ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Resource Allocation for Heterogeneous

Cloud Computing

Ha Huy Cuong Nguyen
Quang Nam University, Quang Nam, Viet Nam

Tel: 084-0935-019-929 E-mail: nguyenhahuycuong @gmail.com

Vijender Kumar Solanki
Department of Computer Science and Engineering, CMR Institute of Technology,
Hyderabad India
Tel: +91-9911513926 E-mail: spesinfo@yahoo.com

Doan Van Thang
Industrial University of Ho Chi Minh, Ho Chi Minh, Viet Nam
Tel: +84-0935-011-076 E-mail: vanthangdn@gmail.com

Thanh Thuy Nguyen
VNU University of Engineering and Technology, VietNam
Tel: 084-0913-531-184 E-mail: nguyenthanh.nt@ gmail.com

Received: May 8, 2017 Accepted: June 8, 2017 Published: June 30, 2017
DOI:10.5296/npa.v9i1-2.11076 URL.: https://doi.org/10.5296/npa.v9i1-2.11076
Abstract

Cloud Computing and the Internet of Things (IoT) have been converging, creation of the
distributed computing system large scale, called IoT Cloud Systems. One of the main advan-
tages of Cloud Computing is reflected in its support for self-service, on-demand resource con-
sumption, where users can dynamically allocate appropriate amount of infrastructure resources
(e.g., computing or storage) required by an application. In this paper, we develop a method to
predict the lease completion time distribution that is applicable to making a sophisticated trade
off decisions in resource allocation and rescheduling. Research methods have improved the

71 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

efficiency and effectiveness of heterogeneous cloud computing resources.

Keywords: 10T Cloud System; Deadlock Prevention; Resource Allocation; Distributed Com-
puting; Virtualization.

1 Introduction

Recently, there has been a dramatic increase in the popularity of cloud computing sys-
tems that rent computing resources on-demand, bill on a pay-as-you-go basis, and multiplex
many users on the same physical machine. These cloud computing environments provide an
illusion of infinite computing resources to cloud users that they can increase or decrease their
resource [1] [2]. Cloud Computing and the Internet of Things (IoT) have been converging,
creation of the distributed computing system large scale, called IoT Cloud Systems [3] [4].
One of the main advantages of Cloud Computing is reflected in its support for self-service,
on-demand resource consumption, where users can dynamically allocate appropriate amount
of infrastructure resources (e.g., computing or storage) required by an application [5] [6]. As
more and more people are using virtual machine technology in the data center, especially as
many IoT Cloud Systems are deployed in the layer infrastructure as a services. Because, we
have witnessed a lot of benefits of this utility-based supply model in flexible and cheaper IT
operations [7] [8]. Current approaches dealing with IoT Cloud provisioning mostly focus on
providing virtualization solutions for the Edge devices, such as IoT gateways [7] [8]. In this
paper, we develop a method to predict the lease completion time distribution that is applicable
to making a sophisticated trade off decisions in resource allocation and rescheduling. Research
methods have improved the efficiency and effectiveness of heterogeneous cloud computing re-
sources. It can be seen that previous studies have suggested that device virtualization is one of
the prerequisites for providing a utility-based approach, which is often used to support a task.
Specifically, such as data integration or data linking and largely rely on rigid supply models.
With our automated resource provisioning model, our proposed alternative has effectively re-
sponded to the growing resource use needs of 10T Cloud Systems. The work is organized in the
following way: in section 2, we introduce the related works; in section 3, we introduce existing
models V VM-out-of-N PM, this model we build a resource optimization objective function; in
section 4, we present deadlock avoidance algorithm; in section 5, we present our conclusions
and suggestions for future work.

2 Related Work

Resource allocation in cloud computing has attracted the attention of the research commu-
nity in the last few years. Cloud computing presents a different resource allocation paradigm
than either grids or batch schedulers [9]. In particular, Amazon C2 [10], is equipped to, handle
may smaller computer resource allocations, rather than a few, large request as is normally the
case with grid computing. The introduction of heterogeneity allows clouds to be competitive
with traditional distributed computing systems, which often consist of various types of architec-
ture as well. Like traditional distributed system before we can see a heterogeneous distributed
system consists of a set of processes that are connected by a communication network. The
communication delay is finite but unpredictable. Eugen Feller et al. [11] showed a resource al-
location based on a homogeneous platform model to provide the number of physical machines
to virtual machine and proved that the energy consumption of the system is reduced if the num-
ber of used physical machines is diminished. We will explore the heterogeneous platform such
as resources of the physical machines are not the same. According to some reviews pointed out

72 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

some practices of systems resources allocation with the minimal energy consumption and just
focused on power utilization on the physical machines CPU. We believed that this burning is
not only upon CPU but also over other appliances such as hard disk, bandwidth, ect. In [12]
[13] [14] studied a lot of the problem of a request and grant computing resources rescheduling
for multi-tiered web applications in heterogeneous distributed systems in order to minimize
energy consumption while meeting performance requirements. They proposed an algorithms
heuristic for a multidimensional packing problem as an algorithm for workload consolidation.
In previous articles, we have published two algorithms. Which were used to request and de-
tect deadlock in resources allocation heterogeneous distributed platforms [14] [15]. After we
provide prevent and avoid deadlock. The optimization problems of resources based the recov-
ery of resources allocated. The resources of the physical server to provide resources for the
virtual machine requirements are usually finite at a time. Therefore, resource-based research
solutions need to be addressed. In order to improve and respond effectively, it is necessary
to update resource allocation policies to re-schedule resource allocation in heterogeneous dis-
tributed platforms. Sotomayor et al. [7] proposed a lease-based model and implemented
First-Come-First-Serve scheduling algorithm in homogeneous physical machines. With an al-
gorithm greedy-based virtual machine mapping to map leases that include some of the virtual
machines with/without start time. In the context of the dynamic cloud environment, the num-
ber of computing resource requirements increasing, moreover the tendency of service-oriented
applications (IoT). The proposed solution [8] will no longer be appropriate; instead, support
mechanisms need to be automated, self-updating and effectively utilizing physical server re-
sources.

In [16] [17] have presented the strategies of power aware virtual machine placement tech-
niques on a survey. They have discussed the used optimization algorithms to save power. They
have classified the energy saving techniques in a data center into static and dynamic methods.
They have included in the Static Power Management class and Dynamic Power Management
the techniques. Therefore, when proposing energy-efficient resource allocation, one needs to
be aware of the SLA to avoid performance degradation of the consumer applications, includ-
ing increased response times, timeouts or even failures. Therefore, Cloud providers have to
establish QoS requirements to avoid SLA violations and meeting the QoS requirements while
minimizing energy consumption.

3 A Resource Allocation System
3.1 The M VM-out-of-N PM model

A heterogeneous distributed platforms are composed of a set of an asynchronous processes
(p1, p2s- - --pn) that communicates by message passing over the communication network [15],
[2]. Based on the basic work of the authors Kshemkalyani-Singhal, and other works such
as Menasce-Muntz, Gligor - Shattuck, Ho - Ramamoorthy, Obermarck, Chandy, and Choud-
hary [17]. They have the same opinions that the requested resource model of distributed
system is divided into five model resource requirements. It’s simple resource models, resource
models OR, AND resource models, models AND/OR, and model resource requirements P-
out-of-Q. Through this model, the researchers have discovered a technical proposal deadlock
corresponding to each model. In this work, we use model P-out-of-Q as a prerequisite for
developing research models provide resources in the cloud. The n VM-out-of-1PM problem
depicts on-demand resource allocation to n VMS residing in N servers, where each VM may

73 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

use resources in more than one server concurrently. Thus, we model it to guide the design of
algorithm prevents deadlock in resource allocation among VMs each of which may use the re-
source in various servers concurrently. In Fig. 1 the model resource allocation M VM-out-of-N
PM, Fig.1 is shown the intended implementation of the developed trust management systems
P2P.

(VM VM VM VM

[VMJVM VM V]

Figure 1: The model M VM-out-of-N PM

E;;; 1s the amount of resources allocated to V' M;; at time t, where
n m
CPU _ ,CPU CPU
B =AY 4D) G M
i=1 j=1

The resource allocation problem is how to control the resource allocation to VMs with the goal
of minimizing the function £}, giving the limited resources. We get the following formulation:

flJ ENllt7 T= 1E013t7Dijt)

7«]

mmz Z

=1 i=1

X SP”

=1 i=1
By > C; (z' ~1,2,..,V;j=1,2,..,N) 2)

Vi
> BNy + Z EO}, <

| By > Cy (z—1,2,...,V,j:1,2,...,N).

In this work, extended the basic mean variance model to a cardinality constrained mean
variance model. The deails of the model is defined as follows.

. m l
min szl > im By Xopi
h
subject Y CyY < BV = 1,2, ...,

j=1
Ziy}i:LvJ_LQa 7l7
X =1Y,=1,2..,m (3)
Xpi < Z]Yﬂ

vV, Ui=1,2,..1;
U, G Xp <37, ChiVis Vi
variable X,; € 0,1UY}, €0,1

74 www.macrothink.org/npa

ISSN 1943-3581

\ M -2 | c-ro t h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Fig. 2 shows the architecture of resource allocation system, which contains two figure lable
(a), (b). Here figure (a) show a resource allocation contains two laye, input layer and output
layer. Input layer show some request resource, output layer show grant resource.

Cluster A Distributed

{Node 1 -n} <: g i> Resource
{VM1,VM2,...,VMn} {81,82,...8n}

)

Cluster B Distributed
{Node 1 -n} Resource
{VM1,VM2,...,VMn} §51,82,...Sn}

=}
=
=
e
@
=
5
be]
2
=
S
=1

Figure 2: Resource Allocation System

We can use methods to prevent deadlock to solve optimal resource model provides n VM-
out-of-N PM. Our algorithm is based on wait-for graphs (WFG) algorithm is presented in sec-
tion 4.

3.2 A Resource Allocation System

In distributed systems, the state of the system can be modeled by directed graph, called a
wait for graph (WFG). In a WFG, nodes are processors and there is a directed edge from node
P, to mode P, if P; is blocked and is waiting for P, to release some resource. A system is
deadlocked if and only if there exists a directed cycle or knot in the WFG [15], [12] [17].

Aset P = {P,, P,,P.} of k > 1 entities is deadlocked when the following two conditions
simultaneously hold:

e Each entity P; P is waiting for an event permission that must be generated from another
entity in the set;

e No entity P; P can generate a permission while it is waiting.

If these two conditions hold, the entities in the set will be waiting forever, regardless of the
nature of the permission and of why they are waiting for the permission; for example, it could
be because P; needs a resource held by P; in order to complete its computation. A useful way
to understand the situations in which deadlock may occur is to describe the status of the entities
during a computation, with respect to their waiting for some events, by means of a directed
graph, called wait-for graph [15] [17]. In heterogeneous distributed platforms, the state of
the system can be modeled by a directed graph, called a wait for graph (WFG). In a WFG,
nodes are processes and there is a directed edge from node P, to node P if P, is blocked and
is waiting for P, to release some resources. A system is deadlocked if and only if there exists
a directed cycle or knot in the WFG [15], [2], [17].

Deadlock resolution involves breaking existing wait for dependencies between the pro-
cesses to resolve the deadlock. Therefore, when a wait for dependency is broken, the corre-

75 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

sponding information should be immediately cleaned from the system. If this information is
not cleaned in timely manner, it may result in prevention of phantom deadlocks.

The resource providers, consider providing a virtual machine request individually, going
through the scheduling algorithm to determine. By applying the algorithm to prevent deadlock,
will test the maximum amount of resources of the physical server at the provider. Through the
vector components of each type of resource that will be used, as well as the total resource. The
allocation is thus represented by two vector components vector element and the vector total.

As can be considered here is the case where a process p; requires the resources it needs for
its session one after the other, hence the name incremental requests. The main issue that has to
be solved is the prevention of deadlocks. For instance, the processes ps and p» in Fig.1 can be
taken in consideration when both processes want to acquire both the resources ; and 5. As a
matter of fact that prevention deadlock would help in providing resources as good as possible.

As it is commonly known, process must wait for the resources as deadlock occurred since
they are being occupied by other processes. However, achieving effectively resource scheduling
would greatly lessen such worse situation of deadlock. Therefore, proposed algorithm works
as engine springing up the needed information about the process situations whether each one is
in underway, lack or waiting and this fact could be graphically expressed through dependence
graph presented in this paper.

Therefore, when process in a wait-for the dependency is broken, the corresponding infor-
mation must be instantly restored from the system, otherwise, deadlock would be happening.
Let {ry, r2, . . . ,r,} be the whole set of resources accessed by the processes, each process
accessing possibly only a subset of them. Let < be a total order on this set of resources. The
processes are required to obey the following rule:

- During a session, a process may invoke request resource(r;) only if the it has already
obtained all the resources r; it needs which are such r; < ry.

- As p; is owning the resource 7, and waiting for the resource ry, it invoked first request
resource(r,) and then a request resource(ry).

- As po is owing the resource x;, and waiting for the resource r,, it invoked first request
resource(r) and then request resource(r,).

4 Ouwur Algorithm

In this paper, we will approach proposed algorithm for deadlock prevention maintains
property of n-vertex directed graph when the new is added in the graph using two-way search.
The time bound for the incremental cycle algorithm for deadlock prevention take O (y/m) time
bound for the m edge insertion in the directed graph. It reports the cycle when the algorithm
detects for edge (v,m) that there exist a path from vertex w to v.

Methods of optimizing the use of functions in the formula 3. Optimal recovery method in
materials allocated because the process still holds resources when finishing requirements. Data
concerning the use of CPU, RAM and HDD were collected from the above physical machine
servers at Data Center in every 4 hour during a period of 1 days.

76 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

‘ Processes that require resources to create virtual machines ‘

L]

‘ Based on information from the events of the process to find the status of the resour ce request process ‘

L]

‘ Find the edges of the graph and timestamp ‘

L]

‘ Determine the input step, the output of the vertex of the graph ‘

L]

‘ Classification timestamp ‘

L]

‘ Reduce the graph by deleting the timestamps ‘

Y

‘ Providing resources to process requests ‘

>

Figure 3: Flow chart of algorithm RRAA

In the flowchart Figure 3 using the demanding method in ideal conditions does not use
technical solutions.

‘ Processes that require resources to create virtual machines ‘

L]

‘ Based on information from the events of the process to find the status of the resour ce request process ‘

L]

‘ Find the edges of the graph and timestamp ‘

L]

‘ Determine the input step, the output of the vertex of the graph ‘

L]

‘ Classification timestamp ‘

L]

’ Reduce the graph by deleting the timestamps ‘

L]

‘ Detecting deadlock ‘

L]

‘ Providing resources to process requests ‘

ST

Figure 4: Flow chart of algorithm PDA

The first part was the set of data collected within the Algorithm 1 used for model M VM-
out-of-N PM and the second part was the remaining data collected within the Algorithm 2
for testing. Compare data set obtained table we noticed that prevention deadlock results also
brought confidence and the ability to bring greater efficiency.

In the flowchart Figure 4 using the demanding method in ideal conditions with technical
solutions detecting deadlock.

77 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Algorithm 1 Requests Resources Allocaition Algorithm (RRAA)

i(CPU)* j(RAM)™
Input: P, , P/

3 K3

from laaS provider 7;
Output: new resource <" gty A (et

BEGIN

Operation request resource (r;) in the critical section is
csstate; <— trying;

lrd; <— clock; + 1;

for each j € R; do

if (usedby;[j] =0) the send request (Ird;,i) to p; end for;
sentto; [j] +— true;

usedby;[j] +— R

else sentto;[j] «—false

end if

end for;

usedby;[i] < k;;
wait(> usedby;[j] < NPM);

j=1
csstate; +— in;

Operation release resource (r;) in the critical section is

csstate; <— out;

for each j € permdelayed; do send permission(i,j) to p; end for;
R; < permdelayed;;

permdelayed; < ©

END.

5 Experiments and results

In this paper, the solution provides effective resources is done through two algorithms. We
implement the designed deadlock prevention algorithm on a physical machine server with an
Intel E5-2603V3 processor and 16G memory.

Algorithm resource requirements and algorithms prevent deadlock in resource supply.
Based on the resource model provides M VM-out-of-N PM.

CloudSim supports VM Scheduling at two levels:

e First, at the host level where it is possible to specify how much of the overall processing
power of each core in a host will be assigned at each VM.

e Second, at the VM level, where the VMs assign specific amount of the available process-
ing power to the individual task units that are hosted within its execution engine.

78 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Algorithm 2 Deadlock Prevention Algorithm (PDA)

i(CPU)* j(RAM)™ . R
Input: P/ , P from laa$ provider i;
(n+1) (nt1)
Output: new resource &7V pRAMTT,
BEGIN

When REQUEST(k,j) is received from p; do

clock; < max(clock;,n);

prio; <— (csstate; =1in) V ((csstate; = trying) A ((Ird;,i) j (n,))));
if (prio;) then send NOTUSED(1PM) to p;

else if(n, # 1PM) then send NOTUSED(1PM - n;) to p; end if
permdelayed; <— permdelayed; U j

end if.

When permission(i,j) is received from p; do

NPM; + NPM;\ j;

When NOTUSED(x) is received from p; do usedby;[j] < usedby;[j] -x;
if ((esstate; = trying) A (usedby;[j] = 0) A (notsentto;[j])
then send REQUEST(/rd;,1) to p;

sentto;[j] < true;

usedby;[j] < N PM;

end if.

END.

For comparison, the other server equipped with the same configuration have prevention
deadlock algorithm, named native.The data were separated into two parts.

For simulation we need a special toolkit named CloudSim. It is basically a Library for
Simulation of Cloud Computing Scenarios. It has some features such as it support for model-
ing and simulation of large scale Cloud Computing infrastructure, including data centers on a
single physical computing node.

It provides basic class for describing data centers, virtual machines, applications, users,
computational resources, and policies.

We saw infrastructure of Cloud, in which Data Center consist of different Hosts and the
Host manages the VM Scheduler and VMs.

Cloud-let Scheduler determines how the available CPU resources of virtual machine are
divided among Cloud lets. There are two types of policies are offered: Space - Shared (Cloud-
let Scheduler Space Shared): To assign specific CPU cores to specific VMs.

VM Scheduler determines how many processing cores of a host are allocated to virtual
machines and how many processing cores will be delegated to each VM. It also determine how
much of the processing core’s capacity will effectively be attributed for given VM.

79 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Time-Shared (Cloud-let Scheduler Time Shared): To dynamically distribute the capacity
of a core among VMs, test data are as follows [18]:

Table 1: Optimal time of our algorithm (RRAA)

Cloudlet ID | PMID | VM ID | Start | End | Finish
Method . . .

time | time | time (%)
0 1 1 1 0.1 120 | 25.22%
1 2 2 2 0.1 | 130 | 26.00%
2 3 2 4 0.1 | 132 | 27.27%
3 4 3 5 0.1 | 135 | 33.75%
4 5 3 3 0.1 | 150 | 36.39%
5 6 4 6 0.1 | 170 | 39.05%
6 7 4 7 0.1 | 185 | 42.86%
7 8 1 8 0.1 198 | 44.44%
8 9 2 9 0.1 | 199 | 50.55%
9 10 3 12 0.1 | 200 | 54.86%
10 11 4 10 0.1 | 215 | 64.86%
11 12 1 13 0.1 | 220 | 64.94%
12 13 2 11 0.1 | 225 | 70.55%
13 14 3 17 0.1 | 230 | 74.86%
14 15 3 24 0.1 | 235 | 74.96%
15 16 4 23 0.1 | 215 | 64.86%
16 17 1 22 0.1 | 220 | 64.94%
17 18 2 21 0.1 | 225 | 70.55%
18 19 3 20 0.1 | 233 | 74.87%
19 20 3 19 0.1 | 236 | 74.97%
20 21 4 18 0.1 | 235 | 74.96%
21 22 1 15 0.1 | 240 | 80.44%
22 23 2 25 0.1 | 245 | 80.55%
23 24 3 16 0.1 | 250 | 84.86%
24 25 3 14 0.1 | 255 | 86.96%

Table 1 shows that there is data-set simulation with 10 Cloud-let ID, when compared the
with some VM ID in Table 1 usually between 8 and 10. According to the results rate has
a VM 8 quickly VM 10. The comparative analysis of Table 1 can be seen in many times,
after execution, although there were individual time with RRAA algorithm respone time not
effectively.

Table 2 show that there is a noticeable difference between there two algorithm. The com-
parative analysis of experimental result can be seen in many times, apter task execution, al-
though there were individual time improved RRAA algorithm response time was not signifi-
cantly less than an optimal time algorithm, in most cases, improved algorithm is better than the
optimal time algorithm, thus validated the correctness and effectiveness.

80 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Table 2: Optimal time of our algorithm (PDA)

Cloudlet ID | PMID | VM ID | Start | End | Finish
Method . . .

time | time | time (%)
0 1 1 1 0.1 70 10.22%
1 2 2 2 0.1 86 15.00%
2 3 2 3 0.1 92 17.27%
3 4 3 4 0.1 95 18.75%
4 5 3 5 0.1 100 | 19.39%
5 6 4 6 0.1 | 120 | 20.05%
6 7 4 7 0.1 | 130 | 21.86%
7 8 1 8 0.1 | 148 | 24.44%
8 9 2 9 0.1 | 160 | 25.55%
9 10 3 10 0.1 | 170 | 25.86%
10 11 4 11 0.1 120 | 20.05%
11 12 4 12 0.1 121 | 21.86%
12 13 1 13 0.1 | 122 | 24.44%
13 14 2 14 0.1 | 130 | 25.55%
14 15 3 15 0.1 145 | 25.86%
15 16 4 16 0.1 | 150 | 26.05%
16 17 4 17 0.1 151 | 26.86%
17 18 4 18 0.1 152 | 26.44%
18 19 4 19 0.1 160 | 26.55%
19 20 3 20 0.1 | 165 | 26.86%
20 21 4 21 0.1 | 170 | 30.65%
21 22 4 22 0.1 171 | 31.76%
22 23 4 23 0.1 | 172 | 32.74%
23 24 4 24 0.1 174 | 33.75%
24 25 3 25 0.1 175 | 34.88%

The averaged resource usage of different execution strategies are reported in Fig. 5.

The comparative analysis of experimental result can be seen in many times, apter task
execution, although there were individual time improved PDA algorithm response time was
not significantly less than an optimal time algorithm, in most cases, improved algorithm is
better than the optimal time algorithm, thus validated the correctness and effectiveness. The
averaged resource usage 25% - 30% of different execution strategies are reported in Fig. 6.

More exactly, the averaged CPU, Memory and Network utilization rates are 30 % show
in Fig 5. Due to the barrier synchronization, CPU and network utilization rate fluctuate dra-
matically in each graph processing super step. In contrast,the memory utilization rate is quite
stable, as most memory are used to store the graph structure. At the end of execution,the mem-
ory usage reduces slightly as the number of active verticals reduced.

81 www.macrothink.org/npa

ISSN 1943-3581

\ M -2 | c-ro t h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

Comparsition the optimal time of our algorithm
RRAA with PDA

350

300

4
= 290
= 200
= 150
2 100
i 50
¢ = Am ANl
1 2 3 4 5 g 7 8 9 10
CLOUDLETID
ERRAA EPDA

Figure 5: Comparative analysis of experimental result algorithm RRAA with PDA

Comparsition the optimal time of our algorithm
PDDA with PDA

80

40

20

0
1 2 3 4 3 6 T g 9 10

Cloudlet 1D

Respornse time
(ms)
L=1]
[=]

B PDDA Improved B PDA

Figure 6: Comparative analysis of experimental result PDDA Improved with PDA

Similar to above observations, instance resources are not fully utilized in all execution
strategies. Generally, the higher instance capability, the higher CPU usage and network traffic;
and the more instances, the lower CPU usage and network traffic. In the case of 16 instances,
the CPU usage increases proportionally to the number of CPU cores, which indicates that the
graph vertex programs are run by CPU cores in parallel.

6 Conclusion

A prevention deadlock algorithm is implemented for resource allocation on heterogeneous
distributed platforms. The prevent deadlock algorithm has O(m(n-1)/2) time complexity, an
improvement of approximate orders of magnitude in practical cases. In this way, programmers
can quickly prevent deadlock and then resolve the situation, e.g., by releasing held resources.

82 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

We focus on the application of the algorithm to prevent deadlock, when the process enters
the critical section. From here we proceed to reschedule delivery system resources in a physical
server. The application of the algorithms prevent this impasse in the proposed offer based
resources distributed heterogeneous virtual machines require. Through this study, we found
that the application of algorithms for preventing deadlock would best performance and take
advantage of the physical resources.

The algorithms we have discussed solve the problem of deadlock in two phases: 1) it
constructs the WFG of the system, and 2), it searches for the cycles. Due to the lack of globally
shared memory, the design of the algorithms is difficult because sites may report the existence
of a global cycle after seeing segments of the cycle at different instants, even though all the
segments never existed simultaneously.

Through this research, we found that need the application method new would give optimal
performance to distributed resources of heterogeneous distributed platforms. In future, we
propose algorithm distributed in resource allocation.

Acknowledgement

Authors are very much thankful to the reviewers for providing constructive comments. It
has helped a lot to improve the quality of the paper. I am also thankful to my institution for
providing me sufficient time and place to execute my research work.

References

[1] Yazir, Y.O., Matthews, C., Farahbod, R.: Dynamic Resource Allocation in Computing
Clouds using Distributed Multiple Criteria Decision Analysis. IEEE 3rd International Con-
ference on Cloud Computing, pp. 9198, (2010). DOI: 10.1109/CLOUD.2010.66

[2] Ha Huy Cuong Nguyen, Hung Vi Dang, Nguyen Minh Nhat Pham,Van Son Le, Thanh
Thuy Nguyen. Deadlock detection for resources allocation in heterogeneous distributed
platforms, Proceedings of 2015 Advances in Intelligent Systems and Computing, June 2015,
Bangkok, Thailand, Spinger, Volume 361, Issue 2, pp. 285-295, (2015). DOI:10.1007/978-
3-319-19024-229.

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D.,Rabkin, A., Stoica, 1., Zaharia, M.: A view of cloud computing. Commune. ACM 53(4),
5058 (2010). DOI:10.1145/1721654.1721672.

[4] Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing.
Cluster Comput. 12, 115 (2009). DOI:10.1016/j.future.2011.04.017.

[5] Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Gener. Comput. Syst.
28(5),755768 (2012). DOI:10.1016/j.future.2008.12.001.

[6] Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Gener. Comput. Syst. 25(6), 599616 (2009). DOI: 10.1016/j.future.2008.12.001.

83 www.macrothink.org/npa

ISSN 1943-3581

\ M ac-rot h i n k Network Protocols and Algorithms
™
A InStltUte 2017, Vol.9, No.1-2

[7] Sotomayor, B.: Provisioning Computational Resources Using Virtual Machines and
Leases. Ph.D. thesis, University of Chicago (2010).

[8] Sotomayor, B., Keahey, K., Foster, .T.. Combining batch execution and leasing using
virtual machines. In: HPDC, pp. 8796 (2008). DOI:10.1145/1383422.1383434.

[9] Warneke et al, Exploiting dynamic resource allocation for efficient parallel data pro-
cessing in the cloud. IEEE Trans. Parallel Distrib. Syst. 22(6), 985-997 (2011). DOI:
10.1109/TPDS.2011.65.

[10] Amazon EC2, https://aws.amazon.com/ec2/.

[11] Eugen Feller, Lavanya Ramakrishnan, Christine Morin, Performance and energy ef-
ficiency of big data applications in cloud environments: A Hadoop case study, Jour-
nal of Parallel and Distributed Computing, Elsevier, 79-80, pp.80-89, (2015). DOI:
10.1016/j.jpdc.2015.01.001.

[12] Chandy, K. M., Misra, J., and Haas, L. M., Distributed Deadlock Detection, ACM Trans.
on Computer Systems, May 1983. DOI: 10.1145/357360.357365.

[13] Vouk, M.A.: Cloud computing: Issues, research and implementations. In: Information
Technology Interfaces. ITI 2008. 30th International Conference on, 2008, pp. 3140, (2008).
DOI: 10.1109/1T1.2008.4588381.

[14] Ha Huy Cuong Nguyen, Van Son Le, Thanh Thuy Nguyen. Algorithmic approach to
deadlock detection for resource allocation in heterogeneous platforms,Proceedings of 2014
International Conference on Smart Computing, 3-5 November, HongKong, China, IEEE
Computer Society Press, pp. 97-103, (2014). DOI: 10.1109/SMARTCOMP.2014.7043845.

[15] Ha Huy Cuong Nguyen, Dac Nhuong Le,Van Son Le, Thanh Thuy Nguyen. A new tech-
nical solution for resources allocation in heterogeneous distributed plaforms, Proceedings
of 2015 The Sixth International Conference on the Applications of Digital Information and
Web Technologies(ICADIWT2015), 10-12 Feb 2015, Macau, China, 10S Press, Volume
275, Issue 2, pp. 184-194, (2015). DOI: 10.3233/978-1-61499-503-6-184.

[16] Wu, L., Garg, S.K., Buyya, R.: SLA-based Resource Allocation for a Software as a Ser-
vice Provider in Cloud Computing Environments. In: Proceedings of the 11th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2011), Los Angeles,
USA, May 23-26, (2011).DOI: 10.1109/CCGrid.2011.51.

[17] Ajay D. Kshemkalyani, M.S., Distributed Computing Principles, Algorithms and Sys-
tems. 2008, UK: Cambridge University Press. DOI: 10.1017/CB0O9780511805318.

[18] www.cloudbus.org/cloudsim/

Copyright Disclaimer
Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

84 www.macrothink.org/npa

