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Abstract 

The safeguarding of networks from malicious activities and intrusions continues to be one of 

the most important aspects in network security. Intrusion Detection Systems (IDSs) play a 

fundamental role in network protection. Unfortunately, the speeds of existing IDSs are unable 

to keep up with the rapid increases in network speeds and attack complexities. Fortunately, 

parallel computing on multi-core systems can lend a helping hand mitigating this 

performance gap. In this paper, novel and effective parallel implementations of the 

Wu-Manber (WM) algorithm for signature-based detection systems are proposed, 

implemented, and evaluated. The proposed function and data parallel algorithms prove to be 

effective in terms of execution time reduction and load balancing, thus providing swift 

intrusion detection at increased network bandwidths. The algorithms achieve an optimal load 

balance and an average speedup of 2x for four cores.  

Keywords: Intrusion detection, pattern matching, parallel programming, Snort, Wu-Manber.  
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1. Introduction  

Intrusion Detection Systems (IDSs) play a significant role in protecting and maintaining 

the security of the network. Since the early insights of James Anderson in his seminal paper 

[1], IDSs have grown significantly in terms of importance and complexity. IDSs complement 

firewalls that generally have a limited protection scope. Firewalls are primarily used to 

prevent attacks by limiting inter-network accesses, and are limited to checking packet headers 

only. Consequently, they cannot detect intra-network attacks or attacks with valid packet 

headers and corrupt payloads. IDSs, on the other hand, can detect inter- and intra-network 

attacks by examining all network communications. In addition, IDSs inspect packet headers 

and payloads which significantly improve their detection capabilities. This comes at the 

expense of more intensive inspection requirements.  

Two significant factors drive the development of new IDSs. The first factor is the rapid 

increase in the complexity and speed of networks protected by IDSs, placing pressure on IDS 

designers to develop fast and efficient algorithms. The second factor is the fast growth of 

network-based attacks in terms of quantity, variety, and complexity. This requires IDSs to 

comprehensively and efficiently check for an increasing number of signatures at increasing 

line speeds. Unfortunately, IDSs are infamous nowadays for their lacking capabilities in 

switched, encrypted, and high-speed networks. One example is the popular Snort open-source 

IDS [2], which was demonstrated to have a lagging performance at network speeds that were 

greater than 100 Mbps [3]. These performance issues will continue to steer the direction of 

IDS research in the upcoming years. 

IDSs can be implemented in both hardware and software. While hardware 

implementations are generally faster, they suffer from a couple of shortcomings that limit 

their usability. First, since they require custom hardware, they are more expensive to 

implement, maintain, and modify. Second, since hardware modification is difficult, they are 

less resilient to algorithm improvement. Software implementations, on the other hand, can 

run on existing hardware (CPUs) and are more resilient. 

Fortunately, multiprocessing has become the norm nowadays and can lend a helping 

hand to the speed limitation of software based IDSs. Nowadays, most general-purpose CPUs 

are shipped with multiple cores allowing the parallel execution of multiple threads. 

Multiprocessors overcome the performance limitations of uniprocessors imposed by 

instruction-level parallelism (ILP) and clock rate-power limitations. By developing parallel 

IDS implementations that run on multiple existing processors, IDSs’ performance, efficiency, 

and comprehensiveness can be greatly improved.     

Pattern matching lies at the center of IDSs, comprising about 70% of the workload in 

Snort [4]. Pattern matching algorithms are computation-intensive making them excellent 

candidates for parallel implementation. In this paper, we propose, implement, and evaluate 

novel parallel implementations of Wu-Manber [5], a pattern matching algorithm that is 

widely-used in IDSs. Unlike previously proposed parallel implementations [2][6-12] which 

focused on data parallelism only, our proposed implementation is based on function level or 

task parallelism. Implementations that are based on data parallelism require the availability of 
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the full checked trace beforehand and may suffer from load-imbalance limiting their 

performance improvement potential.  

The proposed function parallel algorithm utilizes the concept of multiple sliding scanning 

windows running concurrently. It does not require prior knowledge of the trace size and can 

provide better load balance compared to data parallelism techniques. The proposed 

algorithms are evaluated on a multicore machine running Linux and using a set of standard 

traces. Compared to a serial approach, the algorithms provide near-optimal load balancing 

and scalable speedups proportional to the number of threads.   

The rest of the paper is organized as follows. Section 2 discusses the related work. 

Section 3 explains IDSs, pattern matching, and parallel computing approaches, thus laying 

the foundations for our work. Section 4 describes the different proposed parallel 

implementations. Section 5 provides an experimental evaluation of the proposed techniques. 

Finally, Section 6 concludes the paper. 

  

2. Related Work 

There have been several proposals for parallel IDS pattern matching algorithms in the 

literature recently. Unfortunately, most proposed algorithms focus on data parallelism only. 

Data parallelism can lead to load-imbalance problems between the threads limiting 

performance improvement opportunities. 

Wheeler [6] used two approaches for parallelization which utilized data parallelism over 

a number of pattern matching algorithms. The first approach was applied on a rule dataset by 

separating signatures into two groups based on their size, with one group containing one-byte 

rules and the other containing the larger than one-byte rules. This approach mitigated the fact 

that the Wu-Manber (WM) algorithm executed poorly on rules that were one-byte in length. 

By diverting the one-byte rule detection mandate to another algorithm and letting WM check 

for rules that are larger than one byte in size, Wheeler was able to grasp the performance 

offered by both algorithms on average cases, consequently, achieving a dual algorithm 

scheme. The second approach was based on the concept of spreading hash groups; this was 

done by distributing non-empty hash table entries evenly across all processing elements. 

Kopek [7] also followed in Wheeler’s footsteps and provided some improvements in terms of 

performance. However, both approaches do not provide a parallel implementation of the 

Wu-Manber algorithm itself, but are based on a dual-algorithm approach. Furthermore, their 

solutions are dependent on the network traffic size which could lead to load-imbalance and 

performance improvement limitations. This could happen if checked pattern sizes were not 

uniformly distributed, thus putting pressure on the processing element implementing the 

algorithm corresponding to the dominant size. 

Kouzinopoulos and Margaritis [9] presented parallel implementations for Naïve, 

Knuth-Morris-Pratt [10], Boyer-Moore-Horspool [11] and the Quick-Search [12] online exact 

string matching algorithms using the CUDA toolkit on GPU systems. It was shown that the 

parallel implementation of the algorithms was up to 24 times faster than the serial 
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implementation, particularly when greater text and smaller pattern sizes were used. The study 

did not include the Wu-Manber algorithm and was limited to data parallelism. Our proposed 

algorithm is implemented and evaluated on a general-purpose multi-core CPU. 

Zhang et al. [8] probed the WM algorithm in more depth. The main goal of their study 

was overcoming the limitations of WM when dealing with short patterns resulting in the 

proposal of a High Concurrence WM algorithm (HCWM). This was done through splitting all 

patterns into different sets according to their length, and then processing those sets 

respectively to that separation. The result demeaned the effect on performance caused by 

short patterns. In addition, when independent data structures were used for different pattern 

sets, the high concurrence was gained through which it significantly enhanced the matching 

speed of HCWM. Moreover, experimental results showed that HCWM presents higher 

performance than WM. Although this approach improved on Wu-Manber, it sacrificed the 

simplicity of the Wu-Manber algorithm and did not provide a parallel implementation of the 

algorithm. 

More recently, Aldwairi and Ekailan proposed a hybrid Aho-Corasick and Wu-Manber 

pattern matching algorithm to exploit the fact that Wu-Manber is more efficient for longer 

patterns and Aho-Corasick has a superior performance for short patterns [2]. They proposed a 

new pattern partitioning algorithm to solve the load balancing issues. The best case runtime 

reduction for four threads was 33% over serial Wu-Manber implementation. 

 

3. Background  

This section lays the foundations of our study by discussing the bases of Network Based 

Intrusion-Detection Systems (NIDSs), pattern matching algorithms, and parallelization 

techniques and approaches. 

3.1 Network Based Intrusion Detection Systems 

NIDSs are built with the objective of detecting attacks over the entire segment of the 

network. They are designed to run silently in the background capturing and checking all 

network traffic. A captured packet first goes through various pre-processing steps leading to 

the signature pattern matcher. The signature matching stage manifests itself as the bottleneck 

of NIDSs comprising most of the processing time. In order to illustrate the operation steps of 

IDSs, let us consider Snort [13], a popular IDS available on Sourcefire. Snort provides 

real-time traffic analysis and is available as an open source software package, making it an 

attractive choice for researchers as well as for the industry. Snort primarily uses the misuse 

(signature-based) detection model. The packet handling work-flow in Snort [14] starts with 

capturing the packet when it first enters the network, which is usually done via the system’s 

libpcap facility or through a user trace file containing network activities that are saved for 

processing at later times.  

The captured packet then gets decoded and its content gets normalized. This is achieved 

through the transformation of data to raw binary format. In addition, it handles the 
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examination of cumbersome attacks that rule matching cannot detect such as packet 

reassembly. The matching detection engine handles the discovery of attacks through 

matching the pre-processed packets to a dataset of rules or signatures combined in a database 

which is generated beforehand. When a match occurs between a packet and a signature, the 

action linked to that rule is executed with possible actions including alerting the admin or 

dropping the packet altogether. The detection engine harbors the heart and core of any IDS 

which is the pattern-matching algorithm. Pattern matching algorithms usually are categorized 

to single- and multiple-pattern matching. Snort uses the Boyer-Moore (BM), Wu-Manber 

(WM), and Aho-Corasik (AC) pattern matching algorithms [15]. BM is considered a single 

pattern matching algorithm, while both AC and WM algorithms are considered multi-pattern 

matching algorithms. A single pattern algorithm searches for the occurrence of one pattern in 

a searchable string at a time, whereas a multi-pattern matching algorithm searches for 

multiple patterns at the same time. This is made possible by the usage of hash tables (WM) or 

the usage of trees that are usually referred to as “trie” (AC). In both cases, the signatures 

consist of a finite set of patterns given beforehand.  

3.2 The Boyer-Moore (BM) Algorithm 

BM is regarded as one of the most practical and widely-used methods for exact single 

pattern matching. It is especially considered a good choice for large sets of alphabets and 

long patterns such as bio-applications. The Wu-Manber algorithm itself builds upon BM as 

will be explained later. BM relies on the concept of a sliding window for pattern matching. To 

reduce the number of required comparisons in a text of length T, BM relies on shifts with 

steps longer than one. This is done by shifting the pattern P of length n to the right in longer 

steps, typically less than m characters. In more details, the BM algorithm constructs upon two 

heuristics which reduce the shifting occurrences to obtain a match. The first is called the bad 

character heuristic which avoids bad or non-useful comparisons. In other words, if a 

mismatch occurs in the pattern that we are searching for, we check if that character appears in 

the searching pattern or not, if it does not appear, then we shift the searching pattern so that it 

is one position past the mismatching character. However, if the character that is mismatched 

actually occurs in the searching pattern, we shift so that the rightmost occurrence of that 

character in the searching pattern is aligned with the mismatched character. The second rule is 

called the good suffix heuristic. It considers the matching of patterns and signatures that are 

already successfully matched, and this can occur when a mismatch is triggered while in the 

middle of the search pattern, meaning that there is a suffix that matches with the search 

pattern so the following shift will be to the next occurrence of the suffix in the pattern. It 

should be noted that an improved version of BM appeared later by Horspool [11], which 

enhanced upon it by using only the bad character heuristic property. 

To elaborate more let us consider the example in Fig.1, which represents a signature to be 

checked using Snort rule-set for a tcp overflow attempt. At step (a), we start the iterative 

process of matching the pattern “STOR” from right to left while traversing or shifting the 

searched string from left to right. As explained before the characters R and U create a 

mismatch and the character U also does not occur in the pattern “STOR”, therefore, it is safe 

to shift the pattern one position past the U character in “STOU”. At step (b), after three 
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matches, a mismatch occurs between character S and the space character, so a shift to the 

right one position past “TOR” is safe. At step (c), we can see that there is a mismatch 

between the “R” character and the “O”, but also notice that “O” exists in the pattern. 

 

Figure 1. The Boyer-Moore algorithm illustrated while checking a signature in Snort rule-set for a tcp overflow 

attempt. 

Therefore, we shift the pattern by one position to align it with the “O” character in the 

searched string. Finally at step (d) we find a match. Notice that the string length is 13 

characters whereas the number of comparison attempts is only 4. Had we searched using a 

conventional shift by one method, it would have taken 10 steps instead. This illustrates the 

strength of using such an algorithm as it reduces the searching steps drastically.  

3.3 The Wu-Manber (WM) Algorithm 

Wu-Manber builds on the Boyer-Moore algorithm by using block skips “bad character 

heuristics” from BM in combination with the usage of hash tables, consequently providing 

the multi-pattern searching capability. In fact, Snort uses a modified simpler version of WM 

(MWM) [16] as the default pattern matcher. This is attributed to its better performance in 

average cases [17] compared to its counterpart pattern matching algorithms such as 

Aho-Corasick and Boyer-Moore.  

Before the MWM algorithm can be used, its hash and shift tables must be generated 

using a finite set of patterns provided beforehand. This is a one-time step that needs to be 

redone only when there are new sets of patterns. It should be pointed out here that the original 

WM algorithm adds a prefix table used to differentiate between patterns when their suffixes 

are the same but their prefixes are different. The first step in generating the tables is to find 

the minimum pattern length m from all signatures. This length m represents the number of 

characters that will be taken from the first letters of all signatures to form the shift table as 

will be explained later.  

The shift table is built based on two variables: The first, B, is usually predetermined to a 

value of 2 or 3, albeit there are some other suggested methods for obtaining its value in 

accordance to the minimum length of the patterns and the number of rules provided. 
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Nonetheless, our study and implementation of WM use a value of B = 3 due to the fact that 

we had a large set of rules to implement. The second variable, m, represents the minimal 

length from among all patterns. As a result, each pattern is mapped to the shift table by taking 

all subset strings of size B from the first m characters of each signature, where each subset 

string is considered as a hash key to the shift table. Those shift keys are assigned a shift value 

according to their location q in the pattern using the equation shift[key] = m – q. 

Consequently, this accomplishes the construction of the bad character shift table. The 

building of the hash table starts with mapping the last B sub-strings of all m sub-patterns 

which can be obtained by getting the sub-strings hash keys with a zero value and putting 

them in the hash table. As a result, each hash key in the hash table is a pointer to a list of 

patterns that share the rightmost B sub-string in them. 

During the scanning process, a sliding window of size B scans through the searched 

string each time obtaining a sub-string of that size and getting its shift value from the shift 

table and shifting accordingly. Nonetheless, if the sub-string key does not exist in the shift 

table, a maximum safe skip/shift of length (m – B + 1) is used. On the other hand, a shift 

value equal to zero requires access to the hash table and the traversal/search of all patterns 

that are linked to the key until a match is found or the list ends with no match. This iterative 

process is repeated until the whole string is completed. 

To illustrate the operations described earlier, let us reflect on the example in Fig.2. 

Consider the patterns STOU, STOR, and CMD, which represent signatures to be checked in 

Snort rule-set. The first step is to set the values of B and m. We will assume a value B = 2 and 

then find the shortest pattern “CMD” which sets the length m = 3. Next, and taking the 

pattern “STOU” as an example, we start by extracting the first three characters in accordance 

to the value of m thus obtaining “STO”, then with compliance to the value of B the hash keys 

(“ST”,”TO”) for the shift table can be acquired. After that, the shift value can be found by 

attaining the value of q and using the shift equation shift[key] = m – q. Hence for our sample 

q = 2 for ST and therefore shift[ST] = 1. Likewise, q = 3 for TO and thus shift[TO] = 0. 

Moreover, hash keys that have a shifting value equal to zero are correspondingly assigned to 

the hash table. This iterative process is applied for all the patterns. 

 

Figure 2. Wu-Manber algorithm, (a) patterns and their length, (b) shift table, used for obtaining shift values,   

(c) hash table, used for comparing patterns in the searched text. 
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3.4 Parallel Programming Techniques 

Parallel computing is a programming methodology where the different tasks that 

comprise a large problem are divided on processes/threads executing concurrently with the 

main goal of lowering the execution time. There are two main approaches to parallel 

computing. 

3.4.1 Data Parallelism (SIMD) 

Data parallelism is the simplest form of parallel computing. It divides the data being 

operated on among the different threads. The different threads usually perform the same set 

of operations but on different parts of the dataset. This is why it is also referred to as 

loop-level parallelism or single-instruction-multiple-data (SIMD) parallelism. As an example, 

consider the task of adding two arrays each of size N. Assuming P threads running in parallel, 

the first thread would add the first N/P elements, the second thread would add the second N/P 

elements, and so on. This approach is simple to implement but suffers from load-balancing 

and performance problems when there are dependencies between the subtasks. That happens 

when a task is dependent on the outcome of another task. Because of its simplicity, this form 

of parallelism can be implemented easily, sometimes automatically with the help of the 

compiler. 

3.4.2 Functional (Task) Parallelism 

This method of parallelism usually utilizes the division of the system into functional 

processing blocks. The basic principle can be simply explained as a pipeline: the output of 

one process serves as an input to another. Despite the simplicity behind the concept, 

intricacies can arise due to the fact that partitioning an algorithm to a set of different tasks 

requires a deep understanding of the problem. Furthermore, some algorithms cannot be 

partitioned to distinct tasks as a result of their nature. Another herald is achieving load 

balancing especially when one task could be bottlenecked more than others. Moreover, there 

are restrictions in some cases on the number of cores that could be used due to the limitation 

on the number of distributed tasks that could be achieved through the usage of this model. 

Despite all that, the performance boost that can be obtained using this approach is often more 

rewarding than data parallelism. 

Finally, it should be noted that a hybrid parallelism approach utilizing both data and task 

parallelism is sometimes possible. 

3.5 OpenMP 

OpenMP [18] is an application programming interface (API) that provides the means to 

write parallel programs facilitating the shared-memory parallel programming method for 

symmetric multiprocessors (SMPs). OpenMP offers a set of compiler directives and runtime 

callable routines that deliver a separate extension to the C/C++ libraries. 
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4. Parallel Implementations for Wu-Manber  

In this section, we propose three novel parallel programming approaches to the 

Wu-Manber algorithm. First, we propose the shared position algorithm which is the main 

contribution of this paper. It utilizes multiple racing sliding windows for optimal load 

balancing. Next, we combine the shared position algorithm with data parallelism to maximize 

speedups. 

4.1 The Shared Position Algorithm 

As described earlier, the scanning process in the WM algorithm can be abstracted as a 

sliding “scanning window” of size B that scans through the searched string, each time 

obtaining a sub-string of that size. Each substring is then used as a hash key to the shift table 

from which the appropriate shift value can be found. In the case of a zero shift amount, the 

hash table is then traversed in search of a string match. 

From the illustration provided above we can expand the concept of the “scanning 

window” by implementing several “scanning windows” on several processing units or 

threads. The fundamental idea behind this approach is that all scanning windows share the 

highest current position where one of the scanning windows is currently at in the searched 

string. Furthermore, any scanning window that obtains a shift value that moves it beyond the 

highest current position variable is granted a shift to that location while updating the value of 

the highest current position. Nevertheless, if the shift value obtained from the shift table puts 

the scanning window in a position to the left of the highest current position variable, then the 

window is shifted to one position past the highest current position. This can be explained as a 

result of the fact that the skipped section is being checked by other scanning windows and is 

safe to traverse past it. We should note that each scanning window has a private position 

variable so that its present location would not be affected in case it was active while a change 

in the highest position variable occurred. 

 This approach has several advantages. First and most importantly, it can be applied on 

traces with no prior knowledge of their size or length, as it only depends on the relative 

starting position in the trace. In the case of a data parallelism approach, it would be difficult 

to divide the dataset uniformly on the processing elements if the dataset size is not known 

beforehand. Second, while data parallelism approaches would suffer from load imbalance if 

the locations of the positive matching substrings are clustered in a small part of the string, the 

proposed approach has all processing elements working on the same string section at any 

given time, thus providing better load balance between the threads. 

To better understand the idea, let us consider the example in Fig. 3. This builds upon the 

previous example provided for the Wu-Manber algorithm in Fig. 2. Two scanning windows 

are provided; both are running simultaneously on independent threads. Let B=2 and the safest 

shift is 2 in conformity to our previous calculations in Fig. 2. Starting at step (a) "window 

one" appears as a solid square and starts at position (i = 3), while "window two" appears as a 

dashed square and starts at position (i = 4). Notice that at "window one," the value obtained 
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from the shift table is zero; hence a traverse and comparison via the hash table must be 

performed. Meanwhile, "window two" proceeds with a shift of two blocks because “OU” 

does not exist in the shift table as illustrated in step (b). In step (c), “window two” safely 

skips two positions because “ T” does not exist in the shift table. “Window two” now points 

to “OR” and updates the current highest location variable. As "window one" finishes 

traversing the hash table and finds no match, it shifts to one position past the highest current 

position. Window one now points to “R ” and updates the highest current position. Finally, in 

step (d) "window one" finishes this time before window two and shifts to “ST”, while the 

suggested shift for “window two” is 2 because “OR” is not found in the hash table. Because 

of the shift of 2, the window is positioned before the highest current position variable. 

Therefore, it shifts past the highest current position by one reaching “TO” and it updates the 

highest current position. “TO” has a shift of zero which invokes the hash table for a 

comparison. The upswing of different flows for the algorithm is caused by race conditions 

and timing variations that have no predictable behavior and depend on the state of the system 

at that instance. Therefore, the “scanning windows” would appear as if jumping over each 

other. It should also be noted that the usage of the shared position technique can produce 

duplicate intrusion detections; as a result of accessing the same hash key at the same time due 

to race conditions. However, this does not happen often and the benefits the algorithm offers 

in regards to performance outweigh such a predicament.  

From this example we can see that all the detections were made with a minimum number 

of shifts. For instance, windows one and two only required four shifts to catch the intrusion’s 

signature, whereas a serial WM implementation requires seven shifts to perform the 

aforementioned task, about 42% increase in the number of shifts. Those observations if 

applied to larger sets of traces would lead to many benefits in terms of swifter detections and 

faster scans, especially that the approach can be scaled to a larger number of 

processors/scanning windows thus achieving higher speedups. 

 

Figure 3. Shared Position approach, the solid block is window one, while the dashed block is window two. 
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4.2 The Trace Distribution Algorithm 

This algorithm is a simple implementation of data parallelism approach. It uses the 

multiprocessor system to run a code that divides the dataset on several nodes, each running 

the same segment of processing logic on its data segment. In our case this dataset is 

represented by the trace file, where it is divided and distributed to equal segments in 

accordance to the number of processors provided by the system. Additionally, each segment 

is independently accessed by a serial implementation of the WM algorithm, thus performing 

detections in n segments of the trace file concurrently. This Algorithm is fairly easy, has no 

race conditions as each segment is processed separately, and provides good performance. 

Nonetheless, it has no regards to the signature bursts that occur in some segments. This is due 

to the uneven distribution of intrusions signatures in the trace files, which results in longer 

times to finish processing some segments because they form bottlenecks. This hugely affects 

the overall performance of the algorithm because the signature-congested segments increase 

the processing time of the critical path of the algorithm. Moreover, such an approach is only 

applicable if the trace file is available beforehand making this parallelization approach 

inapplicable to online systems checking network traffic live at line speed. 

4.3 Combined Shared Position and Trace Distribution 

The following technique stems from the shared position and the trace distribution 

algorithms; by partitioning the trace file into various segments, we can run the shared 

position approach on each segment instead of the serial WM algorithm. This technique 

provides on par performance to the distributed algorithm while overcoming the segment 

performance problems due to intrusion bursts, where the slowdown usually occurs. 

  

5. Experimental Results  

The aforementioned parallel algorithms of Wu-Manber are implemented using the C++ 

programming language and OpenMP API under GCC. Moreover, the Intel threading building 

blocks package [19] was used because it provides thread-safe containers (e.g. concurrent hash 

tables and vectors) with automatic locking mechanisms thus eradicating some of the 

problems that arise through using shared data between processes such as deadlocks and race 

conditions. Experiments are performed on a quad-core Intel i5 M480 CPU with 4 GB of 

RAM running Linux.  

Experiments are run on a set of trace files collected using Wireshark network protocol 

analyzer [20]. A thorough description and analysis of the traces is presented by Aldwairi and 

Alansari [21]. The number of intrusions and the distribution of the intrusions across the traces 

vary from trace to trace. The set of traces are carefully selected to test the best and worst case 

performance of the algorithms. Table 1 lists the 8 traces used in the evaluation along with 

related statistics. The ugly traces “1” and “22” are chosen to test the worst case performance. 

They suffer from pathological performance due to their large sizes, the high percentage of 
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intrusion signatures in them, and the small skips which slow down the traversing window. 

The bad traces “58” and “51” lie in the middle range with regards to the number of intrusion 

signatures and pathological performance. Finally, the good traces “av”, “gd”, “hm”, and “lc” 

are normal everyday traffic traces representing audio/video streaming, good download, 

Hotmail and live chat. They are considered good because of the small percentage of 

signatures in the traces. The signatures are extracted from Snort 2.9.0.4 rule. 

Table 1. Packet Traces Statistics 

Bad Trace Serial Detections Length (char) Size (MB) Intrusions (%) 

58 846971 96512779 91.78 0.88 

51 1250575 96101726 91.36 1.30 

Ugly Trace Serial Detections Length (char) Size (MB) Intrusions (%) 

1 10676527 91053842 86.18 11.73 

22 7598082 91425792 86.56 8.31 

Good Trace Serial Detections Length (char) Size (MB) Intrusions (%) 

av 863 1033606 0.98 0.08 

gd 5299 7085480 6.75 0.07 

hm 21111 1917710 1.83 1.10 

lc 5986 359006 0.34 1.67 

 

Fig. 4 shows the execution times for each of the eight traces when run using the Trace 

Distribution algorithm (TD), the Shared Position algorithm (SP), the Combined Shared 

Position and Trace Distribution algorithm (DSP), as well as serial implementation. The figure 

shows that all three parallel implementations perform very well reducing the processing time 

of each trace to about half that of a serial implementation.  

 

Figure 4. Execution times for the Trace Distribution method (TD), the Shared Position method (SP), the 

Combined Shared Position and Trace Distribution method (DSP), and a serial implementation (Serial). 
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To better assess the performance boost, Fig. 5 shows the speedups obtained from running 

each of the three parallel implementations relative to the serial implementation. Speedups 

average around 2x and range from 1.68x to 2.33x. It is noticeable that the speedups are the 

highest for the ugly traces number 1 and 22. This is expected because they contain the largest 

number of intrusions which slows down the serial implementation and gives the parallel 

algorithms more room for time saving. The normal traffic represented by the good traces of 

audio/video, good download and Hotmail exhibit the smallest speedups because those traces 

have a small number of intrusion signatures and therefore the serial algorithm is not slowed 

down. Live chat on the other hand has a higher than expected speedup which can be 

explained by the short length of the traces and evenly distributed attacks (see Fig. 6-8) 

allowing parallel algorithms to skip through the traces faster. Finally, all three parallel 

implementations perform comparably well with no clear best algorithm in terms of speedups. 

Although SP speedups are slightly lower than the data parallel TD, it has an important 

advantage by evenly balancing the load between all threads. The balanced loads will translate 

into swifter and faster detections at greater bandwidths. 

 

Figure 5. Speedups relative to a serial implementation for the Trace Distribution method (TD), the Shared 

Position method (SP), and the Combined Shared Position and Trace Distribution method (DSP). 

  

Fig. 6, 7 and 8 show the distribution of detected intrusions over the four threads. On one 

hand, the distribution of the detected intrusions over all threads in the SP implementation is 

even, indicating a uniform load balance between the threads. The algorithm threads jump 

through the whole packet traces processing different and random segments resulting in 

optimal load balancing. On the other hand, the distribution of detected intrusions is far from 

even for both the TD and DSP methods indicating load imbalance. The reason is the serial 

nature of dividing the data trace into four distant and fixed segments resulting in uneven 

distribution of signatures. This is more obvious in the cases of highly clustered signatures in 

the good download traces. The use of a larger number of threads will worsen the imbalance. 

Load imbalance can lead to pathological behavior in terms of bottlenecks. This observation 

puts the SP algorithm as a forerunner in terms of overall performance. 
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Figure 6. Intrusions detected by each of the four threads using the Shared Position (SP) method. 

 

Figure 7. Intrusions detected by each of the four threads using the Combined Shared Position and Trace 

Distribution method (DSP). 

 

Figure 8. Intrusions detected by each of the four threads using the Trace Distribution (TD) method. 
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6. Conclusions 

This paper introduces three novel and effective parallel implementations of the 

Wu-Manber pattern matching algorithm which is a core part in many intrusion detection 

systems. The first implementation, the Shared Position (SP) algorithm, utilizes several 

scanning windows running in parallel and using a shared position variable. The second 

implementation, the Trace Distribution (TD) algorithm, divides the trace equally among the 

parallel threads. The third implementation (DSP) combines the first two algorithms. All three 

algorithms were thoroughly tested and found to provide excellent performance improvements 

halving the execution times of a serial approach when using four threads. These performance 

improvements translate to swifter detections at greater bandwidths thus mitigating the 

performance gap between modern network speeds and existing IDSs described earlier.  
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