 log N). This approach of breaking down the input into its constituent parts and 
computing the values of the resulting parts is termed as decimation and works as long as the 
input is an even integer. An upper bound to the number of decimations can be carried out on 
an input array exists since the resultant input arrays become so small that no further 
computational benefit can be achieved. However, with each step, the potential of 
implementing parallel computation increases since all the constituent parts of the original 
FFT runs independently. 

 

3. Experimental Setup 

In keeping with the tenets of Moore’s Law, we have seen transistor density in processors 
double every eighteen months over the last few decades. However, the recent years have seen 
chip-manufacturing processes reach theoretical bottlenecks in clock speeds and the transistor 
densities on the chips. The response has been a move towards multicore processing. The 
initial approaches involved multiple dedicated CPUs running on a single host motherboard 
with a common shared memory between them. Recent designs involve multiple cores on the 
same CPU. This approach increases the amount of high-speed memory shared between the 
cores and allows for greater throughput. Thus, while clock speeds have remained constant, 
processing power has continued with a steady increase with the increase in the number of 
cores on a single chip. However, this increase in processing power comes with an increase in 
the power requirements as well. The Internet of Things (IoT) is generally composed of small 
low powered devices that run on batteries. Recent advances in the development of power 
efficient chips that can dynamically modify their clock speeds have led to their prevalence in 
the IoT devices. On the other hand, developments in communication technologies have led to 
better utilization of the network bandwidth and higher network speeds. We envisage the IoT 
scenario of the future wherein we have a large number of small, power-efficient computing 
devices connected over high-speed data links. Accordingly, our experimental setup uses 
modest CPUs connected over high bandwidth network links. We take advantage of this high 
connectivity to run our simulations with fine-grained parallelism. 

In order to run our experiment, we setup small servers in four countries (the United 
States, Canada, the United Kingdom and Germany) running a minimal version of Debian 
Linux. These were inexpensive bare metal micro servers with modest amounts of RAM (≈ 
64 Mb), moderate SSD storage (≈ 5 GB) and a single core CPU running at around 2GHz. 
However, all servers connect to the Internet with high-speed data links (guaranteed ≥ 100 
Mbit/sec). These specifications mimic the computational capabilities of devices that we 
envisage to form the core of IoT devices. The high-speed links in these servers were crucial 
to our experiment, as we had to pass many messages between these servers, which were often 
located in different autonomous systems. 
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3.1 Proximity matrix computation 

In order to determine the geographical proximity between two nodes we use the great 
circle distance as mentioned in Section 3. We first estimate the latitude and longitude of the 
physical location of servers from their IP address. We use the Maxmind IP database service 
for the same [19]. We compute the great circle distances between each pair of nodes from 
their associated latitude and longitude. The proximity matrix contains weighted values that 
are a determined from the physical distance and the latencies between each pair of nodes. 
Therefore, the proximity matrix reflects the actual proximity of the nodes from the network 
and computation point of view. Smaller values in the table indicate that the nodes are closer 
while larger values indicate that the nodes are further apart. Note that two nodes might be 
close in the matrix even if they are geographically further apart although we have found this 
to be extremely rare from our studies. Nodes that are close together are prime candidates to 
take part in the same computation. Normally, we compute the proximity matrix at the 
following times: 

• Start of computation 

• When a new computing node comes online 

• Every fifteen minutes for the total duration of the task 

At the start of each computation, we allocate a global timer at the UC lab server. This 
timer keeps track of the progress of the computation and initiates the proximity matrix 
computation every 15 minutes. We also start a daemon process to monitor if a new node 
comes online. Once a node comes online, it determines its closest node coordinator by 
measuring the latency and publishes its latency measurements. We use these measurements to 
update the proximity matrix continuously. Nodes that go offline would not be able to publish 
their latency measurements and would require a latency measurement at the end of the next 
fifteen minutes. Fig. 1 illustrates the process of computing the proximity matrix as a flow 
diagram. 

In addition, each node continuously monitors the latencies to all the nodes that it is 
dependent on for its computation. In case of a variation beyond a predefined acceptable range, 
the node may raise a request to perform a re-computation of the proximity matrix for that 
region. At the start of a computation run, all the participating nodes are aware of the presence 
of the other participating nodes. The proximity matrix computation at the start of the 
simulation serves to notify each node of the presence of the other participating nodes and the 
network map. A new node coming online increases the computational capability of the system, 
as a whole but also requires a computing the network map again. The rationale behind 
computing the proximity matrix every fifteen minutes is that the network conditions are 
always in a state of flux. While we understand that continuous computation of the proximity 
matrix would give an accurate picture of the state of the network, we also realize that 
computing the network map requires some computing resources. Thus, our approach of 
generating the proximity matrix every fifteen minutes strikes a balance between the 
computing resources needed and the accuracy of the network map. Table 1 shows a snapshot 
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of the proximity matrix. All nodes participating in the computation keep track of the distance 
matrix and updates values at specified times. The proximity matrix updates with the heartbeat 
messages exchanged between the nodes and the local coordinators is at periodic intervals as 
explained in the following section. Any node in the system can perform a proximity matrix 
lookup and determine its closest neighbors. 

 

 

Figure 1. Flow diagram showing the Proximity Matrix computation 

3.2 Node hierarchy and task distribution 

Each running computation on our system is comprised of a number of nodes running a 
part of the overall computation. These nodes form a tree with the University of Cincinnati 
(UC) Lab servers forming the root of the tree. The UC Lab servers are responsible for 
splitting the workload into multiple fine-grained smaller workloads sent to each participating 
node. Each node then spawns a process that performs the actual computation. A single node 
might have two processes performing computations that are part of two different workloads. 
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A node might dispatch a part of the computation to two or more nodes depending on the 
computation. These nodes would then appear as siblings on the computation tree with the 
dispatching node as the parent. Therefore, the number of nodes and the depth of the tree is 
determined by the level of granularity achieved in the overall computation. A minimum 
spanning tree connects the UC lab servers with the country coordinators as discussed below. 

We designate one node in each country as a coordinator node. This is not a permanent 
assignment and a number of factors as explained later governs the assignment. This 
coordinator node is determined by measuring the ping times from each of the servers in a 
particular country to our server at the university. An hourly measurement of ping times 
promotes the server with the minimum latency to the role of the country coordinator. This 
measurement ensures that the coordinator nodes receive the FFT tasks with minimum delay. 
The coordinator node then performs the role of a local leader and coordinates the messages 
exchanged between the peer nodes. Each coordinator node uses the distance matrix to 
determine its closest neighbors and distributes the tasks between them. Normally, we would 
expect the coordinator nodes to distribute the tasks to nodes within the same country since 
they should have the lowest intra node latency. However, experimental data bears the fact that 
sometimes nodes geographically distant regions also come together to perform a computation 
owing to variations in latency as discussed previously. 

The coordinator node is also responsible for monitoring the messages exchanged in its 
neighborhood. At the start of a particular FFT, all messages pass through the coordinator node. 
However, due to the nature of the computations in Fast Fourier Transforms, as the 
computation proceeds, groups of nodes start to have more traffic between them. Once the 
local coordinator node detects that a set of nodes need to communicate more frequently, it can 
either decide to move a larger chunk of the work to one of the nodes or sets up a peer 
connection between these two nodes thereby bypassing the coordinator altogether and 
speeding up the computation. Nodes performing the computation periodically send heartbeat 
messages to the coordinator notifying their connectivity to the network. These messages also 
contain a marker that notifies the coordinator on the current progress of the task.  

The coordinator can have an overview on the overall progress of the computation based 
on the progress of the individual nodes. This information sent to the servers at UC 
periodically allows us to monitor the performance of the system and tweak accordingly. In 
order to save the state of the tasks performed on the nodes, each node periodically saves the 
state of the computation as a checkpoint and updates the local coordinator. In case a particular 
node fails, the node coordinator can select another node to carry on the computation of the 
failed node from the last saved checkpoint. We can also mark certain sections of the 
computation as critical such that the nodes do a forced save of state before proceeding with 
the computation even if the normal scheduling does not call for a save of state. The 
coordinator simply copies the last checkpoint to the newly selected node and the computation 
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Figure 2. Schematic showing the connection between the nodes 

can resume from that point onward. In order to ensure that the system can recover from the 
local coordinator failures, each local coordinator reports its status along with the status of all 
the coordinated nodes to the servers at UC. Additionally, we maintain a list of alternate 
servers that can take up the role of the coordinator in case of a failure. The process is similar 
to the mechanism that enables the coordinator to maintain track of all the associated nodes. 
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Additionally, the saved state of the coordinators determines coordinator node in case of 
increased latencies. Overall, the system always ensures that the nodes with the minimum 
latencies to UCs servers are the local coordinators. Having this hierarchical setup and 
periodic checkpoints ensures a high availability of the system with minimum of lost work in 
case of failures. Fig 2 shows the hierarchical setup as a schematic diagram. 

3.3 Massively parallel Fast Fourier Transform 

We would now show the computation of the Discrete Fourier Transform in parallel using 
the limited computing power of the devices in our system. The flow of control for the 
decimation in frequency for an 8-point Radix-2 FFT is in Fig. 3. 

 

Figure 3. Decimation in frequency for the 8-point Discrete Fourier Transform [20] 

From Fig. 3, we can see that the first stage involves a single 8-point Discrete Fourier 
Transform. As we move to the second stage, we have two distinct 4- point DFTs and eight 
distinct 2-point DFTs in the third stage. The corresponding decimation in time is in Fig. 4. 
The process for the decimation in time works in the reverse manner in that we start with a 
large number of 2-point DFT calculations and use the results of these computations as the 
input to the next stage. The important point to note is that while the complete DFT calculation 
would be computationally intensive, the computations required in each step of the decimation 
process are not. These typically require a few CPU cycles and computed by the low-powered 
CPUs in the IoT devices. The potential for massive parallelism is evident from Fig. 3 and Fig. 
4 since only a group of nodes work on a particular stage of the decimation and therefore these 
steps execute independently. 

We would now give a brief overview of the computational steps required for calculating 
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the FFT through decimation in time. Implementing the FFT computation through decimation 
in time involves the following steps: 

 

 

Figure 4. Decimation in time for the 8-point Discrete Fourier Transform [20] 

 

1. Creation of the execution sequence map for the computation. From Fig. 4 we can see 
that the first stage involves 2-point DFT blocks. Hence, for an 8-point FFT 
computation we would have four, 2-point DFT blocks. The coordinator nodes at the 
start of the simulation broadcast this information. This ensures that the participating 
nodes are aware of the execution sequence and the nodes they should expect their 
upstream data. Preloading this information into the participating nodes also has the 
added advantage of failure tolerance. If one of the participating nodes goes down, the 
coordinator node knows exactly which part of the computation is lost and can 
therefore reload that part into another available node. 

2. Each of the 2-point DFT blocks in the first stage has their outputs tied to one of the 
inputs of the 4-point DFTs of the second stage. We exploit our geographic localization 
to ensure these stages run in nodes that are close together. 

3. Each of the 4-point DFT blocks now has their outputs tied to the input for the final 
8-point DFT calculator. 

4. Once the execution sequence map had been loaded, the simulation starts by invoking 
the first stage of the computation that involves the 2-point DFTs. 

www.macrothink.org/npa 87 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2016, Vol. 8, No. 4 

The process flow diagram for this decimation is in Fig. 5. Each of the ovals in Fig. 5 
represents a unit of computation as shown in Fig. 4. The numbers inside the ovals represent 
the actual element numbers on which the computation runs. Labels under the oval designate 
the corresponding computing node. Since the process of Discrete Fourier Transform and its 
inverse are complimentary, we would have more parallelism in the first stage and the number 
of division halves in each successive step. However, we can only utilize one computing node 
in the first stage, since there is only one operation to perform. The processor utilization 
increases in the subsequent stages as the number of DFTs simultaneously increases. A severe 
disadvantage of this mechanism is the sheer number of message exchanges required in order 
to make the process run. From Fig. 5, we can see each point in the DFT calculation, message 
exchanges required in order to move to the next step. 

 

Figure 5. Process flow diagram during computation for the DFT [21] 

A possible improvement is by reducing the number of message exchanges. We see that 
the node labelled “2” cannot proceed before the results from the first stage of the computation 
are available and it can proceed with the second stage. However, node 2 already knows about 
the data set that it is waiting on. Thus, it can perform the same computation that is running in 
node 0 and then use the results for the next stage of computation. In order to enable this out 
of order processing we need to perform a broadcast of the complete input data. Therefore, this 
method is very much suited for our experiments on the internet. While we understand that the 
approach poses a very real possibility that some nodes may end up performing redundant 
computations, it is a small price to pay since the real bottleneck in a distributed system on the 
internet is the network latency. Our own experiments have shown that the delay arising from 
this redundant computation is actually much lower in a real computation. A schematic 
diagram showing the communication lines for the 8-point Radix-2 FFT is in Fig. 6. 
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Figure 6. Control flow during the parallel computation of the DFT [21] 

 

Figure 7. Process flow diagram for the DFT using three nodes [21] 

It would seem that the mechanism works best when the number of computing nodes is a 
power of two. However, we have seen the mechanism implemented with any number of 
nodes. If, the processing elements were not exactly divisible by the number of nodes at any 
stage, then the node that was responsible for dividing the data set would continue to perform 
computations on the entire data set from the previous step. The process flow for three nodes 
is in Fig. 7. We have always assumed that computations would be performed utilizing the 
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spare capacity of the resources. Therefore, we have built our system from the ground up to 
work with a varying number of computing resources. As long as we have spare computing 
nodes available, and tasks are divisible, newly available nodes would be able to get a chunk 
of the work and contribute to the overall computation. Conversely, when nodes go offline, the 
local coordinator detects this condition from the message exchanges and moves the work set 
to another available node. The checkpoint mechanism enables speedy rollback and resumes. 
In order to obtain a steady throughput from our system, it should be stable enough to compute 
FFTs even when the number of computing nodes is not even. In general, the optimum FFT 
calculation requires a number of computing nodes based on the size of the input array. For 
most general-purpose FFT calculations, the optimum number of computing nodes for a given 
input FFT array size is in Table 2. 

 

Table 2. Input array size and processor optimal parallel FFT [21] 

Input Array Size Number of Processors 

1 – 256 1 

256 – 16384 2 

16384 – 1.5 x 105 4 

1.5 x 105 – 1 x 106 8 

 

4. Results 

For the purposes of evaluating the performance, we implemented a multithreaded 
program in C++ to run these Fast Fourier Transform tasks on our globally distributed micro 
cluster. Each FFT computation spawns a new isolated process as long as the CPU and 
physical memory resources are available. We deliberately chose this isolated process 
approach in order to ensure that a crash in one running computation does not affect the other 
computations running on the same node. The results of the crashed process reported to the 
local coordinator reassigns it to another randomly chosen node in order to eliminate failures 
caused due to the setup of a particular node. If the chunk of work does not complete in three 
instances, it is permanently marked as failed and the overall computation is marked as failed. 
We perform an initial sanity check to determine the size of the optimal input. This allows us 
to get an estimate of the results expected from all the computing nodes at the end of the last 
stage. This computation is important since it gives our servers at the university a mechanism 
to determine the authenticity of the computed results. We determine granularity of the 
division of the task depending on the size of the input array and the number of nodes that are 
active at that point of time. The coordinator nodes then handle further network topology and 
traffic changes. The DFT computation is for both the upper and the lower halves or for either 
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of the halves since they are symmetrical. Computing one-half greatly improves the efficiency 
of the whole process. Our implementation gave us a chance to evaluate the impact that 
geolocation would have on the computational times and evaluate the speedups that can be 
achieved. 

We ran multiple tests with Fast Fourier Transforms by varying the size of the input data 
array for FFT computations. Each test runs with a fixed array size for a million iterations in 
different times of the day in order to minimize transient network effects. As the network 
conditions were different for each run, we recorded maximum and minimum values of 
latencies and the overall achieved speedups. A combination of an optimum number of 
available nodes as well as the prevalent network traffic conditions can combine to give highly 
favorable results. Similarly, adverse network conditions and non-availability of computing 
nodes can give unsatisfactory results. Error bars in the graphs indicate the variance of our 
measured speedups. We have designated the average achieved speedup to be the observed 
speedup for each simulation. We have run a large number of simulations at different times of 
the day in order to counter the effects of network traffic. These have allowed us to have a 
higher degree of confidence on our results.  

In order to determine the effect of geographic localization and our proximity matrix we 
split the tasks into two sets. In the first set of tests, we distributed the computation randomly 
across the cluster without any regard to the proximity of the nodes. In the second run, the 
node coordinators determine their closest neighbors in the same geographical location and 
selectively distributing the tasks to these nodes. Continuous evaluation of the proximity 
matrix and the associated overhead of exchanging messages to keep the matrix updated adds 
additional load to all the nodes performing the computation. For the purposes of our 
calculations we have added this small but finite overhead to the overall performance of the 
nodes. The speedups we have obtained take into account this extra overhead. We have tested 
the robustness of the checkpoint mechanism by introducing random failures in nodes and 
taking them offline. The results obtained are feedback for the system and used in order to 
improve the numbers in the proximity matrix. We varied the transmission rates of certain 
nodes in order to simulate heavy traffic scenarios. Additionally, we ran the tests during 
various times of the day in order to take advantage of the normal variations in internet traffic. 
Our results show significant improvements in performance through localization. We present 
our results in Figures 8 through 11. 
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Figure 8. Achieved speedup with a single node 

 

Figure 9. Figure 9: Achieved speedup with two nodes 
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Figure 10. Achieved speedup with four nodes. 

 

 

Figure 11. Achieved speedup with eight nodes. 

 

www.macrothink.org/npa 93 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2016, Vol. 8, No. 4 

5. Conclusions and Future Work 

We observed that computing FFT offers a huge potential for massively distributed 
workflows. Combined with fine-grained parallelism, it enables us in efficiently distributing 
tasks to computing nodes with short turnaround times, which can also help us in recovering 
from failures easily. If we are computing an N-point FFT, we can have N parallel operations 
running provided we have enough computing nodes. This would be a significant boost in 
performance over traditional coarse-grained parallelism which requires that a large number of 
operations requiring substantial computing power at each node. The elastic nature of our 
system allows us to optimize the usage of available resources and ensures a high availability 
of the system. 

From our observations, we can see that geolocation provides us with a better throughput 
since it actively selects nodes that are closest and distributes the task between them thereby 
reducing the latency in the communications required to get the computation completed. The 
single node test is a control test run with a single country coordinator to test the feasibility of 
our mechanism. In general, we have seen a few situations wherein the simulations have not 
progressed smoothly as in a dedicated cluster due to the non-availability of nodes and heavy 
network traffic. However, in almost all cases we have found that the system has recovered 
quickly by migrating the pending work to another available node. We attribute this to the 
small task divisions in fine-grained parallelism that makes it easier to distribute tasks and 
recover from failures quickly. We also observe that merely increasing the number of 
computing nodes does not always speed up the computation but directly relates to the size of 
the input array. Adjusting, the number of nodes taking part in the computation we can 
fine-tune the performance of the overall system thereby greatly improving its throughput. 

We have currently run FFT as part of our simulation to test the feasibility and 
performance of our system. Our servers at the University of Cincinnati were fine-tuned to 
split the FFT tasks to the participating nodes. We plan to investigate the effects of 
fine-grained parallelism on dense linear algebra and encryption routines. The rationale behind 
it is to simulate the effects of non-regular computations on fine-grained parallelism. Our 
initial forays into tapping the latent power in low powered devices that comprise the internet 
of things have been successful. However, we have observed that most of the delays and 
blocks in the system occur due to nodes dropping out in the middle of a computation. We 
realize that this would be an ongoing problem in future IoT devices. Therefore, in order to 
make the system more robust and acceptable we are investigating on improving the rollback 
mechanisms and graceful failure recovery mechanisms. A reputation system that ranks nodes 
based on their turnaround times and successfully completed computations is in development. 
Once integrated with our system, nodes ranked higher would get more tasks allocated to them 
since there is a greater probability of the tasks completed in time. A common area of concern 
for all cloud systems is security. Studies have shown that almost all forms and types of cloud 
systems are vulnerable to at least some form of attacks [22]. We plan to expose our system 
through a set of APIs that would be accessible over the Internet. Interactive systems on the 
Internet are prone to a variety of exploits that have been well-researched [23]. We would be 
developing a comprehensive security framework to safeguard the computational capabilities 
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of our system from misuse. This would involve setting up cryptographic keys to authenticate 
all users of the systems as well as filters to remove malicious user payloads. All of these 
would enable our system to be more robust and greatly improve the overall throughput. 
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