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Abstract 

In dynamic networks with flexible memberships, group signatures and distributed signatures 
are an important problem. Dynamic threshold cryptosystems are best suited to realize 
distributed signatures in dynamic (e.g. ad-hoc) networks. Without a group manager or a 
trusted third party even more flexible scenarios can be realized. 

Gennaro et al. [1] showed, it is possible to dynamically increase the size of the signer group, 
without altering the public key. We extend this idea by removing members from the group, 
also without changing the public key. This is an important feature for dynamic groups, since 
it is very common, e.g. in ad-hoc networks that members leave a group. 

Gennaro et al. used RSA and bi-variate polynomials for their scheme. In contrast, we 
developed a DL-based scheme that uses ideas from the field of proactive secret sharing (PSS). 
One advantage of our scheme is the possibility to use elliptic curve cryptography and thereby 
decrease the communication and computation complexity through a smaller security 
parameter. 

Our proposal is an efficient threshold cryptosystem that is able to adapt the group size in both 
directions. Since it is not possible to realize a non-interactive scheme with the ability to 
remove members (while the public key stays unchanged), we realized an interactive scheme 
whose communication efficiency is highly optimized to compete with non-interactive 
schemes. Our contribution holds against passive and active information theoretic adversaries.  
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1. Introduction 

Anonymous and autonomous group oriented cryptosystems have several basic 
requirements such as the anonymity of group members to outsiders and no need for a trusted 
third party. Additionally it is required to need at least a distinct number of cooperating group 
members to accomplish group operations, in which the secret key of the group is involved. 

Furthermore, to call the system autonomous, it is mandatory to be able to add and 
remove members without a trusted third party. A subset of the group decides on adding new 
or removing current members, whereby the public and secret key of the group remains 
untouched, even when the group size changes.  

Applications for those cryptosystems are firstly dynamic networks like mobile ad-hoc 
networks or mesh networks, in which mobile nodes constantly leave and join. Threshold 
signatures, threshold decryption and secure routing are examples for the cryptographic usage. 

Second, it can be used in applications distributed among a network, for example 
distributed intrusion detection systems (IDS). In distributed IDS, many network sensors 
communicate jointly with an automatic or manual warning system. 

Scenarios without a trusted third party become more and more important, since the 
network complexity increases due to new types of networks (i.e. ad-hoc, mesh networks) and 
a centralized TTP would introduce a single point of failure.  

We considered threshold and identity based cryptography to find an appropriate solution 
for these scenarios. 

  

1.1 Related Work 

In 1984, Shamir [2] proposed the concept of id-based cryptography. In this concept, a 
user is identified by a publicly known parameter such as an e-mail address, IP address or 
name. This identifier can be used in conjunction with the public key of the group to encrypt 
data destined to or verify signatures originating from this user. A trusted third party who 
generates secret keys that correspond to the public key of the group and the ID of the user is 
necessary. 

While Shamir provided the id-based digital signature scheme, Boneh and Franklin [3] as 
well as Cocks [4] independently introduced schemes for id-based encryption in 2001 which 
are based on Weil pairings respectively the problem of quadratic residues. 

In 2003 Libert and Quisquater [5] introduced a threshold cryptosystem based on pairings 
with the ability to efficiently revocate users within the group. To accomplish this task they 
used the idea of a so-called semi-trusted mediator (mostly a synonym for TTP) proposed by 
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Boneh, Ding, Tsudik and Wong [6] in 2001.  

An alternative to id-based cryptography is the idea of using threshold schemes. In 1979, 
Shamir [7] presented the idea of "How to Share a Secret". In his scheme, the secret is divided 
and distributed among several entities. This secret can be reconstructed when some of the 
entities work together. Desmedt and Frankel [8] used this idea to design a threshold 
cryptosystem based on ElGamal in 1989. 

During 1991, Pedersen [9] presented another threshold scheme based on Shamir's idea 
and the ElGamal cryptosystem without a TTP or group manager. An additional property of 
this scheme is the verifiability of all member shares (VSS - Verifiable Secret Sharing). 

In 2005, Saxena, Tsudik and Yi [10] presented a scheme with the option of dynamically 
adding members to the group. Their scheme uses bi-variate polynomials, which allowed them 
to design a non-interactive threshold scheme. The key establishment can be performed by a 
set of founding members using the method of joint secret sharing [11], while adding members 
is possible through a subset of already established members of the group.  

Another approach on threshold schemes is based on RSA. In 1991 Desmedt and Frankel 
[12] initiated the study of using RSA for threshold schemes. Similar to the ElGamal-based 
scheme of [8], adding or removing a member is not possible in their scheme. 

Gennaro et al. [13] introduced some ideas to provide robustness to RSA threshold 
schemes in 1996, with Shoup [14] presenting a robust RSA threshold signature scheme in 
1999. 

Recently, during 2008 Gennaro et al. [1] developed a dynamic RSA threshold scheme. 
They utilize bi-variate polynoms for adding new members while being dependent on a trusted 
third party in the initial key distributing phase. In addition to the dynamic member adding, 
their scheme provides robustness and is non-interactive. 

In 1995, Herzberg et al. [15] developed a method to increase the security of a 
ሺ݇, ݊ሻ-threshold scheme by decreasing the time window during which an adversary must 
compromise ൒ ݇ ൅ 1 shares of the secret. In this proactive secret sharing scheme (PSS) the 
shares of all members are periodically renewed.  

 

1.2 Our Contribution 

The threshold scheme [5] uses id-based cryptography and provides the possibility to add 
and remove members dynamically, while being dependent on a TTP. Scheme [10] is based on 
ElGamal and allows the adding of members without the help of a TTP. In the RSA-based 
scheme [1], the adding of members requires a TTP without providing an option of removing 
members. Table 1 shows the comparison of these schemes (and their predecessors) with our 
scheme. 

 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2009, Vol. 1, No. 1 

www.macrothink.org/npa 111

 

Table 1. Comparison of referenced schemes 

Scheme Establish Group Add Member  Remove Member 
Desmedt, Frankel[12] (RSA) ○ - - 
Genarro et al. [1] (RSA) ○ ● - 
Boneh, Franklin [3] (ID) ○ ○ (○) 
Libert, Quisquater [5] (ID) ○ ○ ○ 
Pedersen [9] (ELG) ● - - 
Saxena et al. [10] (ELG) ● ● - 
Our Scheme (ELG) ● ● ● 

ELG=ElGamal-based, RSA=RSA-based, ID=id-based 
● without TTP,  ○ with TTP,  (○) with CRL/Timestamp,  - not possible 

To the best of our knowledge, there is currently no threshold cryptosystem (neither 
id-based, ElGamal-based nor RSA-based) which allows the removing of members without a 
TTP. Certificate revocation lists could be used to replace a TTP, but this possibility will not 
be considered due to the unbounded size of those lists and their impact to the anonymity 
property. 

Our contribution is an ElGamal-based anonymous and autonomous threshold scheme 
based on techniques derived from the share renewal method in PSS. Predefining a maximum 
number of group members is no longer necessary either. 

 

2. Threshold Scheme without Group Manager 

We have searched for a group oriented cryptosystem that has the following properties: it 
is autonomous, anonymous and provides security against inside and outside adversaries. 

ID-based systems do not accomplish the autonomous and anonymous property. A group 
manager is necessary in the known schemes based on pairings and furthermore no anonymity 
is present due to the fact that each party has its own public key. Group signature schemes 
need a group manager for the possibility to identify signers (signer ambiguous) and for 
adding or removing members.  

We came to the conclusion to deploy threshold schemes, since a group manager is not 
mandatory here and anonymity can be provided as well.  

A ሺ݇, ݊ሻ-threshold scheme has ݊ members from which at least ݇ ൅ 1 members are 
necessary to recover the group secret. This scheme is extended to a public key cryptosystem 
with a shared secret key ܵܭ and a single public key ܲܭ. 

Generating and distributing the public/secret key pair can be done by a TTP or a 
distributed key generation. A TTP generates the (ܲܭ,  ݊ pair, splits the secret key into (ܭܵ
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shares and distributes them securely to each member as used in Shamir's secret sharing [7]. 
Our introduced scheme uses the second possibility where all members cooperate in the key 
generation.  

 

2.1 Distributed Key Generation 

In this section, we show how a group ܷ ൌ ሼ ଵܲ … ௡ܲሽ can cooperate to establish a public 
key ܲܭ ൌ ሺ݌, ,ݍ ݃, ܭܵ ሻ and corresponding secret keyܣ ൌ ሺܽ଴ሻ, such that at least ݇ ൅ 1 
members are needed to utilize ܵܭ. The distributed key generation is divided into two 
operations, the key generation and distribution. Prior to key generation, all members ௜ܲ need 
to agree on the public parameters ݌, ,ݍ ݃ such that: 

,݌ ݍ א Զ:  ݌ ൌ 2 · ݍ ൅ 1 
݃ א Ժ௣

כ ሺ݃ሻ݀ݎ݋  : ൌ  ݍ

After agreeing on the public parameters and the desired threshold value ݇, each member 
௜ܲ of group ܷ generates a key pair for the El-Gamal encryption scheme as follows: 

1. ሻ ݑ௜,଴ ோא Ժ௤
כ  

2. ሻ ܣ௜ ؔ ݃௨೔,బ ݉݌ ݀݋ 
with ܣ௜ being a part of the public key parameter ܣ. The value ݑ௜,଴ is called member secret 
of ௜ܲ. It represents a part of the group's secret key ܽ଴ and is distributed among all members 
of ܷ. This is done by creating a k-resilient ሺ݇, ݊ሻ secret sharing scheme with the idea of 
Shamir[7]. 

1. ሻ ሼݏଵ, … , ௞ሽݏ ோא Ժ௤
כ  

2. ሻ ௜݂ሺݔሻ ൌ ௞ݔ௞ݏ ൅ ௞ିଵݔ௞ିଵݏ ൅ ڮ ൅ ଵݔଵݏ ൅  ݍ ݀݋݉ ௜,଴ݑ
3. ሻ ݑ௜,௝ ؔ ௜݂ሺ݆ሻ, :݆׊ ௝ܲ א ܷ 

4. ሻ Send: ۃA୧, u୧,୨ۄ to ௝ܲ ሺconfidentiallyሻ, ௝ܲ ׊ א ܷ 

Each member ௜ܲ chooses a random polynomial degሺ ௜݂ሻ ൌ ݇ and computes ݊ member 
shares ݑ௜,௝ ൌ  ௜݂ሺ݆ሻ of its own secret polynomial. Then the member shares, as well as the 
values ܣ௜, are sent confidentially to each ௝ܲ. After the distribution, each member computes 
its so-called secret share and public key parameter ܣ. 

1. ሻ ܣ ൌ ෑ ݌ ݀݋݉ ௜ܣ
௡

௜ୀଵ

 

2. ሻ ܽ௜ ൌ ෍ ௝,௜ݑ

௡

௝ୀଵ

ؠ ෍ ௝݂ሺ݅ሻ
௡

௝ୀଵ

 ݍ ݀݋݉

Each ௜ܲ is now in possession of ܲܭ ൌ ሺ݌, ,ݍ ݃, ܭܵ ሻ and a secret share ܽ௜ ofܣ ൌ ሺܽ଴ሻ. 

The secret share ܽ௜ is the function evaluation of ݂ሺݔሻ ൌ ∑ ௝݂ሺݔሻ௡
௝ୀଵ  ݅ at position  ݌ ݀݋݉

(homomorphism property). 
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2.1 Adding Members 

The adding of a specific user ௡ܲାଵ to a pre-established group ܷ with ݊ members is 
explained in detail within this section. The following conditions must hold when a user is 
added to the group. 

- The public key ܲܭ ൌ ሺ݌, ,ݍ ݃, ܭܵ ሻ and the secret keyܣ ൌ ሺܽ଴ሻ remain unchanged. 
- The secret share ܽ௡ାଵ and polynomial ௡݂ାଵ is only known to ௡ܲାଵ. 
- The new ܽ௡ାଵ of ௡ܲାଵ is a valid and fully functional secret share of the group ܷ. 

We adapt the share renewal technique used in PSS[15] to implement an efficient adding 
and removing of members. While adding, ݇ ൅ 1 members split off a part of their secret and 
share this part with the new user. Removing a member is done by computing and 
redistributing the member's secret to some remaining members, as shown in Section 2.2. The 
adding of a user is done in three phases. 
 

2.1.1 Phase 1a - Secret Sharing 

During phase 1a, ݇ ൅ 1 members of ܷ form a so called helper group ܷ௛ . These 
members cooperate in the generation of a new member secret ݑ௡ାଵ,଴ for ௡ܲାଵ. For this, all 

௜ܲ א ܷ௛ cede a part of their member secret ݑ௜,଴ and submit it secretly to ௡ܲାଵ. A new 
polynomial is generated and the differences between the values generated from the new and 
the old polynomial are also distributed secretly. The details of this process executed by all 

௜ܲ א ܷ௛ are shown below: 

1. ሻ ݁ݎ݄ܽݏ௜ ோא Ժ௤
כ  

2. ሻ ݑ௜,଴ ൌ ௜,଴ݑ െ  ௜݁ݎ݄ܽݏ
3. ሻ ݏ௧ ோא Ժ௤

כ , ݐ׊ א ሼ1, … , ݇ሽ 
4. ሻ ௜݂

ᇱሺݔሻ ൌ ௞ݔ௞ݏ ൅ ௞ିଵݔ௞ିଵݏ ൅ ڮ ൅ ଵݔଵݏ ൅  ݍ ݀݋݉ ௜,଴ݑ
5. ሻ ߜ௜ሾ݆ሿ ൌ ௜݂

ᇱሺ݆ሻ െ ௜݂ሺ݆ሻ ݉ݍ ݀݋, :݆׊ ௝ܲ א ܷ 
6. ሻ ௜݂ሺݔሻ ൌ ௜݂

ᇱሺݔሻ 

Each member ௜ܲ א ܷ௛ is now in possession of a new ௜݂ሺݔሻ and a new member secret 
,௜݁ݎ݄ܽݏۃ  ௜,଴. All ௜ܲ then send (confidentially)ݑ ,௜ߜ   .to ௡ܲାଵ ۄ௜,௡ାଵݑ

 

2.1.2 Phase 1b - Share Computation 

In this phase, the member shares ݑ௜,௡ାଵ ݅׊)  א ܷ) for the new member ௡ܲାଵ  are 
computed. During the distributed key generation all ݊ members were needed to compute 
their member shares, but with the help of the Lagrangian interpolation only ݇ ൅ 1 members 
need to cooperate to generate these ݊ shares. The Lagrangian interpolation is defined as: 

,ߙሺܮ ሻߚ ؝ ෑ
ߙ െ ߛ
ߚ െ ߛ

ఊא௎,ఊஷఉ
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The communication progress is similar to a chain reaction. Without loss of generality, we 
start with member ଵܲ, incrementing step-wise until ௞ܲାଵ is reached. The necessary ݇ ൅ 1 
members are allowed to be in ܷ௛. Phase 1a and phase 1b can be run simultaneously, since the 
operations do not depend on each other. ଵܲ computes: 

1. ሻ א ݎோ Ժ௤
כ  

2. ሻ ௝߱ ؔ ௝,ଵݑ  · ሺ݊ܮ  ൅ 1, ݆ሻ ൅ ,ݍ ݀݋݉ ݎ  :݆׊ ௝ܲ א ך ܷ ܷ௛ 
3. ሻ Ω ൌ  ሼ߱ଵ|߱ଶ| … | ௝߱ሽ 

The array Ω contains a subset of all computed member shares of ௜ܲ, ݅׊ א ܷ\ܷ௛ for 
user ௡ܲାଵ which is sent (confidentially) to the next member within the chain. It is necessary 
that the second user in the chain is a member of the group ܷ௛, so that ଶܲ is not able to 
recover the used ݎ. In addition, ݎ is sent (confidentially) to ௡ܲାଵ . Now, members ௜ܲ , 
݅׊ א ሼ2, … , ݇ ൅ 1ሽ proceed with: 

1. ሻ ௝߱ ൌ  ௝߱ ൅  ቀݑ௝,௜ · ሺ݊ܮ  ൅ 1, ݆ሻቁ ,ݍ ݀݋݉ :݆׊ ௝ܲ א ך ܷ ܷ௛ 

2. ሻ ܵ݁݊݀ Ω ݋ݐ ௝ܲାଵሺconfidentiallyሻ 

The last member ௞ܲାଵ sends Ω confidentially to ௡ܲାଵ. 

 

2.1.3 Phase 2 - Reconstructing Shares 

At the start of phase 2 the (yet to be added) new user ௡ܲାଵ receives the messages from 
phase 1a and phase 1b, hence  ݁ݎ݄ܽݏۃ௜, ,௜ߜ  ݅׊ ,ۄ௜,௡ାଵݑ א ܷ௛  and  ۃΩۄ. When ௡ܲାଵ has 
received all ݄ ൅ 1 messages, the following is done: 

1. ሻ ݑ௜,௡ାଵ ൌ ߱௜ െ ,ݎ :݅׊ ௜ܲ א ך ܷ ܷ௛ 

2. ሻ ݑ௡ାଵ,଴ ൌ  ෍ ݀݋݉ ௜݁ݎ݄ܽݏ
௜:௉೔א௎೓

 ݍ

3. ሻ ݏ௧ ோא Ժ௤
כ , א ݐ׊  ሼ1, … , ݇ሽ 

4. ሻ ௡݂ାଵሺݔሻ ؔ ௞ݔ௞ݏ  ൅ ݏ௞ିଵݔ௞ିଵ  ൅  … ൅ ൅ ݔଵݏ   ݍ ݀݋݉ ௡ାଵ,଴ݑ 

5. ሻ ܽ௡ାଵ ؔ  ෍ ݍ ݀݋௜,௡ାଵ݉ݑ
௜:௉೔א௎ ׫௉೙శభ

 

6. ሻ Δ ൌ ሼߜଵ| ߜଶ| … ,௜ሽߜ| :݅׊ ௜ܲ א ܷ௛ 
7. ሻ Λ ൌ  ሼݑ௡ାଵ,ଵሽ |ݑ௡ାଵ,ଶ | … ,௡ାଵ,௡ሽݑ| ௡݂ାଵሺ݅ሻ ݄ݐ݅ݓ ൌ  ௡ାଵ,௜ݑ

Then ௡ܲାଵ sends ߂ۃ,  .via broadcast (confidentially) ۄ߉
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2.1.4 Phase 3 - Final Computation 

During phase 3 each member ௜ܲ receives the broadcast from ௡ܲାଵ and computes: 

1. ሻ ݑ௝,௜ ൌ ௝,௜ݑ  ൅ ,ݍ ݀݋݉ ௝ሺ݅ሻߜ  :݆׊ ௝ܲ א ܷ௛ 
2. ሻ ݑ௡ାଵ,௜ ൌ  Λሾ݅ሿ 

3. ሻ ܽ௜ ൌ ෍ ݍ ݀݋݉ ௝,௜ݑ
௡ାଵ

௝ୀଵ

 

All members now possess the member share of ௡ܲାଵ and the updated member shares 
from the members of ܷ௛. Then, they compute their new secret share ܽ௜ adding the user 

௡ܲାଵ to the group. 

 

2.2 Removing Members 

Removing a member ௥ܲ is executed in three steps. First, the member secret ݑ௥,଴ is 
recovered using the Lagrangian interpolation by at least ݇ ൅ 1 members. This secret is then 
shared between some members. From there on, the removing of a member is similar to the 
adding, with the details of each of the three phases shown below. 

2.2.1 Phase 1 - Secret Recovery/Share Computation 

The user ௥ܲ shall be removed from the group ܷ. For this, ݇ ൅ 1 members need to 
agree on the removing, forming the group ܷ௞ାଵ, with one of the members designated as ௭ܲ. 
Each of the members ௜ܲ, ݅׊ א ሼ1, … , ݇ ൅ 1ሽ (w.l.o.g.) computes: 

߱௜: ൌ ,ሺ0ܮ  ݅ሻ ·  ݍ ݀݋݉ ௥,௜ݑ 

With this, it is possible to reconstruct the secret of ௥ܲ by computing ݑ௥,଴ ൌ ∑ ߱௜
௞ାଵ
௜  

later on.  

A helper group ܷԢ௛ with at least 2 members is formed. It is mandatory, that member ௭ܲ 
is in ܷԢ௛. Ideally, the remaining ݄ െ 1 members are from ܷ௞ାଵ as well, which will reduce 
the number of communications necessary for this phase. Now, ݄ െ 1  users ௜ܲ from ܷԢ௛ 
will do the following operations and then send the results to the remaining user ௭ܲ of this 
group: 

1. ሻ ݁ݎ݄ܽݏ௜ ோא Ժ௣
כ  

2. ሻ ݑ௜,଴ ൌ ௜,଴ݑ ൅  ݍ ݀݋݉ ௜݁ݎ݄ܽݏ
3. ሻ ݏ௧ ோא Ժ௤

כ , ݐ׊ א ሼ1, … , ݇ሽ 
4. ሻ ௜݂

ᇱሺݔሻ ൌ ௞ݔ௞ݏ ൅ ௞ିଵݔ௞ିଵݏ ൅ ڮ ൅ ଵݔଵݏ ൅  ݍ ݀݋݉ ௜,଴ݑ
5. ሻ ߜ௜ሺݔሻ ൌ ௜݂

ᇱሺݔሻ െ ௜݂ሺݔሻ ݉ݍ ݀݋  
6. ሻ ௜݂ሺݔሻ ൌ ௜݂

ᇱሺݔሻ 

In comparison with the corresponding adding phase 1a, the computations differ in the 
computation of the differences (ߜ௜), because ߜ௜ is now a polynomial. Therefore the data 
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volume is much lower during removing phase, since the polynomial has only ݇ ൅ 1 values 
(coefficients). The difference values during the adding phase consist of ݊ values. Now, 
,௜߱ۃ ,௜݁ݎ݄ܽݏ ݆׊ ,ۄ ௜ߜ  א ሼ1, … , ݇ ൅ 1ሽ and ݅׊ א ܷԢ௛ is sent (confidentially) to ௭ܲ. 
 

2.2.2 Phase 2 - Difference Transfer 

During phase 2 all necessary computations for the removing of member ௥ܲ are executed. 
First, member ௭ܲ reconstructs the member secret of ௥ܲ by computing 

௥,଴ݑ ൌ  ෍ ߱௜

௞ାଵ

௜ୀଵ

 ݍ ݀݋݉ 

Without loss of generality: ݅ ൌ 1, … , ݇ ൅ 1. Then, ௭ܲ computes ߜ௭ similar to the other 
users of the helper group ܷԢ௛. 

1. ሻ ݁ݎ݄ܽݏ௭ ൌ ௥,଴ݑ  െ ෍ ݍ ݀݋݉ ௜݁ݎ݄ܽݏ
௛

௜ୀଵ

 

2. ሻ ݑ௭,଴ ൌ ௭,଴ݑ ൅  ݍ ݀݋݉ ௭݁ݎ݄ܽݏ
3. ሻ ݏ௧ ோא Ժ௤

כ , ݐ׊ א ሼ1, … , ݇ሽ 
4. ሻ ௭݂

ᇱሺݔሻ ൌ ௞ݔ௞ݏ ൅ ௞ିଵݔ௞ିଵݏ ൅ ڮ ൅ ଵݔଵݏ ൅  ݍ ݀݋݉ ௭,଴ݑ
5. ሻ ߜ௭ሺݔሻ ൌ ௭݂

ᇱሺݔሻ െ ௭݂ሺݔሻ ݉ݍ ݀݋  
6. ሻ ௭݂ሺݔሻ ൌ ௭݂

ᇱሺݔሻ 
7. ሻ Δ ൌ ሼߜଵሺݔሻ| ߜଶሺݔሻ| … ,ሻሽݔ௜ሺߜ| :݅׊ ௜ܲ א ܷԢ௛ 

At the end of this phase, ௭ܲ broadcasts ۄ߂ۃ to all members of ܷ. 
 

2.2.3 Phase 3 

Each member ௜ܲ receives the broadcasts and computes: 

1. ሻ ݑ௝,௜ ൌ ௝,௜ݑ  ൅ ,ݍ ݀݋݉ ௝ሺ݅ሻߜ  :݆׊ ௝ܲ א ܷ௛
ᇱ  

2. ሻ ܽ௜ ൌ ෍ ݍ ݀݋݉ ௝,௜ݑ
௝:௉ೕא௎ ך௉ೝ

 

Similar to the adding, each member (except ௥ܲ) is now in possession of ݄ ൅ 1 new 
member shares and the updated secret shares of the polynomial 

݂ሺݔሻ ൌ ෍ ௜݂ሺݔሻ ݉݌ ݀݋
௜:௉೔א௎ ך௉ೝ

 

The secret share ܽ௥  is no longer valid, hence ௥ܲ is not any longer able to cooperate 
with members ௜ܲ א ܷ  to reconstruct the secret ܽ଴  using the Lagrangian interpolation. 
Finally each ௜ܲ deletes ௥ܲ 's entry ݑ௥,ଵ from its local database, removing the last trace of the 
membership. 
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3. Security 

First we consider a passive adversary for our scheme. We will show that our scheme is 
secure against adversaries who are capable of eavesdropping on all communications channels. 
Later on we point out what is necessary to make the scheme secure against active adversaries. 
 

3.1 Passive Adversary 

In the distributed key generation phase, each party ௜ܲ generates a Shamir Secret Sharing 
scheme with a personal random polynomial ௜݂ሺݔሻ . The associated shares ݑ௜,௝ ൌ ௜݂ሺ݆ሻ , 
݆׊ א ܷ are confidentially broadcasted to all other parties. Confidentiality can be achieved by 
using the opposite's public key in a public key encryption scheme (e.g. El Gamal). 

The security of this phase relies on the security of the used public key encryption scheme 
and the security of Shamir's Secret Sharing scheme, which is known as a secure k-resilient 
ሺ݇, ݊ሻ threshold scheme. Due to the confidential transmission of the particular shares, neither 
an internal nor external passive adversary gains access to ݇ ൅ 1 shares that would be 
necessary to compromise our scheme (according to the k-resiliency of Shamir's Secret 
Sharing scheme). 

Since our scheme is mainly based on a repeated usage of Shamir's scheme (which is 
formally proven secure in Appendix 1), we go without a formal security proof for our total 
scheme. In the following we prove the particular phases for adding and removing with 
informal arguments. 
 

3.1.1 Adding: Phase 1a 

With the knowledge of ݄ െ 1 ൌ  ,௜ values, an adversary gains no advantage݁ݎ݄ܽݏ ݇
because the adversary can neither recover ݑ௜,଴, nor the resulting ݑ௡ାଵ,଴ ൌ ∑ ௜݁ݎ݄ܽݏ  .ݍ ݀݋݉ 
In the case of the new ݑ௜,଴ values, the former state is unknown (only the difference ݁ݎ݄ܽݏ௜ 
is known) and in the case of ݑ௡ାଵ,଴  one fully random value ݁ݎ݄ܽݏ௜  is missing. The 
differences ߜ௜ give no knowledge about the former state of the secret shares ݑ௜,௝ to which 
they will be applied. Thus, storing old shares by an inside adversary is futile. 
 

3.1.2 Adding: Phase 1b 

The first user adds a random value ݎ  to the secret products ݑ௝,ଵ · ሺ݊ܮ ൅ 1, ݆ሻ . A 
subsequent user (w.l.o.g.) ଶܲ  is prevented from recovering the ݑ௝,ଵ  values due to the 
addition of the random value ݎ, which is transmitted confidentially to ௡ܲାଵ. When ଶܲ 
knows any of the ݑ௝,ଵ values, she can recover the value ݎ and with ݎ all other ݑ௝,ଵ values. 
Since the ߱௜ are created ݆׊ א ܷ\ܷ௛ and user ଶܲ is member of ܷ௛ (by definition), she 
does not get knowledge of any value from ݑ௝,ଵ (݆ א ܷ\ܷ௛). Additionally to this method, the 
messages are transmitted confidentially (unicast encryption) to prevent a former user to 
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eavesdrop the changes of the following user and hereby recovering her secrets. 
 

3.1.2 Adding: Phase 2 

To proof the security of the remaining scheme, it is necessary to show that ௡ܲାଵ can not 
gain any other information from ߱௜ െ ݇ ௜,௡ାଵ. ߱௜ is a sum ofݑ than ݎ ൅ 1 products of a 
secret (ݑ௝,௜) and a known value ܮሺ݊ ൅ 1, ݆ሻ. It is not possible to disassemble this sum into the 
separate addends, since all possibilities have the same probability. The secret values 
 ௡ାଵ,௜ will be sent encrypted to each user ௜ܲ, so only the recipient gets the knowledge ofݑ
these values. 
 

3.1.3 Adding: Phase 3 

If some of these values are faked or compromised, the scheme will not work. In this case, 
all changes since the last working state (probably since the last member adding) can be 
undone. 
 

3.1.4 Removing: Phase 1 

The proof for the security of the removing is quite similar to the adding of members. 
Equal techniques are applied, so that we will only give proofs, where differences exist. ݇ ൅ 1 
members work together to recover the secret ݑ௥,଴ of user ௥ܲ, who should be removed from 
the group. This is done by computing ߱௜ ؔ ,ሺ0ܮ ݅ሻ ·  ,௥,௜, which can be sent in cleartextݑ
since there is no need to keep the shares ݑ௥,כ of user ௥ܲ secret. Furthermore it is possible to 
send difference polynomials ߜ௜ሺݔሻ instead of the difference values for each user in ܷ. Each 
user can recoverݑ௥,଴, but this will not impact the scheme negatively, hence there is no need so 
save the privacy of ݑ௥,଴ (or ௥݂ሺݔሻ). 
 

3.1.5 Removing: Phase 2 

It is necessary to prohibit ௭ܲ from altering the ߜ௜ሺݔሻ in such a way that the sum stays 
equal but the individual values differ. This can be achieved by signing ߜ௜ሺݔሻ. 
 

3.2 Active Adversary 

Considering an active adversary that is capable of manipulating sent messages and 
participating in the protocol. Without the knowledge of the used keys, which are used to 
confidentially send the data, an active adversary gains no information about the data. Firstly, 
wrong encrypted or random data is dropped by the participating members. Secondly, other 
members will not decrypt data for other parties and therefore act as a decryption oracle. 

To prevent secret share manipulation, verifiable secret sharing (VSS) techniques can be 
used to proof the shares' authenticity [9]. 
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5. Conclusion  

This is the first time a threshold cryptosystem with the ability to remove members 
without changing the public key is proposed. Furthermore, our scheme does not depend on a 
trusted third party. 

For adding and removing members, we extended the ideas from Herzberg et al. [15] that 
were used to refresh member shares. Our cryptographic contribution is a threshold 
cryptosystem that exceeds trivial extensions (for adding and removing members) of 
Herzberg's scheme in efficiency aspects. 

Due to its dynamics, our scheme can be deployed in emerging technologies such as mesh 
or ad-hoc networks, where members join and leave frequently. Without a TTP, our scheme 
fits to all kinds of decentralized networks where the location is not fixed to a specific area. 
The common application of our scheme will clearly be the threshold signature (based on DL - 
in contrast to [1]). Besides that, our scheme is also usable in shared decryption scenarios. 

When using a threshold signature with our scheme, the security property non-repudiation 
is provided for the group. All group members have the same functionality and equal 
knowledge, so that there is in fact no distinguished member. No single entity (e.g. TTP) has 
knowledge of the groups secret key. The group cannot deny that at least ݇ ൅ 1 members 
worked together to compute the signature. Therefore an outside entity can be sure that a valid 
signature has been created by the group. 

The reduction of the complexity of dynamic threshold schemes and providing an 
efficient non-interactive DL-based threshold signature scheme optimized for our scheme is an 
open challenge. 
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Appendix  

Appendix 1. Security Proof for Shamir's Secret Sharing Scheme 

The scheme is secure, if it is not possible to recover the polynomial ݂ሺݔሻ (or at least the last 
coefficient from ݂ሺݔሻ, the secret group key ܽ଴) with less than ݇ ൅ 1 shares ܽ௜ ሺ݅ ൐ 0ሻ. 
The degree of ݂ሺݔሻ is ݇, |݂ሺ݅ሻ| ൌ 2௟. We will show that an attacker owning ݇ shares 
,݅ۃ ܽ௜ۄ, ሺ݅ ൐ 0ሻ is not successful in recovering the secret ܽ଴. 

 

Theorem 1: 

For ݇ ൅ 1 shares ݅ۃ, ܽ௜ۄ, ሺ݅ ൐ 0ሻ with pairwise different ݅, there is exactly one polynomial 
݂ሺݔሻ of degree ൑ ݇ with ݂ሺ݅ሻ ൌ ܽ௜, ݅׊ א ሼ1, … , ݇ ൅ 1ሽ w.l.o.g. 

Proof: 

A proof by contradiction states that there are two different polynomials ݃ሺݔሻ and ݄ሺݔሻ 
with degሺ݃ሻ ൑ ݇ and degሺ݄ሻ ൑ ݇, that can be created with ݇ ൅ 1 shares ݅ۃ, ܽ௜ۄ, ሺ݅ ൐ 0ሻ. 
The difference polynomial ∆ሺݔሻ ൌ ݃ሺݔሻ െ ݄ሺݔሻ must therefore have at least ݇ ൅ 1 zero 
points. W.l.o.g. ∆ሺ݅ሻ ൌ 0, ݅׊ א ሼ1, … , ݇ ൅ 1ሽ. 

Hence ∆ሺݔሻ has a degree of maximal ݇, since ݃ሺݔሻ and ݄ሺݔሻ are of degree ൑ ݇, ∆ሺݔሻ 
can have a maximum of ݇ zero points. Because ∆ሺݔሻ must have at least ݇ ൅ 1 zero points 
according to our assumption (but must have only ݇ zero points due to degree ൑ ݇), ∆ሺݔሻ 
must be the null polynomial. That means, that ݃ሺݔሻ ൌ ݄ሺݔሻ. 

 

An attacker who only owns ݇ shares ݅ۃ, ܽ௜ۄ from ݂ሺݔሻ can interpolate a polynomial ݌ሺݔሻ 
with a maximum degree of ݇ െ 1  (Lagrangian interpolation). If the polynomial ݌ሺݔሻ 
approximates ݂ሺݔሻ optimally, the polynomial has the following property w.l.o.g.: 

݂ሺ݅ሻ ൌ ,ሺ݅ሻ݌ ݅׊ א ሼ1, … , ݇ ൅ 1ሽ 

But additionally it must hold with a probability of ܲݎ ൎ 1 െ ଵ
ଶ೗  for each i, that: 

݂ሺ݅ሻ ് ,ሺ݅ሻ݌ ݅׊ ב ሼ1, … , ݇ ൅ 1ሽ 

This is because ݂ሺݔሻ ്  ሻ has degree ݇ andݔሻ, which follows from the fact that ݂ሺݔሺ݌
݇ ሻ can have a maximal degree ofݔሺ݌ െ 1. If the coefficients from ݂ሺݔሻ over Ժ௣

כ ݌)  א Զ) 
are uniformly distributed, the probability for ݂ሺ݅ሻ ൌ ,ሺ݅ሻ݌ ݅ ב ሼ1, … , ݇ ൅ 1ሽ, is equal to the 
probability that a distinct value ݒ with ݂ሺ݅ሻ ൌ  is hit. The probability is ݒ

Prൣ݂ሺ݅ሻ ൌ ,ݒ ݅׊ א Ժ௣
כ ൧ ൎ

1
2௟ 

We finally state the adversary's advantage of breaking Shamir's Secret Sharing scheme with 

only ݇ shares is ଵ
ଶ೗, which is negligible for big groups. 


