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Abstract 

For high performance computing, cloud services offer highly scaleable infrastructures on 

demand. Without requiring a great deal of maintenance and financial resources, which a 

datacenter would need, it is possible to obtain a huge set of computing instances from, e.g., 

the Amazon Elastic Computing Cloud (Amazon EC2). The downsides of cloud computing 

are that the set of computing instances is arbitrary and that communication speed varies 

greartly and affects the running time of algorithms. 

We present a master/slave selection algorithm for the EC2 cloud service based on a 

benchmark to counteract this disadvantage. The benchmark measures communication speed 

and the variance of communication in a NxN network consisting of N cloud instances. With 

the results of the benchmark, we perform a master/slave selection algorithm to maximize the 

number of messages between master and slaves. 

The results show that our proposed method greatly increases efficiency. 

 

Keywords: Cloud Computing, Communication Benchmark, High Performance Computing, 

MPI, Master/Slave selection 
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1. Background and Introduction   

High performance computing projects usually consist of a set of algorithms building a 

complex solution for a certain problem. Within these algorithms, there are typically small 

sections that consume the main fraction of the total computing time needed. These parts are 

typically isolated and are being run on a high performance cluster or special purpose 

hardware. Both of these have the disadvantage of requiring a high investment and 

maintenance. If the algorithms to be run do not utilize these machines continuously, this 

might not be reasonable. An alternative for these applications is cloud computing, in which 

computing instances can be acquired instantly and payment is only coupled to the time 

consumed. Furthermore, the idea of sharing resources and saving energy supports the green 

IT paradigm. 

Many scientific applications are already designed to be run on cloud services, such as 

Amazon EC2 (Elastic Compute Cloud) [1, 2, 3, 4, 5]. 

From an algorithmic point of view, the execution of an algorithm on a cloud computing 

service has many challenges. Many possible optimizations arise because the unknown and 

arbitrary physical network topology is different from the fixed infrastructure being used in a 

cluster with almost deterministic behavior.  

Different communication schemes result in different performances in terms of speed and 

latency. Another point is that from one request of cloud instances to the next, the set of 

instances changes and with this the optimal communication pattern changes as well. 

Unlike research based on selecting performance-effecient master/slave selection [6] in 

the sense of computational performance, we have the main objective of selecting a master 

based on the communication speed because this is, from our point of view, one of the most 

important challenges in a cloud environment as compared to conventional cluster 

architectures. 

So far, abstraction layers like MPI (Message Passing Interface) do not offer automatic or 

semi-automatic optimization for communication schemes in cloud environments. 

As this is very important for all communication-intensive algorithms, this research 

begins with this open field of research. In this work, we advance from our previous work. We 

showed in [4] that our benchmark for the Amazon EC2 cloud computing service helps to 

manage the distribution of tasks to cloud instances in order to obtain an optimal distribution 

regarding network communication speeds. This was achieved by measuring the average 

communication speeds, the variance, and the min/max value and offering the user these 

values along with a graphical display to assign the instances accordingly. 

Starting from this, we developed a benchmark for master/slave algorithms so that the 

crucial task of selecting the right master in the set of cloud instances can be accomplished 

optimally. This is achieved by running a benchmark with user-defined parameters concerning 

the requirements of the application, such as message size, message count, latency, and 

instance count. From this benchmark, the optimal master/slave distribution is deducted. This 

is especially important for master/slave algorithms because in these algorithms, one master 
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must be tightly connected to all slave nodes, which is in contrast to distributed algorithms, in 

which each node works on its own. Another important point is that in normal cluster 

structures, the network speed is known and the selection of a master is arbitrary because all 

instances have an identical communication speed. In this infrastructure, traffic from a master 

can even be given priority by network-routers, which is not possible in cloud networks. 

In the following, we will first describe the tools and methods used to measure 

communication speed and select optimal nodes for a master/slave-communication scheme. 

After that, we describe some benchmarks, applied to validate effectiveness of the chosen 

methods. The paper concludes with a discussion of the results. 

 

2. Methods 

Many complications can arise if one works on an unknown physical infrastructure. In the 

case of Amazon EC2, a set of spot instances (instances requested for a price with a maximum 

bid), for example, can be distributed over different data centers. This results in different 

physical locations and thus varying communication latencies.  

The possibility of instances running in virtual machines on the same physical machine is 

another adverse factor. Another important problem is noisy neighbors, instances within the 

same routing level that are communicating extensively and reducing the amount of the shared 

resources that can be used. Furthermore, the maximum physical distance between any two 

instances increases with the number of instances because physical space limits the number of 

instances, servers, or racks, which also affects latency. 

To capture any configuration of instances, we created a tool that measures the maximum 

communication speeds as well as maximum throughput for larger data sets. This benchmark 

is based on [4], but has been adapted and extended to the requirements of the master/slave 

scenario. MPI is used as a tool for the communication. 

After this NxN performance measurements are completed, which represent the speeds 

between any two instances, a master is selected based on user-defined customizable criteria. 

Note: the NxN measurement takes user requirements, such as preferred message size, for the 

master/slave application as well. 

In the following section, we explain the test of communication speed and its 

implementation in short, followed by the algorithm for the master/slave selection. 

 

2.1 Testing Communication Speeds 

 As the speed of communication is time dependent in a cloud environment, we run the 

speed benchmark for a duration of about two minutes in order to get an fair estimation. We 

found this duration to be valid and reasonable, because the booting time for instances is in the 

same order of magnitude. It could be adapted to different time requirements if needed. 

The communication itself is measured by the following procedure. Each instance i sends 
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a message to another instance j, which is randomly chosen from N-1 to counter systematic 

routing optimizations and mimic any communication scheme without a fixed pattern. After 

the message has been received by j, it is being returned to i, and the transmission time is 

measured. This procedure is repeated for the above-mentioned duration. 

Then, the data is aggregated and output as mean values  and standard deviation  

for all pairs of instances. 

 

2.2 Implementation of Speed Tests 

Speed tests are executed by a deploy script run on a client computer, which requests 

nodes, initializes them with the needed programs written in C using MPI, and starts these 

programs. For the detailed procedure, see [4]. 

The result of the speed tests run on N nodes are four NxN matrices. 

Savg = (savg, i, j)i = 1 ... N, j = 1 ... N  , (1) 

Smin = (smin,i, j)i = 1 ... N, j = 1 ... N  ,  (2) 

Smax = (smax,i, j)i = 1 ... N, j = 1 ... N  , (3) 

and 

D = (di, j)i = 1 ... N, j = 1 ... N   (4) 

which represent the average speed Savg, minimum speed Smin, maximum speed Smax, and 

standard deviation D, respectively. Therefore, smin,i, j represents the minimum measured speed 

between nodes i and j. For i = j, the value is not relevant and is defined as 0. 

 

2.3 Algorithm for Node-Selection 

To select the node that is best suited to act as master, a scoring function must be 

introduced. First, we define 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2012, Vol. 4, No. 1 

www.macrothink.org/npa 26 

 

 

 

 

 

 

 

 ji,

ji,ji,

ji,max,max

max

ji,max,ji,max,

ji,min,min

min

ji,min,ji,min,

ji,avg,avg

avg

ji,avg,ji,avg,

dD

Dmax

dd

sS

Smax

ss

sS

Smax

ss

sS

Smax

ss

















 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

as matrices with normalized results. The scoring function for a node i is defined as 
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The parameters wavg, wmin, wmax, and wdev allow a weighting of the different measures.  

Each node receives a score defined as the sum of the scores for connections to all other 

nodes. The different measured values are raised to the powers navg, nmin, nmax, and ndev, 

respectively, to take greater account of large deviations. 

Then, the node with the best (smallest) c is selected as master. 

 

2.4 Benchmark Master/Slave-Communication 

To test the quality of the master selection, we created a benchmark simulating the 

communication scheme of a master/slave algorithm. An instance selected as master sends a 

message of size s to every other instance (the slaves). The slaves then send another message 

of size s back to the master. This is repeated r times, and the overall runtime is measured. 

 The runtime of the benchmark with the instance selected as master by the node-selection 

algorithm can be compared to the arithmetic average over runtimes of the benchmark with 

any other instance selected as master. 

 

2.5 Appling Performance Tests 
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The tests are run on the Amazon EC2 service. Because the computing power should only 

be used when it is actually needed for an algorithm to run, so a new set of nodes is requested 

on each run and physical location and actual performance differs between runs. 

Amazon offers different node types, different availability zones, and two types of 

provisions. All this influences the communication performance between nodes. 

Results are written to a hard disk and extracted from the nodes after benchmark 

completion. For a better examination of results, it is possible to create a graphical 

representation of communication speeds in the form of a graph in which nodes represent 

instances and the lengths of the edges between the nodes represent the communication speeds 

(approximated, because of planarity), where a shorter edge indicates a higher speed. 

 

3 Results and Discussion 

We tested different variations of availability zones and provisioning, always using the 

smallest node type available. Amazon offers node types with better network performance, 

which should improve the overall communication speed, but the variation in speed depending 

on availability zones and provision type still exists. 

The first evaluation was made on 20 nodes in the same availability zone. This should be 

the best connectivity between nodes because all instances should run in the same datacenter. 

After that, instances were requested from 4 different availability zones, which means that the 

nodes may be distributed between different datacenters and have an overall higher latency. 

The last test was made with spot instances. These instances are assigned by Amazon in terms 

of when they may be used for a price offered by the user, and they have the largest variance 

in communication speeds. 

 We used the values to configure the node-selection algorithm as shown in table 1. See 

section 2.3 for an explanation how they affect the node selection. 

Table 1. Parameter values for node selection algorithm. 

Parameter  Value  Parameter Value 

navg 1.2  wavg 1.0 

nmin 1.0  wmin 0.3 

nmax 0.8  wmax 0.1 

ndev 1.3  wdev 0.5 

 

3.1 Instances from one Availability Zone 

The most common use case is probably the one requesting EC2 instances from one 

availability zone to perform a computational task. One would expect a set of instances with 

an almost equal interconnection speed. Our results show that instances from one zone can 

have significantly varying communication speeds. 
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As Fig, 1 and 2 show, connectivities between nodes, even in the same availability zone, 

differ. Having an algorithm that uses node 18 as an master might significantly affect the total 

runtime. 

Figure 1. Graphic display of 20 instances from one availability zone. A node represents an instance. An 

edge between two nodes has a length that relates to the latency measured by the performance test. Clusters of 

instances with fast interconnections can be easily identified by the user. 
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Figure 2. Speed chart of 20 instances requested from EC2 within one zone. Comparing the overall runtime 

in seconds (y-axis) of the test with the node suggested as master by the algorithm and the median of runtimes 

when any other node is used as master. Message size was 1000 bytes in the first test (T1.2), 100 bytes in the 

second test (T2.2) and 10 kilobytes in the third test (T3.2). Tests were repeated 40 times each. 

 

It is often the case that one or two instances have exceptionally bad connectivity to all 

other instances. The overall performance can be increased when more instances than needed 

are requested and those with the worst connectivity are discarded before beginning the 

calculation. We integrated this functionality into our tool. The worst two instances are 

discarded just after the initial speed tests. Fig. 3 shows that after that, another master is 

chosen and the overall performance is increased. 

Figure 3. Speed chart of 20 instances requested from EC2 within one zone. Comparing performance with and 

without discarding the two instances with the worst connectivity. Runtime is given in seconds. 
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3.2 Normal Instances from Different Zones 

When requesting instances from EC2, one can select the zone of availability required. 

Amazon offers different availability zones, which can be used for instances that are 

independent from one another. If instances from one zone are required, e.g., us-east-1a, 

instances from this zone are created. One might request instances from different zones in 

order to increase reliability by using independent parts of a data center. 

Our previous tests confirm that interconnections between instances from one zone are 

significantly faster than instances from different zones. Selecting a good master becomes 

more important with the introduction of multiple availability zones. 

Figure 4. Graphic display of 16 normal instances requested from EC2 from 4 different availability zones. 

The chosen zones were us-east-1a, us-east-1b, us-east-1c, and us-east-1e. The color of the node shows to which 

zone the represented instance belongs. 
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Figure 5. 16 instances requested from EC2 from 4 zones. Comparing the total runtime when the suggested 

master is used against the mean of the runtimes with any other node as master. Tests were made with different 

message sizes. Two successive tests use the same message size. The first two tests were made with 1000 bytes 

message size, then 100 bytes, then 10000 bytes, then again 100 bytes and finally 10000 bytes again. 

 

As shown in Fig. 5, the performance can be increased significantly by choosing the 

master our algorithm suggests. Even with high variations in performance between tests, 

runtime when choosing the right master is always better than the average runtime. 

 

3.3 Spot Instances 

Spot instances are EC2 instances that are requested without a timely constraint, but with 

a certain limit in terms of cost per hour. These instances are then made available as soon as 

the demand and bids compared with the request decrease. The requested instances might be in 

different zones. 
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Figure 6. 25 spot-instances requested from EC2. All instances could be obtained from the same availability 

zone (us-east-1a). Comparing the total runtime (in seconds) when the suggested master is used against the mean 

of the runtimes with any other node as master. First test used 25 kilobytes messages size, second test 100 bytes, 

third test 10 kilobytes and  forth uses a message size of 1 kilobyte. Only in tests with bigger message size the 

results for the suggested master are superior to the average runtime. 

 

In our tests, we received 25 instances from one availability zone. As shown in Fig. 6, in 

the first benchmark, the selection of the master suggested by our algorithm increased the 

performance dramatically, by over 50%. Repeating the tests shows a high variation in 

performance. In the second and fourth tests, the performance with the suggested master is 

actually below average. This shows the difficulty of conducting network performance 

analysis for cloud systems. In the second and forth tests, very small message sizes were used 

(100 bytes and 1 kilobyte). There seems to be higher variation of performance for small 

message sizes. 

 

4 Discussion and Conclusions 

In this work, a master/slave selection algorithm for Amazon EC2 has been presented. It 

measures the communication speeds between instances and proposes an optimal master based 

on the current instance set. 

 Test results show how the algorithm affects the master/slave selection compared to a 

arbitrary choice of master, tested with nodes from one or multiple availability zones. 

The tools created in this work can be used to find the optimal master for any master/slave 

algorithm before running it on Amazon EC2. Due to the high volatility of the communication 

speed between instances of the Amazon Cloud, an automized optimization can contribute to 

increased execution speed of algorithms running in the cloud. 

 

5 Availability 

 The implementation is publicly available at this url: 

http://www.informatik.uni-kiel.de/~fsch/cloud-masterslave/ 

The password for the .zip file is: fschsvk 

 

6 Future Work 

 Further work will include a MPI and EC2 independent implementation in C. This enables 

usage of the communication optimization in settings where MPI is not used. The tools may 

then be included as library to applications written in any language which supports calling of 

external C-functions. While the actual benchmark-implementation is already cloud-
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independent, deploy scripts need to be expanded to support more cloud-providers. 

 Other work will be support for benchmarking and optimization of different 

communication schemes like ring or hypercube. 

 

References 

[1]. Constantinos Evangelinos, Pierre F. J. Lermusiaux, Jinshan Xu, Patrick J. Ha- ley, and 

Chris N. Hill. Many task computing for multidisciplinary ocean sciences: real-time 

uncertainty prediction and data assimilation. In Proceedings of the 2nd Workshop on Many-

Task Computing on Grids and Supercomputers, MTAGS ’09, pages 14:1–14:10, New York, 

NY, USA, 2009. ACM. http://dx.doi.org/10.1145/1646468.1646482 

[2] B.T. Langmead. Highly Scalable Short Read Alignment with the Burrows-Wheeler 

Transform and Cloud Computing. PhD thesis, 2009. 

[3] Sangmi Lee Pallickara, Marlon Pierce, Qunfeng Dong, and Chinhua Kong. Enabling large 

scale scientific computations for expressed sequence tag sequencing over grid and cloud 

computing clusters. In PPAM 2009 Eigth International Conference on Parallel Processing and 

Applied Mathematics, pages 13–16, 2009. 

[4] Florian Schatz, Sven Koschnicke, Niklas Paulsen, Christoph Starke, and Manfred 

Schimmler. Mpi performance analysis of amazon ec2 cloud services for high perfor- mance 

computing. In Ajith Abraham, Jaime Lloret Mauri, John F. Buford, Junichi Suzuki, and Sabu 

M. Thampi, editors, Advances in Computing and Communications, volume 190 of 

Communications in Computer and Information Science, pages 371–381. Springer Berlin 

Heidelberg, 2011. 

[5] Michael C Schatz. CloudBurst: highly sensitive read mapping with MapReduce. 

Bioinformatics (Oxford, England), 25(11):1363–9, June 2009. 

[6] Gary Shao, Francine Berman, and Rich Wolski. Master/slave computing on the grid. In 

Proceedings of the 9th Heterogeneous Computing Workshop, HCW ’00, pages 3–, 

Washington, DC, USA, 2000.  

 

Copyright Disclaimer 

Copyright reserved by the author(s). 

This article is an open-access article distributed under the terms and conditions of the 

Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 

 


