
 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 28

A New Packet Scheduling Algorithm for Real-Time
Multimedia Streaming

Mehmet Şimşek

Dept. of Computer Engineering, Faculty of Engineering, Düzce University

Konuralp, 81620, Düzce (Turkey)

E-mail: mehmetsimsek@duzce.edu.tr

Nurettin Doğan

Dept. of Computer Engineering, Faculty of Technology, Gazi University

Teknikokullar, 06500, Ankara (Turkey)

E-mail: ndogan@gazi.edu.tr

Muhammet Ali Akcayol

Dept. of Computer Engineering, Faculty of Engineering, Gazi University

Teknikokullar, 06570, Ankara (Turkey)

E-mail: akcayol@gazi.edu.tr

Received: October 5, 2016 Accepted: March 29, 2017 Published: June 30, 2017

DOI: 10.5296/npa.v9i1-2.10943 URL: https://doi.org/ 10.5296/npa.v9i1-2.10943

Abstract

Delivering the real-time services over converged networks is a big challenge. Real-time
services need to high Quality of Service (QoS). For this purpose, bandwidth reservation and
packet prioritization techniques are used. Thus, real-time data packets can be reached to their
targets with minimum delays and losses. But, this situation creates unintended
consequences for other internet services such as HTTP and FTP. In this case, establishing a
balance between the real-time services and the other services is a must. In this study we
introduce a new research question: how to transport real-time multimedia IP packets just in

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 29

time? Just in time means that transportation of the packets neither early, nor late. For this
purpose we developed a scheduling/prioritizing algorithm called just in time transport (JITT).
Following a cross-layer design approach, JITT controls delay and jitter over whole
communication path. We evaluated JITT on the different simulations and one experimental
testbed for performance analysis. Our findings support that JITT provides stable delay and
low jitter and transports the packets nearly just in time.

Keywords: Jitter, Packet Scheduling, QoS, Delay, Real-Time Communication.

1. Introduction

Real-time communication technologies provide many benefits in a broad area. The main
areas of real-time communication are personal communication, distance learning, IP TV and
telemedicine. In the personal communication area, Voice over IP (VoIP), video conferencing
systems and live video broadcasts are becoming increasingly common due to low costs.
Similarly, distance learning is popularized due to its advantage of place independence.
Another emergent area is Telemedicine. Especially, telesurgery needs very high Quality of
Service (QoS) and low error rate. Beside, some other developing areas are real-time
multiplayer games, real-time remote monitoring and control systems. If the data of the above
applications are transported on a converged network, some problems arise.

At this point, it is useful to distinguish between QoS and Quality of Experience (QoE).
QoS is a more technical definition. It defines that the services provided by the service
provider should be delivered to the user without error. QoE is overall user experience [1]. In
particular, the widespread use of mobile and wireless networks has made these two concepts
even more important. For example, an IPTV provider must provide users with a certian QoE
in their wireless environment [2]. Problems such as users being mobile, bandwidth
fluctuations in wireless access, lack of connectivity are making real-time video streaming
difficult. Different algorithms and technologies are being developed for this purpose.

In packet-switched networks, produced data by many users are queued into buffers on
the network devices and serviced one by one. This situation often differentiates the arrival
times of the packets of the same flow to their destinations. This delay difference is called as
jitter. Lower latency and jitter, which means a higher quality of service. Delay and jitter are
the most critical components of real-time communication. More technically, delay is the
elapsed time between the start of a packet's sending time and the end of its receiving time.
From the end user perspective, jitter can be described as unexpected interruption during
playback [3]. For reducing delay and jitter, bandwidth reservation and packet prioritization
techniques are used. However, prioritization of real-time packets means that the packets
belonging to other services (e.g. HTTP, FTP) will experience more latency. The critical issue
at this point is to prioritize real-time packets as much as their needs. For example, if a
real-time data needs to reach the receiver in 100 ms, it does not make sense to send it to the
receiver in 50 ms at the expense of lowering the quality of the other services such as HTTP
and FTP. Here, we must establish a balance between services. This is possible only when

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 30

real-time data is delivered in a timely manner, namely just in time. In this study, we
developed a scheduling/prioritizing algorithm and a packet header extension to reduce delay
and jitter.

The remainder of this paper is organized as follows: In Section 2, the related works are
presented. JITT algorithm details are described in Section 3. Section 4 gives materials and
methods which used in simulations and experiments. Simulation and experimental results are
explained in Section 5. Various important points to be considered are discussed in Sections 6.

2. Related Work

QOS improvement methods are categorized as Integrated Services (Intserv) [4] and
Differantiated Services (Diffserv) [5]. The idea of Intserv is that each application has to make
bandwidth reservation. By contrast, Diffserv does not reserve network resources. Diffserv
provides priority for higher classes of service. Intserv is not useful on the internet due to lack
of scalability. Diffserv based methods has been well accepted.

Packet by packet scheduling discipline first introduced in [6] and called Weighted Fair
Queuing (WFQ). WFQ classifies data flows and reserves resources for these classes.
Generalized Processor Sharing (GPS) implements same method with WFQ [7]. GPS is a
strategy for rate-based flow control and employs admission control for guaranteeing
throughput and delay in the worst-case. Another packet by packet scheduling approach is
Stochastic Fair Queuing (SFQ) [8]. SFQ uses hashing to map packets to corresponding
queues. Normally, every possible flow needs its own queue, but SFQ offers less number of
queues from possible number of flows. So, more than one flow can fall into the same queue
and the flows’ fairness become stochastic. Similarly, Deficit Round Robin (DRR) algorithm
uses stochastic fair queuing to assign flows to queues [9]. DRR’s one difference from round
robin algorithm is that if a queue was not able to send a packet in the previous round because
of its packet size was too large, the previous quantum is added to the next round. Another
round robin based study is SATURN [10]. SATURN uses simple dual round robin arbitration
scheme to schedule packets. Many queue models shapes traffic to achieve fair share. But
Traffic Shaping Algorithm with Delay Jitter Constraints (TSJC) algorithm proposed in [11]
shapes traffic with delay jitter constraints. TSJC dynamically configures traffic shaping
parameters on the basis of calculating packet delay, jitter and loss in a queue buffer.

At this point it would be useful to talk about playout buffering. Playout buffering
provides smooth jitter and gains time for resending lost packets, but introduces additional
buffering latency to playback. As an example of this technique, MultiLayer-AudioVisual
Streaming System (ML-AVSS) buffers the packets at receiver side and transmits them to
application layer [12]. Generally, small start-up delay before playback is acceptable for end
users. However, they are much less tolerable towards halt or interruption during playback [3].

Many of the scheduling algorithms in the literature are round robin (RR) based and these
algorithms work on single network device. These methods operate on each device
independently from the other devices. Therefore they cannot control end-to-end delay and
jitter. Another alternative method to achieve end-to-end delay control is reservation based

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 31

methods. However, bandwidth reservation for each data stream is not feasible on a great
environment involving tens of thousands users. Also, all the previous bandwidth reservation
studies are focused on specifying an upper bound of Real-time Multimedia (RTMM) packet’s
delay. Thus, quality of RTMM flow can be increased. However, the quality of other services
must also be considered. For this purpose, RTMM packets must be delivered neither early,
nor late. This is possible with just in time transportation of RTMM packets.

Additionally, just-in-time communication requires high service utilization on the one
hand and short service response time on the other [13]. JITT tries to overcome these two
problems.

Our contributions are summarized as follows:

• We introduce a new research question: how to transport IP packets just in time?

• We propose a new packet scheduling/prioritization method to deliver RTMM packets
nearly just in time.

• We conduct comprehensive simulations and experiments to validate our analytical
results and evaluate the performance of JITT.

3. The JITT Algorithm

In this section we describe JITT’s behaviors in details.

3. 1 JITT Structure

JITT considers all router queues on a whole communication path as a single queue and
schedules (RTMM) packets. For this purpose, JITT adds 16 bit Desired Maximum
End-to-End Delay (DMEED) field to multimedia data and encapsulates it in UDP packets in
order to achieve as shown in Fig. 1. Herein, we may ask that how are applications
incentivized to choose proper delay targets? Following the related standards will be a solution.
For example, The ITU G.114 specification recommends less than 150 millisecond (ms)
one-way end-to-end delay for high-quality real-time traffic such as voice [14]. In ITU G.114,
the need for the delay value to be less than 150 ms is explained as follows: "For many
intra-regional (e.g., within Africa, Europe, North America) routes in the range of 5000 km or
less, users of VoIP connections are likely to experience mouth-to-ear delays <150 ms." and
"If delays were kept below 150 ms, then most applications would not be significantly
affected."

Fig. 1: Data encapsulation

RTMM Data UDP header

UDP Packet

DMEED + +

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 32

A router on the communication path calculates the packet’s Maximum Waiting Time
(MWT) using DMEED. It sends the packet when MWT is finished. In this study, we added
DMEED as a new field to UDP header in the simulations. Thus, we created a new packet
structure. In order to differentiate these packets from ordinary UDP packets, we used a
different number from UDP’s assigned number in IP header’s protocol field. An IP header
option field can be used for DMEED. In this case, it would be enough to reach the IP header.
Additionally, all routers can reach the IP header while they cannot reach UDP headers. In this
study we added a new field to UDP header because of there is no meaningful difference
between usage of an IP header or UDP header field in a simulation environment.

JITT uses 2 queues on each router: the JITT queue and the other queue. RTMM packets
are buffered in the JITT queue and all other packets are buffered in the other queue.

3. 2 JITT Working Principle

When two users start an RTMM communication, the sender puts the desired maximum
end-to-end delay value in the packet’s DMEED field. When a router on the path receives this
packet, it calculates MWT for the packet; see (1).

 MWT ൌ ୈ୑୉୉ୈ

ୌ୭୮ୡ୭୳୬୲
 (1)

In (1), MWT is maximum waiting time, DMEED is DMEED field of the packet and
Hopcount is the number of the routers which are located on the path (sender’s subnet to
receiver’s subnet). If router runs a distance vector routing protocol, it can get Hopcount value
from the routing table. Otherwise, it sends a query to the receiver. Once the Hopcount is
calculated for a receiver’s subnet, the value can be stored in a table and reused. In this study
we used distance vector based approach. After the calculation of MWT, the router creates a
structure using the packet, MWT and a local timestamp as shown in Fig. 2 and adds it to the
JITT queue. The router adds all received other packets to the other queue simultaneously. As
a result, router keeps two queues. In parallel with packet adding processes described above,
another process searches the JITT queue continuously. The searching process calculates that
how long a packet waited in the JITT queue until now; see (2).

Fig. 2: The structure added to JITT queue

 ET ൌ CT െ TIMESTAMP	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ2ሻ

(2), ET is elapsed time, CT is current time. After the calculating of ET, router determines
the necessity of sending a packet (see Algorithm 1). ServiceTime parameter in the Algorithm
1 is the time needed to send the packet over the line and it is calculated as follows:
packet	in	bits bandwidth⁄ .

MWT The Packet Timestamp

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 33

Algorithm 1. Determination of Sending a Packet

If ET >= MWT–ServiceTime do
DMEED = DMEED–ET–ServiceTime; //Update DMEED Field on JITT packet
Send the JITT packet; //packet waited MWT

Else if other queue != Empty do
Send the first packet in the other queue

Else Send the first packet in the JITT queue

We can explain Algorithm 1 as follow:

1. If there are no packets in the other queue, send JITT packets as soon as possible

2. If at least one packet is present in the other queue, send this packet as soon as possible;
hold JITT packets till as late as possible. “As late as possible” means that DMEED value on
the JITT packets.

If router decides to send a JITT packet, router updates DMEED field of the packet (see
Eq. 3). Thus, the next router on the path can calculate that how long this packet can wait in
the queue. So, DMEED value is decreased on each router and each router can calculate its
own MWT value for a particular packet.

 DMEED ൌ DMEED െ ET െ ServiceTime (3)

Some studies uses similar technique we implemented in JITT. One of the studies is
adaptive per hop differentiation (APHD) [15]. In APHD, data packets carry end-to-end delay
requirement just like JITT. In APHD the distance from the source to the destination is
calculated at the source node. Hence, APHD needs source routing which is not allowed on the
internet. Another of the studies is EstServ [16]. In the EstServ, packets carry their deadlines.
But, EstServ has some drawbacks. In the EstServ, the source decides the hop count. Hence,
EstServ needs source routing just like APHD. Also, EstServ needs a synchronized network to
calculate a packet’s deadline. Synchronization of the all routers on the internet is not feasible.

3. 3 Waiting Time Distributions of RTMM Packets

We can say that there are two waiting times in a queue for a packet. These are queuing
time W୯ and service time t. Total waiting time can be expressed as

 W	 ൌ 	W୯ 	൅ 	t	 (4)

Wq can be calculated as

 W୯ ൌ tଶ ൅ ⋯ t୬ (5)

W can be calculated as

 W ൌ tଵ
′ ൅ tଶ ൅ ⋯ t୬ (6)

where tଵᇱ is the service time of the last received packet and tଶ, … , t୬are service times of
ሺn െ 1ሻ packets in the queue. In telecommunication networks, packets arrive at a router

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 34

according to Poisson distribution [17]. Let φ be packet size in bits, Β୭୳୲ be router’s
outgoing link bandwidth. Service time for nth packet can be calculated as

 t୬ ൌ
஦౤

Β౥౫౪
 (7)

Keep the queue length at a certain level over the time is impossible. So, Wq for each
packet will be different. Thus, each packet experience different delays and jitters over the
time. JITT determines packet’s delay bound using DMEED. So, W for RTMM packets in a
flow is same. Let τ be MWT. JITT calculates sending time of a packet as

 	τെ φ
Β౥౫౪

	൒ Δ (8)

Where Δ is elapsed time of the packet in the queue. So, JITT takes into account packet
service time and brings τ closer to Δ. Let F ൌ ሼPଵ, Pଶ …P୬ሽ be a RTMM flow, where n is total
packet number and P୧, 1 ൑ i ൑ n are packets. Wq for F can be expressed as

 F୛౧
ൌ ቄቀτ െ φభ

Β౥౫౪
ቁ , ቀτ െ φమ

Β౥౫౪
ቁ , … , ቀτ െ φ౤

Β౥౫౪
ቁቅ (9)

Service time for F can be expressed as

 Fୱୣ୰୴୧ୡୣ ൌ ቄቀ
φభ

Β౥౫౪
ቁ , ቀ

φమ
Β౥౫౪

ቁ , … , ቀ
φ౤

Β౥౫౪
ቁቅ (10)

Finally we write

 F୛౧
൅ Fୱୣ୰୴୧ୡୣ ≅ ሼሺτሻ, ሺτሻ, … , ሺτሻሽ (11)

So, waiting time in the queue for all packets in the same flow is equal. Technically, jitter
has been described as “variation of a metric (e.g., delay) with respect to some reference
metric (e.g., average delay or minimum delay). This meaning is frequently used by computer
scientists and frequently (but not always) refers to variation in delay.” in [18]. We used
average delay as reference metric in calculation of jitter. So, jitter of a flow F can be
expressed as

 F୎ ൌ ൛τଵ െ τୟ୴୥, τଶ െ τୟ୴୥,⋯ , τ୬ െ τୟ୴୥ൟ (12)

where τୟ୴୥ ≅
∑ τ౤౤
భ

୬
.

Because of every packet’s τ value is same in a JITT flow F, we can write τୟ୴୥ ≅ τ୧, 1 ൑

i ൑ n. Thus we get (13).

 F୎ ≅ ൛τଵ െ τୟ୴୥, τଶ െ τୟ୴୥,⋯ , τ୬ െ τୟ୴୥ൟ ≅ ሼ0,0, … ,0ሽ (13)

(13) shows that JITT keeps jitter close to zero.

3. 4 Departure Time Analysis of RTMM Packets

In this section we evaluated effects of packet sizes, MWT values, input and output
bandwidths of a router and other traffic loads on JITT’s performance.

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 35

Let Pଵ and Pଶ be two packets in a JITT queue where 	Pଵ ≺ Pଶ. We assumed that there is
no time interval between the receiving time of Pଵ’s last bit and receiving time of Pଶ’s first bit
from the line. Let queuing times Pଵ and Pଶ be tଵ and tଶ; MWTs be τଵ and τଶ; service
times be ηଵ and ηଶ; dequeuing times be tଵᇱ and tଶᇱ respectively. We write differences of
the receiving times of the packets as

 δଵ ൌ tଶ െ tଵ ൌ
஦మ

୺౟౤
 (14)

We write differences of sending times of the packets as

 δଶ ൌ ሺtଶ ൅ τଶሻ െ ሺtଵ ൅ τଵሻ (15)

and differences of taking times of the packets from the queue as

 ω ൌ tଶᇱ െ tଵᇱ (16)

Where Β୧୬ is the input bandwidth of the router. We showed the above equations in Fig.
3. We can say that ω depends on φଵ, φଶ, Β୧୬, Β୭୳୲, τଵ and τଶ. In the worst case with the
provision of some pre-conditions, it can be tଶᇱ ൌ tଵᇱ. This means that sending time of Pଶ
shifts amount of ηଵ. Mentioned worst case may be realized only where there is no intervals
between consecutively received RTMM packets from the line, Β୭୳୲ ൏ Β୧୬ and φଶ ൐ ߮ଵ. On
the Internet, all incoming traffics won’t be RTMM. If RTMM traffic load is less than Β୧୬,
there will be intervals between RTMM packets. Also, if there are other traffic types on the
line, there will be intervals between RTMM packets, too. So, the worst case that mentioned
above is unlikely occurred. Even if all the conditions are fulfilled, shifting of sending time of
Pଶ inversely correlated with Β୭୳୲. Usually, average RTMM packet size is not very large.
Thus, shifting time will be smaller. So, we can ignore this shifting (ηଵ).

Fig. 3: Departure time analysis of JITT packets

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 36

3. 5 Determination of JITT Queue Limit

Determining the JITT queue limit is a crucial point for proper operation of the model. If
we set JITT queue limit lower than a certain level, the packets may be dropped while it is
possible to deliver to the target. Let us analyze this situation.

Let Q ൌ ሼPଵ, Pଶ,⋯ , P୬ሽ be a JITT queue, where P୧	,1 ൑ i ൑ n are packets in the queue.
If τ୧ is MWT of P୧, we pick P୫ୟ୶ which has τ୫ୟ୶ ൌ maxଵஸ୧ஸ୬ሼτ୧ሽ. So we can create a
subset of Q as Φ ൌ Q\ሼP୫ୟ୶ሽ. Let ∀P୧ ∈ Φ, φ୧ be packet size in bits. We calculate sum
of the packet sizes in Φ as Θ ൌ ∑ φ୧

୬ିଵ
୧ୀଵ . If we set queue limit to Θ and if Θ Β୭୳୲⁄ ൏ τ୫ୟ୶

fulfilled, the router rejects ሺτ୫ୟ୶ െ Θ Β୭୳୲⁄ ሻ ൈ Β୭୳୲ amount of the data packet while it is
possible to deliver to the target in just in time. If Θ Β୭୳୲⁄ ൌ τ୫ୟ୶ fulfilled, just in time
transport is possible and we use Β୭୳୲ efficiently. If Θ Β୭୳୲⁄ ൐ τ୫ୟ୶ fulfilled, there will be
additional latencies for some packets. As mentioned before, JITT considers all router queues
on a whole communication path as a single queue. Additional latencies on a router caused by
traffic load can be compensated by the other routers on the communication path. So, we
should set JITT queue limit to at least ሼτ୫ୟ୶ ൈ Β୭୳୲ሽ 8⁄ bytes.

3. 6 Network of JITT Queues

As we showed in the previous section, JITT can compensate packet latencies on a router
caused by traffic load. As a simple example, let there be 2 routers on a path and an RTMM
packet’s DMEED field is 100 ms. We assumed that the packet waits 50 ms on each router. If
the first router sends the packet in 30 ms due to low traffic load, there will be additional 20
ms waiting right (MWT) for this packet on the second router. Namely, the second router can
hold this packet in its queue until 70 ms (50 ms+20 ms). Oppositely, waiting right of the
packet will be less than 50 ms. We give an example to clarify this situation. Let's look at the
last received packet to the router 1 in Fig. 4. It’s clear that router 1 cannot send the packet in
τ time. Let φ be size of this packet in bits, Θଵbe total size of all packets at router 1 in bits,
Θଶ be total size of all packets at router 2 in bits,	σଶ be empty place in just in time threshold
on router 2 queue, λଶ be input traffic load of router 2, μଶ be output bandwidth of router 2
and Θଵ μଵ⁄ is the necessary time for leaving of the packet from router 1 and reaching to
router 2. If Eq. 17 is fulfilled for the packet, the packet can reach to the destination in
DMEED time.

 Θଶ ൅ φ ൅ ቀ
஀భ
ஜభ
ቁ ሺλଶ െ μଶሻ ൑ σଶ (17)

If we generalize Eq. 17 for a communication path which has n routers, we obtain Eq. 18.

 ∑ ൤Θ୨ ൅ φ ൅
஀ౠషభ
ஜౠషభ

൫λ୨ െ μ୨൯൨ ൑
୬
୨ୀଶ ∑ ൣσ୨൧	

୬
୨ୀଶ (18)

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 37

Fig. 4: A communication path with two routers

3. 7 Link Schedulers and JITT

Packet schedulers are divided into two categories: General Schedulers (GS) and Link
Schedulers (LS) [19]. GSs work on different queues which hold classified traffics. LSs share
bandwidth between classes in the case of congestion. JITT acts as both GS and LS. We think
that we use LS with JITT. When JITT scheduler obtains the order from LS to transmit a
packet, if there is a packet that must be sent in the JITT queue; JITT transmits it. Otherwise,
JITT transmits another packet from the other queue. Thus, sending order is transferred to the
other queue. In this study, we used LS with JITT.

3. 8 Hop by Hop Routing and JITT

Source routing is not allowed on the Internet. A router may forwards the packets to the
same target over different network interfaces. So, the packets may reach to the same
destination over different paths. These paths may contain different number of routers. This
situation may at first seem like a problem. However, JITT overcomes this problem thanks to
its hop-by-hop working principle. MWT of a particular RTMM packet is calculated on the
routers separately; not on the source. We showed an example for this situation in Fig. 5.
There are 2 paths to the destination in the Fig. 5. Path 1 has 4 routers and path 2 has 5 routers.
The source puts desired maximum end to end delay value (in to DMEED field) to the packets.
MWT value of the packets which forwarded on the path 1 is 50 ms, MWT value of the
packets which forwarded on the path 2 is 40 ms. As a result, the packets reaches to the
destination after 200 ms through both paths. Arrival time of the consecutive packets does not
change even if packets are forwarded on different paths.

If we talk about the protocol overhead of JITT, JITT adds only 2 bytes DMEED filed to
the packets. Namely, protocol overhead of JITT is 2 bytes for all packets.

Additionally, we must consider IP packet fragmentation. If a router fragments IP packets,
we may not obtain desired maximum end-to-end delay bound. If possible, we must keep the
size of IP packets smaller than the communication medium’s maximum transfer unit (MTU).

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 38

Lastly, if a packet experiences larger delay than DMEED value, DMEED will be
negative at the receiver. This situation does not affect JITT algorithm. However, it is an
indicator of misadjustment of initial DMEED value or inefficiency of the bandwidth. If one
of the cases mentioned above occurs, the RTMM receiver detects continuously negative
values in the DMEED. As a future work, we can develop a DMEED feedback mechanism.
Thus, the receiver can notify the sender about the status of the connection. Sot, the sender can
re-adjust DMEED value or data rate.

Fig. 5: JITT behavior in hop by hop routing

4. Materials and Methods

In this study, we choose delay, maximum jitter, packet loss ratio and bandwidth
utilization as evaluation criteria. There are numerous packet scheduling algorithms in the
literature. These algorithms have been implemented on different operating systems or
simulators and their performances have been compared with different packet scheduling
algorithms. Furthermore, some of the studies are specific for wireless networks. Therefore,
deciding the best packet scheduling algorithm is a very difficult task. Also, this topic is out of
scope of this study. Therefore, we compared JITT’s performance with FIFO (non-QoS
support), ordinary Round Robin (RR - we can say that RR is the simplest DiffServ method)
and Ideal Situation (IS - zero delay, zero jitter, full bandwidth utilization).

Delay and jitter are the most critical components of RTMM communication. We gave
description of jitter in previous sections. In the multimedia applications, calculation of
playout buffer is done according to maximum jitter [20]. A playout buffer is a holding area
for packets which will be played in the future. Therefore, the accumulation of a certain
amount of packets is expected in the buffer before the packets' contents start playing. The
time required for the accumulation of packets adds a virtual delay. If the playout buffer is too
large, it adds an artificial delay to communication. Thus, we must keep jitter as minimum as
possible.

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 39

In the jitter tables, we assumed that every experiment’s average delay equals to 1.
Namely, 0.6 jitter value shows that the deviation from average delay is 60%. Lastly, higher
packet loss ratio negatively affects quality of RTMM communications as well as quality of
other traffic types. Therefore, we measured RTMM traffics and Background Traffics (TCP
traffics) packet loss ratios. Measurements on intercontinental links show that 90-95% of the
bytes belonging to TCP traffic [21]. Therefore, we analyzed impact of JITT and the other
methods to Background traffic.

Theoretically, JITT can work on the whole internet but it may be unnecessary to control
every possible RTMM flows. Thus, JITT deployments will be more useful on relatively small
networks such as campus networks, local campus-to-remote campus networks and
autonomous systems. Hence, we created a small simulation and experimental testbed which
have a few routers. Also, after the detailed mathematical analysis of JITT, we kept the
simulation and real-world experiments simple.

4. 1 Simulation Setup

We tested JITT with ns2 simulator [22] on 3 different simulation scenarios and compared
with FIFO, RR and Ideal Situation (IS). The essential of simulating of multimedia data
transmission is simulating more realistic multimedia data source. Domoxoudis et al. have
obtained traffic patterns of 7 Variable Bit Rate (VBR) encoders with 1 hour real environment
experiment [23]. With follow up this study, we used 327.6 Kbps for video and 47.2 Kbps for
audio data source. We created VBR traffic over UDP. We used FTP over TCP as background
traffic. In the simulations we set JITT queue size and the other queue size to 25 packets
(each). In FIFO and RR simulations we set queue sizes to 50 packets. Thus, we used same
queue sizes in all simulations. We ran all simulations 10 times and used average values for
comparison. When the simulation starts, VBR immediately begins to generate packets. At the
same time, FTP begins to transfer data and TCP uses the bandwidth effectively in a short time
(FTP runs over TCP). Thus, we chose shorter simulation times because of there is no
meaningful changes in traffic loads during the simulations. Additionally, we have made
experiments for different packet sizes in the simulation environment. But we did not include
the results in this study because there were no significant changes in the results.

All simulation topologies are dumbbell topology and they have same router numbers but
different communicating host numbers. First two simulation topologies have 2 hosts on the
left side and 2 hosts on the right side of the routers. The third simulation topology has 20
hosts on the left side and 20 hosts on the right side of the routers. General simulation
topology is shown in Fig. 6.

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 40

Fig. 6: General simulation topology

In the first simulation, inter-routers link capacity is 0.5 Mbps and latency is 10 ms. We
created 1 mutual RTMM connection between 2 nodes and 1 mutual Background Traffic
connection between 2 other nodes. Simulation time is 65 s. In the second simulation all
parameters are same with the first simulation, except Background Traffic connections. We
created 2 mutual background connections between 4 nodes. In the third simulation
inter-routers link capacity is 2 Mbps and latency is 10 ms. We created 2 mutual RTMM
connections between 4 nodes and 18 one-way Background Traffic connections between 36
other nodes. Simulation time is 110 s. We conducted different simulation scenarios to
evaluate JITT performance on different traffic loads and link capacities.

4. 2 Experimental Setup

We prepared a testbed in order to evaluate JITT performance in application and compare
with FIFO, RR and Ideal Situation (IS).

The testbed topology is shown in Fig. 7. The routers are shown in Fig. 7 are desktop
computers. We developed routing software with WinPcap packet capture libraries. In the
experiments, we used 598s part of Planet Earth Deserts Documentary as RTMM flow source.
Its video component is encoded with H.264; the resolution is 640x480 pixels; bitrate is
533Kbps; and audio component has 2 channels; bitrate is 132Kbps. Inter-routers link capacity
is 2.5 Mbps. The experiments carried out with 2 different background traffic loads: 1 Mbps
and 2 Mbps. We chose Constant Bit Rate (CBR) background traffic loads different from the
simulations (in the simulations we have used TCP traffic sources as background traffic).

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 41

Fig. 7: Testbed topology

5. Results

In this section we presented simulation and experimental results.

5. 1 Simulation Results

The results of the simulation scenarios are shown in the Table 1, Table 2, Table 3 and
Table 4. The best results are marked with bold style in the tables. As we have shown before
mathematically, JITT keeps the jitters at a minimum level. Also, JITT didn’t drop any
multimedia packet. The performance of JITT and performance of other methods for
Background packet loss ratio and Bandwidth utilization parameters are close to each other.

Table 1. Maximum jitter

Maximum jitter
Scenarios

Scenario 1 Scenario 2 Scenario 3

JITT 0.0495 0.0232 0.0516
FIFO 0.5818 0.6153 0.1470
RR 0.1129 0.0685 0.0519
IS 0 0 0

Table 2. Multimedia packet loss ratio (%)

Multimedia packet loss ratio (%)
Scenarios

Scenario 1 Scenario 2 Scenario 3

JITT 0 0 0
FIFO 1.51 0.09 3.70
RR 2.39 0.43 0.86

Table 3. Background packet loss ratio (%)

Background packet loss ratio (%)
Scenarios

Scenario 1 Scenario 2 Scenario 3

JITT 0 0 5.95
FIFO 2.83 0.11 9.72
RR 12.51 1.44 17.42

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 42

Table 4. Bandwidth utilization (%)

Bandwidth utilization (%)
Scenarios

Scenario 1 Scenario 2 Scenario 3

JITT 99.30 99.30 97.85
FIFO 97.47 99.20 94.16
RR 94.46 98,62 94.41
IS 100 100 100

5. 2 Experimental Results

The results of the experiments are shown in the Table 5, Table 6, Table 7 and Table 8. We
calculated bandwidth utilization as ሺtotal	throughput link⁄ bandwidthሻ ൈ 100 . In the
scenario 1, total traffic load (so, total throughput) does not reach to available link bandwidth.
Thus, IS’s bandwidth utilization rate is less than 100%. The best results are marked with bold
style in the tables. As we had expected, JITT gave best performance for Maximum jitter and
Multimedia packet loss ratio parameters. The performance of JITT and performance of other
methods for Background packet loss ratio and Bandwidth utilization parameters are close to
each other.

Table 5. Maximum jitter

Maximum jitter
Scenarios

Scenario 1 Scenario 2

JITT 0.8752 0.7625
FIFO 3.2534 1.0953
RR 2.3057 0.7975
IS 0 0

Table 6. Multimedia packet loss ratio (%)

Multimedia packet loss ratio (%)
Scenarios

Scenario 1 Scenario 2

JITT 0 0
FIFO 0 58.70
RR 0 28.55

Table 7. Background packet loss ratio (%)

Background packet loss ratio (%)
Scenarios

Scenario 1 Scenario 2

JITT 0 10.40
FIFO 0 9.39
RR 0 9.62

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 43

Table 8. Bandwidth Utilization (%)

Bandwidth Utilization (%)
Scenarios

Scenario 1 Scenario 2

JITT 66.60 98,28
FIFO 66.60 83.44
RR 66.60 91.28
IS 66.60 100

We can see that from Table 5, JITT has kept end-to-end delay stable. Because the

maximum jitter is maximum deviation from the end-to-end delay over the time. Also, Fig. 8
and Fig. 9 can be examined to see the end-to-end delay values obtained from the experiments.
As shown in Fig. 8 and Fig. 9, JITT provides stable end-to-end delay. Low end-to-end delay
oscillation is a sign of low jitter. Low end-to-end delay across all communication means that
higher quality of service is provided. In this respect, Fig. 8 and Fig. 9, provides significant
information on the performances of the methods. Again, the zoomed in regions presented in
the figures provide detailed information on how the methods are stabilizing the end-to-end
delay. It can be seen from these small figures that JITT is more stable in end-to-end delay
value.

Fig. 8: Measured end-to-end delays in the first experiment

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 44

Fig. 9: Measured end-to-end delays in the second experiment

6. Discussion and Conclusions

As shown in the Results section, JITT provides significant improvement in jitter, delay
and packet loss ratios. The challenge here is to do it without affecting other traffic classes.
According to the simulation results and real experiments, JITT has little effect on the other
traffic classes. In contrast, other methods that are compared greatly affect the other traffic
classes. This is an undesirable situation.

Large delay and jitter are two important factors that disrupt traffic RTMM. To improve
these properties, we proposed the JITT scheduling/prioritizing algorithm and a packet header
extension, which guarantees the delay and jitter bounds for RTMM traffics. We evaluated
JITT’s performance with simulations in ns2 and experiments on the prepared testbed. Our
findings support that JITT provides stable delay and lower jitter. In addition, JITT provides
high bandwidth utilization. On the one hand, traditional approaches reduce delay and jitter;
but on the other hand they decrease the quality of other traffic classes. The purpose of our
development of JITT is to achieve a balance between the QoS received by different traffic
classes.

The current RTMM communication applications uses playout buffers for absorbing jitter.
However, playout buffering increases initial playback time. The larger playout buffer reduces
QoS of communication in terms of delay. As mentioned before, calculation of playout buffer
capacity is done according to maximum jitter. JITT provides stable delay and low jitter, so,
smaller playout buffers can be used with JITT.

JITT does not need source routing to compute packet’s deadlines. Also, it uses all router
queues as a single queue unlike existing scheduling algorithms. This makes JITT usable in

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 45

larger networks (wired or wireless). We categorize the existing packet schedulers into LS or
GS. JITT acts as both GS and LS unlike existing scheduling algorithms. JITT schedules
RTMM packets; on the other hand, it shares bandwidth between classified RTMM traffic and
best effort traffic. Additionally, JITT can be used in Device-to-Device communications
thanks to its hop-by-hop working principle. Also, JITT can be easily integrated into the
existing technologies due to its simple logic and low protocol overhead.

 In this study, we used software based routers in the testbed. Therefore, delays caused by
the operating system are reflected in the measurements. To conduct more healthy experiment,
hardware design is required. In addition, RTMM throughput has decreased at heavy RTMM
traffic load (~100 Mbps) in the experiments. The underlying reason is that the software based
routers cannot run JITT algorithm enough faster at high data rates. In order to faster routing,
JITT algorithm should be implemented on the hardware. In recent years, with the
development of mobile technologies, the increase and acceleration of wireless internet access,
there has been a great increase in real-time multimedia applications. Many messaging and
social networking applications offer features like video calls and live broadcasts. In this
context, the importance of RTMM communication is further increased. The methods
developed in this study can be used in wireless mesh networks. wireless mesh networks are
more static. The routers that make up the network are controlled by the same authority.
Therefore, it may be possible to use JITT on all routers for end-to-end QoS control. Similarly,
JITT can also be used in Ad Hoc networks. However, due to the rapidly changing nature of
Ad Hoc networks, packets may experience excessive overhead on devices. This is a problem
that needs to be resolved.

References

[1] M. Garcia, A. Canovas, M. Edo, and J. Lloret, “A QoE Management System for
Ubiquitous IPTV Devices,” in 2009 Third International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, 2009, pp. 147–152. doi:
https://doi.org/10.1109/UBICOMM.2009.31

[2] M. Garcia, J. Lloret, M. Edo, and R. Lacuesta, “IPTV distribution network access system
using WiMAX and WLAN technologies,” in Proceedings of the 4th edition of the
UPGRADE-CN workshop on Use of P2P, GRID and agents for the development of content
networks - UPGRADE-CN ’09, 2009, p. 35. https://doi.org/10.1145/1552486.1552513

[3] X. Lou and K. Hwang, “Quality of data delivery in peer-to-peer video streaming,” ACM
Trans. Multimed. Comput. Commun. Appl., vol. 8s, no. 1, pp. 1–23, Feb. 2012.
https://doi.org/10.1145/2089085.2089089

[4] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture: an
Overview”, RFC, Jun. 1994.

[5] D. Grossman, “New Terminology and Clarifications for Diffserv,” RFC 3260. Apr. 2002.
http://www.rfc-base.org/rfc-3260.html

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” ACM SIGCOMM Comput. Commun. Rev., vol. 19, no. 4, pp. 1–12, Aug. 1989.

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 46

https://doi.org/10.1145/75247.75248
[7] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow

control in integrated services networks: the single-node case,” IEEE/ACM Trans. Netw.,
vol. 1, no. 3, pp. 344–357, Jun. 1993. https://doi.org/10.1109/90.234856

[8] P. E. McKenney, “Stochastic fairness queueing,” in Proceedings. IEEE INFOCOM ’90:
Ninth Annual Joint Conference of the IEEE Computer and Communications
Societies@m_The Multiple Facets of Integration, 1990. pp. 733–740.
https://doi.org/10.1109/INFCOM.1990.91316

[9] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385, Jun. 1996.
https://doi.org/10.1109/90.502236

[10] J. Chao, “Saturn: a terabit packet switch using dual round robin,” IEEE Commun. Mag.,
vol. 38, no. 12, pp. 78–84, 2000. https://doi.org/10.1109/35.888261

[11] H. Zhou, J. Li, F. Hu, G. Hu, Y.-Q. Song, and L. He, “A novel traffic shaping algorithm
with delay jitter constraints for real-time multimedia networks,” in 2011 IEEE 16th
Conference on Emerging Technologies & Factory Automation (ETFA), ETFA2011, 2011,
pp. 1–4. https://doi.org/10.1109/ETFA.2011.6059155

[12] Chung-Ming Huang, Chung-Wei Lin, and Cheng-Yen Chuang, “A Multilayered
Audiovisual Streaming System Using the Network Bandwidth Adaptation and the
Two-Phase Synchronization,” IEEE Trans. Multimed., vol. 11, no. 5, pp. 797–809, Aug.
2009. https://doi.org/10.1109/TMM.2009.2021719

[13] R. Yang, R. D. van der Mei, D. Roubos, F. J. Seinstra, and H. E. Bal, “Resource
optimization in distributed real-time multimedia applications,” Multimed. Tools Appl., vol.
59, no. 3, pp. 941–971, Aug. 2012. https://doi.org/10.1007/s11042-011-0782-5

[14] ITU, “One Way Transmission Time,” 2003. https://www.itu.int/rec/T-REC-G.114/en
[15] J. Li, Z. Li, and P. Mohapatra, “Adaptive per hop differentiation for end-to-end delay

assurance in multihop wireless networks,” Ad Hoc Networks, vol. 7, no. 6, pp. 1169–1182,
Aug. 2009. https://doi.org/10.1016/j.adhoc.2008.10.005

[16] I. Vaishnavi and D. C. A. Bulterman, “Estimate and serve: Scheduling Soft Real-Time
Packets for Delay Sensitive Media Applications on the Internet,” 18th international
workshop on Network and operating systems support for digital audio and video -
NOSSDAV ’09, 2009, p. 109. https://doi.org/10.1145/1542245.1542270

[17] Jyotiprasad Medhi, Stochastic Models in Queueing Theory. Academic Press, 2002.
[18] C. Demichelis and P. Chimento, “IP Packet Delay Variation Metric for IP Performance

Metrics (IPPM),” Nov. 2002. https://tools.ietf.org/html/rfc3393
[19] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet

networks,” IEEE/ACM Trans. Netw., vol. 3, no. 4, pp. 365–386, 1995.
https://doi.org/10.1109/90.413212

[20] C. J. Sreenan, Jyh-Cheng Chen, P. Agrawal, and B. Narendran, “Delay reduction
techniques for playout buffering,” IEEE Trans. Multimed., vol. 2, no. 2, pp. 88–100, Jun.
2000. https://doi.org/10.1109/6046.845013

[21] S. Floyd, “Measurement Studies of End-to-End Congestion Control in the Internet,”
2013. [Online]. Available: http://www.icir.org/floyd/ccmeasure.html.

 Network Protocols and Algorithms
ISSN 1943-3581

2017, Vol. 9, No. 1-2

www.macrothink.org/npa 47

[22] K. Fall and K. Varadhan, The ns Manual (formerly ns Notes and Documentation), no. 3.
2011. https://www.isi.edu/nsnam/ns/doc/

[23] S. Domoxoudis, S. Kouremenos, V. Loumos, and A. Drigas, “Modelling and Simulation
of Videoconference Traffic from VBR Video Encoders,” in proceeding of the 2nd
International Working Conf. on Performance Modelling and Evaluation of Heterogeneous
Networks, HET-NETs '04. Ilkley, West Yorkshire, UK, 2004

Copyright Disclaimer

Copyright reserved by the author(s).

This article is an open-access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

