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Abstract 

Delivering the real-time services over converged networks is a big challenge. Real-time 
services need to high Quality of Service (QoS). For this purpose, bandwidth reservation and 
packet prioritization techniques are used. Thus, real-time data packets can be reached to their 
targets with minimum delays and losses.  But, this situation creates unintended 
consequences for other internet services such as HTTP and FTP. In this case, establishing a 
balance between the real-time services and the other services is a must. In this study we 
introduce a new research question: how to transport real-time multimedia IP packets just in 
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time? Just in time means that transportation of the packets neither early, nor late. For this 
purpose we developed a scheduling/prioritizing algorithm called just in time transport (JITT). 
Following a cross-layer design approach, JITT controls delay and jitter over whole 
communication path. We evaluated JITT on the different simulations and one experimental 
testbed for performance analysis. Our findings support that JITT provides stable delay and 
low jitter and transports the packets nearly just in time.  

 

Keywords: Jitter, Packet Scheduling, QoS, Delay, Real-Time Communication. 

1. Introduction  

Real-time communication technologies provide many benefits in a broad area. The main 
areas of real-time communication are personal communication, distance learning, IP TV and 
telemedicine. In the personal communication area, Voice over IP (VoIP), video conferencing 
systems and live video broadcasts are becoming increasingly common due to low costs. 
Similarly, distance learning is popularized due to its advantage of place independence. 
Another emergent area is Telemedicine. Especially, telesurgery needs very high Quality of 
Service (QoS) and low error rate. Beside, some other developing areas are real-time 
multiplayer games, real-time remote monitoring and control systems. If the data of the above 
applications are transported on a converged network, some problems arise.  

At this point, it is useful to distinguish between QoS and Quality of Experience (QoE). 
QoS is a more technical definition. It defines that the services provided by the service 
provider should be delivered to the user without error. QoE is overall user experience [1]. In 
particular, the widespread use of mobile and wireless networks has made these two concepts 
even more important. For example, an IPTV provider must provide users with a certian QoE 
in their wireless environment [2]. Problems such as users being mobile, bandwidth 
fluctuations in wireless access, lack of connectivity are making real-time video streaming 
difficult. Different algorithms and technologies are being developed for this purpose. 

In packet-switched networks, produced data by many users are queued into buffers on 
the network devices and serviced one by one. This situation often differentiates the arrival 
times of the packets of the same flow to their destinations. This delay difference is called as 
jitter. Lower latency and jitter, which means a higher quality of service. Delay and jitter are 
the most critical components of real-time communication. More technically, delay is the 
elapsed time between the start of a packet's sending time and the end of its receiving time. 
From the end user perspective, jitter can be described as unexpected interruption during 
playback [3]. For reducing delay and jitter, bandwidth reservation and packet prioritization 
techniques are used. However, prioritization of real-time packets means that the packets 
belonging to other services (e.g. HTTP, FTP) will experience more latency. The critical issue 
at this point is to prioritize real-time packets as much as their needs. For example, if a 
real-time data needs to reach the receiver in 100 ms, it does not make sense to send it to the 
receiver in 50 ms at the expense of lowering the quality of the other services such as HTTP 
and FTP. Here, we must establish a balance between services. This is possible only when 
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real-time data is delivered in a timely manner, namely just in time. In this study, we 
developed a scheduling/prioritizing algorithm and a packet header extension to reduce delay 
and jitter.  

The remainder of this paper is organized as follows: In Section 2, the related works are 
presented. JITT algorithm details are described in Section 3. Section 4 gives materials and 
methods which used in simulations and experiments. Simulation and experimental results are 
explained in Section 5. Various important points to be considered are discussed in Sections 6. 

2. Related Work  

QOS improvement methods are categorized as Integrated Services (Intserv) [4] and 
Differantiated Services (Diffserv) [5]. The idea of Intserv is that each application has to make 
bandwidth reservation. By contrast, Diffserv does not reserve network resources. Diffserv 
provides priority for higher classes of service. Intserv is not useful on the internet due to lack 
of scalability. Diffserv based methods has been well accepted. 

Packet by packet scheduling discipline first introduced in [6] and called Weighted Fair 
Queuing (WFQ). WFQ classifies data flows and reserves resources for these classes. 
Generalized Processor Sharing (GPS) implements same method with WFQ [7]. GPS is a 
strategy for rate-based flow control and employs admission control for guaranteeing 
throughput and delay in the worst-case. Another packet by packet scheduling approach is 
Stochastic Fair Queuing (SFQ) [8]. SFQ uses hashing to map packets to corresponding 
queues. Normally, every possible flow needs its own queue, but SFQ offers less number of 
queues from possible number of flows. So, more than one flow can fall into the same queue 
and the flows’ fairness become stochastic. Similarly, Deficit Round Robin (DRR) algorithm 
uses stochastic fair queuing to assign flows to queues [9]. DRR’s one difference from round 
robin algorithm is that if a queue was not able to send a packet in the previous round because 
of its packet size was too large, the previous quantum is added to the next round. Another 
round robin based study is SATURN [10]. SATURN uses simple dual round robin arbitration 
scheme to schedule packets. Many queue models shapes traffic to achieve fair share. But 
Traffic Shaping Algorithm with Delay Jitter Constraints (TSJC) algorithm proposed in [11] 
shapes traffic with delay jitter constraints. TSJC dynamically configures traffic shaping 
parameters on the basis of calculating packet delay, jitter and loss in a queue buffer.  

At this point it would be useful to talk about playout buffering. Playout buffering 
provides smooth jitter and gains time for resending lost packets, but introduces additional 
buffering latency to playback. As an example of this technique, MultiLayer-AudioVisual 
Streaming System (ML-AVSS) buffers the packets at receiver side and transmits them to 
application layer [12]. Generally, small start-up delay before playback is acceptable for end 
users. However, they are much less tolerable towards halt or interruption during playback [3].  

Many of the scheduling algorithms in the literature are round robin (RR) based and these 
algorithms work on single network device. These methods operate on each device 
independently from the other devices. Therefore they cannot control end-to-end delay and 
jitter. Another alternative method to achieve end-to-end delay control is reservation based 
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methods. However, bandwidth reservation for each data stream is not feasible on a great 
environment involving tens of thousands users. Also, all the previous bandwidth reservation 
studies are focused on specifying an upper bound of Real-time Multimedia (RTMM) packet’s 
delay. Thus, quality of RTMM flow can be increased. However, the quality of other services 
must also be considered. For this purpose, RTMM packets must be delivered neither early, 
nor late. This is possible with just in time transportation of RTMM packets. 

Additionally, just-in-time communication requires high service utilization on the one 
hand and short service response time on the other [13]. JITT tries to overcome these two 
problems.  

Our contributions are summarized as follows: 

• We introduce a new research question: how to transport IP packets just in time? 

• We propose a new packet scheduling/prioritization method to deliver RTMM packets 
nearly just in time. 

• We conduct comprehensive simulations and experiments to validate our analytical 
results and evaluate the performance of JITT. 

3. The JITT Algorithm 

In this section we describe JITT’s behaviors in details.  

3. 1 JITT Structure 

JITT considers all router queues on a whole communication path as a single queue and 
schedules (RTMM) packets. For this purpose, JITT adds 16 bit Desired Maximum 
End-to-End Delay (DMEED) field to multimedia data and encapsulates it in UDP packets in 
order to achieve as shown in Fig. 1. Herein, we may ask that how are applications 
incentivized to choose proper delay targets? Following the related standards will be a solution. 
For example, The ITU G.114 specification recommends less than 150 millisecond (ms) 
one-way end-to-end delay for high-quality real-time traffic such as voice [14]. In ITU G.114, 
the need for the delay value to be less than 150 ms is explained as follows: "For many 
intra-regional (e.g., within Africa, Europe, North America) routes in the range of 5000 km or 
less, users of VoIP connections are likely to experience mouth-to-ear delays <150 ms." and 
"If delays were kept below 150 ms, then most applications would not be significantly 
affected." 

 
 
 
 
 
 
 
 

 

Fig. 1: Data encapsulation 

RTMM Data UDP header 

UDP Packet 

DMEED + +
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A router on the communication path calculates the packet’s Maximum Waiting Time 
(MWT) using DMEED. It sends the packet when MWT is finished. In this study, we added 
DMEED as a new field to UDP header in the simulations. Thus, we created a new packet 
structure. In order to differentiate these packets from ordinary UDP packets, we used a 
different number from UDP’s assigned number in IP header’s protocol field. An IP header 
option field can be used for DMEED. In this case, it would be enough to reach the IP header. 
Additionally, all routers can reach the IP header while they cannot reach UDP headers. In this 
study we added a new field to UDP header because of there is no meaningful difference 
between usage of an IP header or UDP header field in a simulation environment. 

JITT uses 2 queues on each router: the JITT queue and the other queue. RTMM packets 
are buffered in the JITT queue and all other packets are buffered in the other queue.  

3. 2 JITT Working Principle 

When two users start an RTMM communication, the sender puts the desired maximum 
end-to-end delay value in the packet’s DMEED field. When a router on the path receives this 
packet, it calculates MWT for the packet; see (1). 

         MWT ൌ ୈ୑୉୉ୈ

ୌ୭୮ୡ୭୳୬୲
                (1) 

In (1), MWT is maximum waiting time, DMEED is DMEED field of the packet and 
Hopcount is the number of the routers which are located on the path (sender’s subnet to 
receiver’s subnet). If router runs a distance vector routing protocol, it can get Hopcount value 
from the routing table. Otherwise, it sends a query to the receiver. Once the Hopcount is 
calculated for a receiver’s subnet, the value can be stored in a table and reused. In this study 
we used distance vector based approach. After the calculation of MWT, the router creates a 
structure using the packet, MWT and a local timestamp as shown in Fig. 2 and adds it to the 
JITT queue. The router adds all received other packets to the other queue simultaneously. As 
a result, router keeps two queues. In parallel with packet adding processes described above, 
another process searches the JITT queue continuously. The searching process calculates that 
how long a packet waited in the JITT queue until now; see (2). 

 

Fig. 2: The structure added to JITT queue 

                 ET ൌ CT െ TIMESTAMP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ2ሻ 

(2), ET is elapsed time, CT is current time. After the calculating of ET, router determines 
the necessity of sending a packet (see Algorithm 1). ServiceTime parameter in the Algorithm 
1 is the time needed to send the packet over the line and it is calculated as follows: 
packet	in	bits bandwidth⁄ . 

 

 

MWT The Packet Timestamp 
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Algorithm 1. Determination of Sending a Packet 

If ET >= MWT–ServiceTime do  
DMEED = DMEED–ET–ServiceTime; //Update DMEED Field on JITT packet   
Send the JITT packet; //packet waited MWT 

Else if other queue != Empty do 
Send the first packet in the other queue  

Else Send the first packet in the JITT queue  

 

We can explain Algorithm 1 as follow: 

1. If there are no packets in the other queue, send JITT packets as soon as possible 

2. If at least one packet is present in the other queue, send this packet as soon as possible; 
hold JITT packets till as late as possible. “As late as possible” means that DMEED value on 
the JITT packets.  

If router decides to send a JITT packet, router updates DMEED field of the packet (see 
Eq. 3). Thus, the next router on the path can calculate that how long this packet can wait in 
the queue. So, DMEED value is decreased on each router and each router can calculate its 
own MWT value for a particular packet. 

       DMEED ൌ DMEED െ ET െ ServiceTime                       (3) 

Some studies uses similar technique we implemented in JITT. One of the studies is 
adaptive per hop differentiation (APHD) [15]. In APHD, data packets carry end-to-end delay 
requirement just like JITT. In APHD the distance from the source to the destination is 
calculated at the source node. Hence, APHD needs source routing which is not allowed on the 
internet. Another of the studies is EstServ [16]. In the EstServ, packets carry their deadlines. 
But, EstServ has some drawbacks. In the EstServ, the source decides the hop count. Hence, 
EstServ needs source routing just like APHD. Also, EstServ needs a synchronized network to 
calculate a packet’s deadline. Synchronization of the all routers on the internet is not feasible. 

3. 3 Waiting Time Distributions of RTMM Packets 

We can say that there are two waiting times in a queue for a packet. These are queuing 
time W୯ and service time t. Total waiting time can be expressed as 

               W	 ൌ 	W୯ 	൅ 	t	                            (4) 

Wq can be calculated as  

                 W୯ ൌ tଶ ൅ ⋯ t୬                      (5) 

W can be calculated as  

                W ൌ tଵ
′ ൅ tଶ ൅ ⋯ t୬                      (6) 

where tଵᇱ  is the service time of the last received packet and  tଶ, … , t୬are service times of 
ሺn െ 1ሻ packets in the queue. In telecommunication networks, packets arrive at a router 
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according to Poisson distribution [17]. Let φ  be packet size in bits, Β୭୳୲  be router’s 
outgoing link bandwidth. Service time for nth packet can be calculated as     

                                  t୬ ൌ
஦౤

Β౥౫౪
                         (7)  

Keep the queue length at a certain level over the time is impossible. So, Wq for each 
packet will be different. Thus, each packet experience different delays and jitters over the 
time. JITT determines packet’s delay bound using DMEED. So, W for RTMM packets in a 
flow is same. Let τ be MWT. JITT calculates sending time of a packet as 

                	τെ φ
Β౥౫౪

	൒ Δ                          (8)  

Where Δ is elapsed time of the packet in the queue. So, JITT takes into account packet 
service time and brings τ closer to Δ. Let F ൌ ሼPଵ, Pଶ …P୬ሽ be a RTMM flow, where n is total 
packet number and P୧, 1 ൑ i ൑ n are packets. Wq for F can be expressed as  

        F୛౧
ൌ ቄቀτ െ φభ

Β౥౫౪
ቁ , ቀτ െ φమ

Β౥౫౪
ቁ , … , ቀτ െ φ౤

Β౥౫౪
ቁቅ                (9) 

Service time for F can be expressed as  

           Fୱୣ୰୴୧ୡୣ ൌ ቄቀ
φభ

Β౥౫౪
ቁ , ቀ

φమ
Β౥౫౪

ቁ , … , ቀ
φ౤

Β౥౫౪
ቁቅ                (10) 

 
Finally we write 

            F୛౧
൅ Fୱୣ୰୴୧ୡୣ ≅ ሼሺτሻ, ሺτሻ, … , ሺτሻሽ                (11) 

So, waiting time in the queue for all packets in the same flow is equal. Technically, jitter 
has been described as “variation of a metric (e.g., delay) with respect to some reference 
metric (e.g., average delay or minimum delay). This meaning is frequently used by computer 
scientists and frequently (but not always) refers to variation in delay.” in [18]. We used 
average delay as reference metric in calculation of jitter. So, jitter of a flow F can be 
expressed as  

            F୎ ൌ ൛τଵ െ τୟ୴୥, τଶ െ τୟ୴୥,⋯ , τ୬ െ τୟ୴୥ൟ            (12) 

where τୟ୴୥ ≅
∑ τ౤౤
భ

୬
.  

Because of every packet’s τ value is same in a JITT flow F, we can write τୟ୴୥ ≅ τ୧, 1 ൑

i ൑ n. Thus we get (13). 

          F୎ ≅ ൛τଵ െ τୟ୴୥, τଶ െ τୟ୴୥,⋯ , τ୬ െ τୟ୴୥ൟ ≅ ሼ0,0, … ,0ሽ              (13) 

(13) shows that JITT keeps jitter close to zero. 
 
 

3. 4 Departure Time Analysis of RTMM Packets 

In this section we evaluated effects of packet sizes, MWT values, input and output 
bandwidths of a router and other traffic loads on JITT’s performance.  
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Let Pଵ and Pଶ be two packets in a JITT queue where 	Pଵ ≺ Pଶ. We assumed that there is 
no time interval between the receiving time of Pଵ’s last bit and receiving time of Pଶ’s first bit 
from the line. Let queuing times Pଵ and Pଶ be tଵ and tଶ; MWTs be τଵ and τଶ; service 
times be ηଵ and ηଶ; dequeuing times be tଵᇱ and tଶᇱ respectively. We write differences of 
the receiving times of the packets as  

             δଵ ൌ tଶ െ tଵ ൌ
஦మ

୺౟౤
                           (14) 

We write differences of sending times of the packets as 

              δଶ ൌ ሺtଶ ൅ τଶሻ െ ሺtଵ ൅ τଵሻ                 (15) 

and differences of taking times of the packets from the queue as  
 

                 ω ൌ tଶᇱ െ tଵᇱ                         (16) 

Where Β୧୬ is the input bandwidth of the router. We showed the above equations in Fig. 
3. We can say that ω depends on φଵ, φଶ, Β୧୬, Β୭୳୲, τଵ and τଶ. In the worst case with the 
provision of some pre-conditions, it can be tଶᇱ ൌ tଵᇱ. This means that sending time of Pଶ 
shifts amount of ηଵ. Mentioned worst case may be realized only where there is no intervals 
between consecutively received RTMM packets from the line, Β୭୳୲ ൏ Β୧୬ and φଶ ൐ ߮ଵ. On 
the Internet, all incoming traffics won’t be RTMM. If RTMM traffic load is less than Β୧୬, 
there will be intervals between RTMM packets. Also, if there are other traffic types on the 
line, there will be intervals between RTMM packets, too. So, the worst case that mentioned 
above is unlikely occurred. Even if all the conditions are fulfilled, shifting of sending time of 
Pଶ inversely correlated with Β୭୳୲. Usually, average RTMM packet size is not very large. 
Thus, shifting time will be smaller. So, we can ignore this shifting (ηଵ). 

 

 

Fig. 3: Departure time analysis of JITT packets 

 

 

 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2017, Vol. 9, No. 1-2 

www.macrothink.org/npa 36

3. 5 Determination of JITT Queue Limit 

Determining the JITT queue limit is a crucial point for proper operation of the model. If 
we set JITT queue limit lower than a certain level, the packets may be dropped while it is 
possible to deliver to the target. Let us analyze this situation. 

Let Q ൌ ሼPଵ, Pଶ,⋯ , P୬ሽ be a JITT queue, where P୧	,1 ൑ i ൑ n are packets in the queue. 
If τ୧ is MWT of P୧, we pick P୫ୟ୶ which has τ୫ୟ୶ ൌ maxଵஸ୧ஸ୬ሼτ୧ሽ. So we can create a 
subset of Q as Φ ൌ Q\ሼP୫ୟ୶ሽ. Let ∀P୧ ∈ Φ,  φ୧ be packet size in bits. We calculate sum 
of the packet sizes in Φ as Θ ൌ ∑ φ୧

୬ିଵ
୧ୀଵ . If we set queue limit to Θ and if Θ Β୭୳୲⁄ ൏ τ୫ୟ୶ 

fulfilled, the router rejects ሺτ୫ୟ୶ െ Θ Β୭୳୲⁄ ሻ ൈ Β୭୳୲ amount of the data packet while it is 
possible to deliver to the target in just in time. If Θ Β୭୳୲⁄ ൌ τ୫ୟ୶ fulfilled, just in time 
transport is possible and we use Β୭୳୲ efficiently. If Θ Β୭୳୲⁄ ൐ τ୫ୟ୶ fulfilled, there will be 
additional latencies for some packets. As mentioned before, JITT considers all router queues 
on a whole communication path as a single queue. Additional latencies on a router caused by 
traffic load can be compensated by the other routers on the communication path. So, we 
should set JITT queue limit to at least ሼτ୫ୟ୶ ൈ Β୭୳୲ሽ 8⁄  bytes. 

3. 6 Network of JITT Queues 

As we showed in the previous section, JITT can compensate packet latencies on a router 
caused by traffic load. As a simple example, let there be 2 routers on a path and an RTMM 
packet’s DMEED field is 100 ms. We assumed that the packet waits 50 ms on each router. If 
the first router sends the packet in 30 ms due to low traffic load, there will be additional 20 
ms waiting right (MWT) for this packet on the second router. Namely, the second router can 
hold this packet in its queue until 70 ms (50 ms+20 ms). Oppositely, waiting right of the 
packet will be less than 50 ms. We give an example to clarify this situation. Let's look at the 
last received packet to the router 1 in Fig. 4. It’s clear that router 1 cannot send the packet in 
τ time. Let φ be size of this packet in bits, Θଵbe total size of all packets at router 1 in bits, 
Θଶ be total size of all packets at router 2 in bits,	σଶ be empty place in just in time threshold 
on router 2 queue, λଶ be input traffic load of router 2, μଶ be output bandwidth of router 2 
and Θଵ μଵ⁄  is the necessary time for leaving of the packet from router 1 and reaching to 
router 2. If Eq. 17 is fulfilled for the packet, the packet can reach to the destination in 
DMEED time.  

                 Θଶ ൅ φ ൅ ቀ
஀భ
ஜభ
ቁ ሺλଶ െ μଶሻ ൑ σଶ                           (17) 

If we generalize Eq. 17 for a communication path which has n routers, we obtain Eq. 18. 
 

              ∑ ൤Θ୨ ൅ φ ൅
஀ౠషభ
ஜౠషభ

൫λ୨ െ μ୨൯൨ ൑
୬
୨ୀଶ ∑ ൣσ୨൧	

୬
୨ୀଶ               (18) 
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Fig. 4: A communication path with two routers 

3. 7 Link Schedulers and JITT 

Packet schedulers are divided into two categories: General Schedulers (GS) and Link 
Schedulers (LS) [19]. GSs work on different queues which hold classified traffics. LSs share 
bandwidth between classes in the case of congestion. JITT acts as both GS and LS. We think 
that we use LS with JITT. When JITT scheduler obtains the order from LS to transmit a 
packet, if there is a packet that must be sent in the JITT queue; JITT transmits it. Otherwise, 
JITT transmits another packet from the other queue. Thus, sending order is transferred to the 
other queue. In this study, we used LS with JITT. 

3. 8 Hop by Hop Routing and JITT 

Source routing is not allowed on the Internet. A router may forwards the packets to the 
same target over different network interfaces. So, the packets may reach to the same 
destination over different paths. These paths may contain different number of routers. This 
situation may at first seem like a problem. However, JITT overcomes this problem thanks to 
its hop-by-hop working principle. MWT of a particular RTMM packet is calculated on the 
routers separately; not on the source. We showed an example for this situation in Fig. 5. 
There are 2 paths to the destination in the Fig. 5. Path 1 has 4 routers and path 2 has 5 routers. 
The source puts desired maximum end to end delay value (in to DMEED field) to the packets. 
MWT value of the packets which forwarded on the path 1 is 50 ms, MWT value of the 
packets which forwarded on the path 2 is 40 ms. As a result, the packets reaches to the 
destination after 200 ms through both paths. Arrival time of the consecutive packets does not 
change even if packets are forwarded on different paths. 

If we talk about the protocol overhead of JITT, JITT adds only 2 bytes DMEED filed to 
the packets. Namely, protocol overhead of JITT is 2 bytes for all packets. 

Additionally, we must consider IP packet fragmentation. If a router fragments IP packets, 
we may not obtain desired maximum end-to-end delay bound. If possible, we must keep the 
size of IP packets smaller than the communication medium’s maximum transfer unit (MTU). 
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Lastly, if a packet experiences larger delay than DMEED value, DMEED will be 
negative at the receiver. This situation does not affect JITT algorithm. However, it is an 
indicator of misadjustment of initial DMEED value or inefficiency of the bandwidth. If one 
of the cases mentioned above occurs, the RTMM receiver detects continuously negative 
values in the DMEED. As a future work, we can develop a DMEED feedback mechanism. 
Thus, the receiver can notify the sender about the status of the connection. Sot, the sender can 
re-adjust DMEED value or data rate. 

 
Fig. 5: JITT behavior in hop by hop routing 

 

4. Materials and Methods 

In this study, we choose delay, maximum jitter, packet loss ratio and bandwidth 
utilization as evaluation criteria. There are numerous packet scheduling algorithms in the 
literature. These algorithms have been implemented on different operating systems or 
simulators and their performances have been compared with different packet scheduling 
algorithms. Furthermore, some of the studies are specific for wireless networks. Therefore, 
deciding the best packet scheduling algorithm is a very difficult task. Also, this topic is out of 
scope of this study. Therefore, we compared JITT’s performance with FIFO (non-QoS 
support), ordinary Round Robin (RR - we can say that RR is the simplest DiffServ method) 
and Ideal Situation (IS - zero delay, zero jitter, full bandwidth utilization). 

Delay and jitter are the most critical components of RTMM communication. We gave 
description of jitter in previous sections. In the multimedia applications, calculation of 
playout buffer is done according to maximum jitter [20]. A playout buffer is a holding area 
for packets which will be played in the future. Therefore, the accumulation of a certain 
amount of packets is expected in the buffer before the packets' contents start playing. The 
time required for the accumulation of packets adds a virtual delay. If the playout buffer is too 
large, it adds an artificial delay to communication. Thus, we must keep jitter as minimum as 
possible. 
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In the jitter tables, we assumed that every experiment’s average delay equals to 1. 
Namely, 0.6 jitter value shows that the deviation from average delay is 60%. Lastly, higher 
packet loss ratio negatively affects quality of RTMM communications as well as quality of 
other traffic types. Therefore, we measured RTMM traffics and Background Traffics (TCP 
traffics) packet loss ratios. Measurements on intercontinental links show that 90-95% of the 
bytes belonging to TCP traffic [21]. Therefore, we analyzed impact of JITT and the other 
methods to Background traffic.  

Theoretically, JITT can work on the whole internet but it may be unnecessary to control 
every possible RTMM flows. Thus, JITT deployments will be more useful on relatively small 
networks such as campus networks, local campus-to-remote campus networks and 
autonomous systems. Hence, we created a small simulation and experimental testbed which 
have a few routers. Also, after the detailed mathematical analysis of JITT, we kept the 
simulation and real-world experiments simple. 

4. 1 Simulation Setup 

We tested JITT with ns2 simulator [22] on 3 different simulation scenarios and compared 
with FIFO, RR and Ideal Situation (IS). The essential of simulating of multimedia data 
transmission is simulating more realistic multimedia data source. Domoxoudis et al. have 
obtained traffic patterns of 7 Variable Bit Rate (VBR) encoders with 1 hour real environment 
experiment [23]. With follow up this study, we used 327.6 Kbps for video and 47.2 Kbps for 
audio data source. We created VBR traffic over UDP. We used FTP over TCP as background 
traffic. In the simulations we set JITT queue size and the other queue size to 25 packets 
(each). In FIFO and RR simulations we set queue sizes to 50 packets. Thus, we used same 
queue sizes in all simulations. We ran all simulations 10 times and used average values for 
comparison. When the simulation starts, VBR immediately begins to generate packets. At the 
same time, FTP begins to transfer data and TCP uses the bandwidth effectively in a short time 
(FTP runs over TCP). Thus, we chose shorter simulation times because of there is no 
meaningful changes in traffic loads during the simulations. Additionally, we have made 
experiments for different packet sizes in the simulation environment. But we did not include 
the results in this study because there were no significant changes in the results. 

All simulation topologies are dumbbell topology and they have same router numbers but 
different communicating host numbers. First two simulation topologies have 2 hosts on the 
left side and 2 hosts on the right side of the routers. The third simulation topology has 20 
hosts on the left side and 20 hosts on the right side of the routers. General simulation 
topology is shown in Fig. 6. 
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Fig. 6: General simulation topology 

In the first simulation, inter-routers link capacity is 0.5 Mbps and latency is 10 ms. We 
created 1 mutual RTMM connection between 2 nodes and 1 mutual Background Traffic 
connection between 2 other nodes. Simulation time is 65 s. In the second simulation all 
parameters are same with the first simulation, except Background Traffic connections. We 
created 2 mutual background connections between 4 nodes. In the third simulation 
inter-routers link capacity is 2 Mbps and latency is 10 ms. We created 2 mutual RTMM 
connections between 4 nodes and 18 one-way Background Traffic connections between 36 
other nodes. Simulation time is 110 s. We conducted different simulation scenarios to 
evaluate JITT performance on different traffic loads and link capacities. 

4. 2 Experimental Setup 

We prepared a testbed in order to evaluate JITT performance in application and compare 
with FIFO, RR and Ideal Situation (IS). 

The testbed topology is shown in Fig. 7. The routers are shown in Fig. 7 are desktop 
computers. We developed routing software with WinPcap packet capture libraries. In the 
experiments, we used 598s part of Planet Earth Deserts Documentary as RTMM flow source. 
Its video component is encoded with H.264; the resolution is 640x480 pixels; bitrate is 
533Kbps; and audio component has 2 channels; bitrate is 132Kbps. Inter-routers link capacity 
is 2.5 Mbps. The experiments carried out with 2 different background traffic loads: 1 Mbps 
and 2 Mbps. We chose Constant Bit Rate (CBR) background traffic loads different from the 
simulations (in the simulations we have used TCP traffic sources as background traffic).  
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Fig. 7: Testbed topology 

5. Results 

In this section we presented simulation and experimental results. 

5. 1 Simulation Results 

The results of the simulation scenarios are shown in the Table 1, Table 2, Table 3 and 
Table 4. The best results are marked with bold style in the tables. As we have shown before 
mathematically, JITT keeps the jitters at a minimum level. Also, JITT didn’t drop any 
multimedia packet. The performance of JITT and performance of other methods for 
Background packet loss ratio and Bandwidth utilization parameters are close to each other. 

Table 1.  Maximum jitter 

Maximum jitter 
Scenarios 

Scenario 1 Scenario 2 Scenario 3 

JITT 0.0495 0.0232 0.0516 
FIFO 0.5818 0.6153 0.1470 
RR 0.1129 0.0685 0.0519 
IS 0 0 0 

Table 2.  Multimedia packet loss ratio (%) 

Multimedia packet loss ratio (%) 
Scenarios 

Scenario 1 Scenario 2 Scenario 3 

JITT 0 0 0 
FIFO 1.51 0.09 3.70 
RR 2.39 0.43 0.86 

Table 3.  Background packet loss ratio (%) 

Background packet loss ratio (%) 
Scenarios 

Scenario 1 Scenario 2 Scenario 3 

JITT 0 0 5.95 
FIFO 2.83 0.11 9.72 
RR 12.51 1.44 17.42 
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Table 4.  Bandwidth utilization (%) 

Bandwidth utilization (%) 
Scenarios 

Scenario 1 Scenario 2 Scenario 3 

JITT 99.30 99.30 97.85 
FIFO 97.47 99.20 94.16 
RR 94.46 98,62 94.41 
IS 100 100 100 

5. 2 Experimental Results 

The results of the experiments are shown in the Table 5, Table 6, Table 7 and Table 8. We 
calculated bandwidth utilization as ሺtotal	throughput link⁄ bandwidthሻ ൈ 100 . In the 
scenario 1, total traffic load (so, total throughput) does not reach to available link bandwidth. 
Thus, IS’s bandwidth utilization rate is less than 100%. The best results are marked with bold 
style in the tables. As we had expected, JITT gave best performance for Maximum jitter and 
Multimedia packet loss ratio parameters. The performance of JITT and performance of other 
methods for Background packet loss ratio and Bandwidth utilization parameters are close to 
each other. 

Table 5.  Maximum jitter 

Maximum jitter 
Scenarios 

Scenario 1 Scenario 2 

JITT 0.8752 0.7625 
FIFO 3.2534 1.0953 
RR 2.3057 0.7975 
IS 0 0 

Table 6.  Multimedia packet loss ratio (%) 

Multimedia packet loss ratio (%) 
Scenarios 

Scenario 1 Scenario 2 

JITT 0 0 
FIFO 0 58.70 
RR 0 28.55 

Table 7.  Background packet loss ratio (%) 

Background packet loss ratio (%) 
Scenarios 

Scenario 1 Scenario 2 

JITT 0 10.40 
FIFO 0 9.39 
RR 0 9.62 
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Table 8.  Bandwidth Utilization (%) 

Bandwidth Utilization (%) 
Scenarios 

Scenario 1 Scenario 2 

JITT 66.60 98,28 
FIFO 66.60 83.44 
RR 66.60 91.28 
IS 66.60 100 

 
We can see that from Table 5, JITT has kept end-to-end delay stable. Because the 

maximum jitter is maximum deviation from the end-to-end delay over the time. Also, Fig. 8 
and Fig. 9 can be examined to see the end-to-end delay values obtained from the experiments. 
As shown in Fig. 8 and Fig. 9, JITT provides stable end-to-end delay. Low end-to-end delay 
oscillation is a sign of low jitter. Low end-to-end delay across all communication means that 
higher quality of service is provided. In this respect, Fig. 8 and Fig. 9, provides significant 
information on the performances of the methods. Again, the zoomed in regions presented in 
the figures provide detailed information on how the methods are stabilizing the end-to-end 
delay. It can be seen from these small figures that JITT is more stable in end-to-end delay 
value. 
 

 

Fig. 8: Measured end-to-end delays in the first experiment 
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Fig. 9: Measured end-to-end delays in the second experiment 

 

6. Discussion and Conclusions 

As shown in the Results section, JITT provides significant improvement in jitter, delay 
and packet loss ratios. The challenge here is to do it without affecting other traffic classes. 
According to the simulation results and real experiments, JITT has little effect on the other 
traffic classes. In contrast, other methods that are compared greatly affect the other traffic 
classes. This is an undesirable situation. 

Large delay and jitter are two important factors that disrupt traffic RTMM. To improve 
these properties, we proposed the JITT scheduling/prioritizing algorithm and a packet header 
extension, which guarantees the delay and jitter bounds for RTMM traffics. We evaluated 
JITT’s performance with simulations in ns2 and experiments on the prepared testbed. Our 
findings support that JITT provides stable delay and lower jitter. In addition, JITT provides 
high bandwidth utilization. On the one hand, traditional approaches reduce delay and jitter; 
but on the other hand they decrease the quality of other traffic classes. The purpose of our 
development of JITT is to achieve a balance between the QoS received by different traffic 
classes. 

The current RTMM communication applications uses playout buffers for absorbing jitter. 
However, playout buffering increases initial playback time. The larger playout buffer reduces 
QoS of communication in terms of delay. As mentioned before, calculation of playout buffer 
capacity is done according to maximum jitter. JITT provides stable delay and low jitter, so, 
smaller playout buffers can be used with JITT. 

JITT does not need source routing to compute packet’s deadlines. Also, it uses all router 
queues as a single queue unlike existing scheduling algorithms. This makes JITT usable in 
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larger networks (wired or wireless). We categorize the existing packet schedulers into LS or 
GS. JITT acts as both GS and LS unlike existing scheduling algorithms. JITT schedules 
RTMM packets; on the other hand, it shares bandwidth between classified RTMM traffic and 
best effort traffic. Additionally, JITT can be used in Device-to-Device communications 
thanks to its hop-by-hop working principle. Also, JITT can be easily integrated into the 
existing technologies due to its simple logic and low protocol overhead.  

 In this study, we used software based routers in the testbed. Therefore, delays caused by 
the operating system are reflected in the measurements. To conduct more healthy experiment, 
hardware design is required.  In addition, RTMM throughput has decreased at heavy RTMM 
traffic load (~100 Mbps) in the experiments. The underlying reason is that the software based 
routers cannot run JITT algorithm enough faster at high data rates. In order to faster routing, 
JITT algorithm should be implemented on the hardware. In recent years, with the 
development of mobile technologies, the increase and acceleration of wireless internet access, 
there has been a great increase in real-time multimedia applications. Many messaging and 
social networking applications offer features like video calls and live broadcasts. In this 
context, the importance of RTMM communication is further increased. The methods 
developed in this study can be used in wireless mesh networks. wireless mesh networks are 
more static. The routers that make up the network are controlled by the same authority. 
Therefore, it may be possible to use JITT on all routers for end-to-end QoS control. Similarly, 
JITT can also be used in Ad Hoc networks. However, due to the rapidly changing nature of 
Ad Hoc networks, packets may experience excessive overhead on devices. This is a problem 
that needs to be resolved. 
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