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Abstract 

Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has 

emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying 

and information gathering in large-scale WSNs is a challenging problem. In particular, we 

consider the case of how to query the sensor network information with the minimum energy 

cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal 

with this problem, we propose a Pheromone-based In-Network Processing (PhINP) 

mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to 

direct queries towards nodes with relevant information and query- and response-based in-

network filtering to reduce the number of active nodes. Additionally, we apply reinforcement 

learning to improve the performance. The main contribution of this work is the proposal of a 

simple and efficient mechanism for information discovery and gathering. It can reduce the 

messages exchanged in the network, by allowing some error, in order to maximize the 

network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the 

query dissemination cost can be reduced by approximately 60% over flooding, with an error 

below 1%, applying the same in-network filtering strategy.  
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1. Introduction 

A wireless sensor network (WSN) consists of a large number of small, low cost, and 

energy-constrained wireless nodes which can be deployed over an area to monitor physical 

phenomena such as temperature, air/water pollution, noise levels, etc. In this sense, 

monitoring spatio-temporal continuous fields using WSNs has emerged as a novel solution. 

However, sensor nodes have constrained energy, processing, storage and communication 

capabilities mainly due, among others reasons, to the fact that they are portable battery-

powered devices [1], [2]. For this reason, an efficient resource management is a key issue in 

the design of WSNs [3]. Due to energy consumption in data communication, it is better to 

increase in-network computation tasks in order to reduce the message exchange (e.g. the data 

transmission of 1 kB is energetically equivalent to compute 3 millions of instructions 

approximately). However, the development of energy-efficient processing and routing 

strategies for query dissemination and data collection to minimize the data exchange and to 

maximize the network lifetime is a challenging problem, especially in environments where 

only a small subset of sensor nodes has relevant readings, and no information about the 

location of these nodes is available. Data monitoring requires not only an initial discovery 

stage, but also a continuous search for new relevant data due to field variations in time. One 

solution to this problem is to allow nodes to cooperate and jointly decide which data are 

relevant and their locations. Trails from sink to nodes with relevant readings can be generated 

in a distributed fashion, as members of insect colonies do using pheromone-based indirect 

communication. 

In this work, we address the problem of monitoring spatio-temporal continuous fields 

using WSNs, where only a subset of nodes has relevant readings, but no information about 

the node's location is available a priori. The goal is to minimize the number of exchanged 

messages between nodes in the query routing, in order to prolong the network lifetime. Figure 

1 shows the application of a WSN to obtain and monitor minimum values of a continuous 

field, where only a small set of sensor nodes has relevant information. Sink (red node) is 

located at the center of the WSN deployment. In this sense, we are interested in problems 

such as what is the top (i.e., maximum) reading?, or more generally, what are the 10% top 

readings?, and then monitor these points over time.  

We give two examples of application of the proposed mechanism. In the first one, a 

WSN deployed over an oil spill in the ocean can efficiently obtain the points of maximum oil 

concentration, and track the spill’s direction of displacement over time. If source nodes, based 

on a distributed algorithm for location [4], send also information about their geographic 

location to the sink, a map with the location of relevant information can be obtained. In the 

second one, a WSN can be applied to monitor the silted sea in a harbor. Minimum values of 

water depth are the relevant information to obtain, in order to avoid running aground large 
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and heavy ships. The main goal of this work is how to query the sensor network information, 

reducing the number of exchanged messages involved in the query dissemination. 

 

Figure 1. Monitoring of minimum values of a continuous field using a WSNs. 

The simplest solution to deal with these problems is to let sensor nodes send their 

readings to the sink node which processes data in a centralized way (warehousing approach). 

A more efficient approach, especially in large-scale WSNs, is to process inside the network 

the readings and send to the sink node only those which are considered relevant. This last 

approach is known as in-network processing (INP).  

Among INP techniques, filtering is the one that has less computational and memory 

requirements. Other techniques like data aggregation and data fusion typically demand more 

resources. Filtering can be implemented either at data-level, by deleting repeated data 

messages, due to the high spatial correlation, which is dependent of the resolution of the 
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sensor readings, or at node-level, by selecting only a subset of sensor nodes to send their 

readings to the sink. In this paper, we focus on the second case. Generally, node selection can 

be implemented by either fixed or adaptive filtering using static or dynamic thresholds, 

respectively. Static thresholds are used for searching readings within a specific range of 

values X [5], [6], while dynamic thresholds, for readings without a predefined range or when 

there is not information of the data range. In this last case, the threshold level is updated in 

the filtering process.  Examples of threshold-based filtering are summarized in Table 1. 

Fixed filtering is based on static thresholds so it can be implemented locally by each 

node despite the actual readings available at other nodes. On the contrary, adaptive filtering 

depends on these readings to update the thresholds [7]. Filtering can be implemented 

straightforward by simply disseminating queries all over the network (i.e., flooding). Even if 

the cost of disseminating a query is high in terms of message exchange, the cost of collecting 

data is much lower as only a few nodes do respond. This approach guarantees that all relevant 

nodes are selected for reporting their readings. When monitoring fields, the same query needs 

to be processed periodically. To avoid flooding the network at each query, one solution is to 

use proactive schemes based on disseminating a query only once but letting nodes to report 

their readings if data have changed. However, this scheme is not suitable for large WSNs 

monitoring dynamic continuous fields, where much data changes are expected. 

 

Table 1. Information obtained using threshold-based filtering techniques. 

fixed filtering (static threshold) adaptive filtering (dynamic threshold) 

max (value > X), min (value < X), range (X1 < value < X2), 
iso-contour (value = X), count (number of nodes with value > 
X), multi-dimensional / complex (value1 > X1 & value2 < X2) 

max, min, top-k, top-porcentual,                                 
snapshot, maximal range, multi-
dimensional / complex, skyline 

 

In this work, we consider a reactive scheme where only the first query is flooded to all 

nodes, but the following ones are directed, based on an iterative process, towards areas where 

relevant nodes are located. In this way, we aim at disseminating the same query periodically 

but at a minimum cost. Besides reducing the cost of data gathering through filtering, it is 

worth noting that query dissemination may require much message exchange. This work 

investigates how to decrease the cost of query dissemination by integrating computational 

intelligence (CI) techniques on nodes that can help to direct queries and avoid flooding the 

network. CI is a set of nature-inspired computational methodologies to address complex 

problems of the real world in which traditional methodologies are ineffective or infeasible. A 

detailed survey of CI paradigms and their potential applications in WSNs is given in [8], in 

which two bio-inspired paradigms for energy-aware routing are highlighted: swarm 

intelligence (SI) (such as ant colony optimization, pheromone-based strategies, etc.) and 

reinforcement learning (RL). Both paradigms have low computational and memory 

requirements, high flexibility, and reach near-optimal results. A detailed survey and future 

directions of SI-based routing protocols is treated in [9]. 
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In this context, we propose PhINP, a pheromone-based in-network processing 

mechanism using broadcast communication model, which combines advantages of in-

network filtering, pheromone-based and reinforcement learning algorithms. The proposal is 

able to implement both fixed and adaptive in-network filtering by means of a directed query 

dissemination strategy. For simplicity, we focus the discussion on finding maximum values, 

which is a particular case of adaptive filtering. Robustness and adaptability of the routing 

mechanism are emphasized due to the variability of conditions in WSNs (i.e failure of nodes, 

introduction of new nodes, packet loss, etc). In oder to obtain a good performance of  PhINP 

mechanism for different environments, the sink node, applying reinforcement learning and a 

configuration policy, adapts the behavior of the mechanism to the dynamic of the physical 

magnitude and/or network state. 

Additionally, a motivation for this work was to develop cooperative schemes to 

decentralize the control of the sink node. Therefore, a sink node that requires information in a 

moment can become a sensor node in a later time (role changing). This scheme enables to 

extend the network lifetime dueto nodes in the neighborhood of the sink have high energy 

requirements due to they cooperate by forwarding many responses from other nodes. 

The main contribution of this work is to propose a simple, efficient and distributed 

routing mechanism for query dissemination and information gathering, which can reduce the 

exchange of messages in the network and increase the network lifetime, by allowing some 

minimal error. 

The rest of the paper is organized as follows. Section 2 discusses both related work on 

pheromone-based routing and the main differences with our proposal. Section 3 introduces 

the PhINP mechanism and the network model, while query dissemination, data gathering, and 

pheromone-level update are described in Subsections 3.1, 3.2, and 3.3 respectively. The 

pheromone configuration policy is described in Subsection 3.4. Section 4 analyzes results 

obtained by simulation and discusses main trade-offs. Finally, Section 5 concludes the work. 

 

2. Related Work 

Bio-inspired networking and communication protocols and algorithms have emerged as 

efficient and robust solutions for routing problems in WSNs. They are based on biological 

systems, as result of millions of years of evolution, with characteristics such as adaptability to 

environmental conditions, resiliency to failures and damages, collaborative operation and 

self-organization. By looking the nature as a source of inspiration, we can deal with large 

scale networks in which the absence of centralized control and unattended resolution of 

potential failures are key factors [10], [11].  

Swarm intelligence is a relatively novel field which focus on the collective behavior of 

multi-agent systems using decentralized control and self-organization. In this kind of 

distributed and collaborative intelligence, an individual member has not the ability to perform 

an action efficiently. However, each member, using a kind of indirect communication named 

stigmergy, contributes to perform a task in an efficient way. In this sense, pheromone-based 
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routing mechanisms mimic the cooperative foraging behavior of ant colonies using two 

phases to improve information discovery and gathering. In the exploration phase, ants lay 

down pheromone trails. Upon finding food, ants return to their colony reinforcing the trails 

with more pheromone. Other ants tend to follow these paths and to reinforce them releasing 

more pheromone. Over time, pheromone tends to evaporate erasing unused paths. In order to 

avoid stagnation, in which all ants tend to use the same trails, losing the ability to discover 

new information sources, a certain probability of exploration of new trails may be considered. 

This pheromone-based approach has inspired several routing mechanisms, which can be 

classified by applying three criteria. 1) In terms of how the data sending process is started, 

three approaches can be defined, proactive [12], [13] (sources report values to sink after an 

event), reactive [14] (sources report values to sink on-demand based on queries), and hybrid 

(a combination of proactive and reactive). These approaches are shown in Figure 2. Reactive 

schemes typically have better scalability than proactive ones because they require less control 

overhead [15]. Therefore, they have a good performance in scenarios where data changes 

quickly. 2) In terms of the communication model, most works have considered unicast 

communication model but broadcast and hybrid models have been also proposed [14]. The 

first one does not take advantage of the broadcast nature of wireless communication (a 

transmitted packet is received by all neighbor nodes in the communication range). In 

addition, broadcast both enables multi-path routing and increases the robustness regarding 

packet loss and failed nodes, which are very common in WSNs. 3) Finally, in terms of the 

initiator of the process, three approaches have been proposed, source-initiated [12], [15], 

[16], [17], sink-initiated [18], and hybrid approaches. 

This work proposes a reactive data-driven routing mechanism which takes advantage of 

local pheromone levels in sensor nodes to direct query messages to nodes with relevant 

information. Key features that differentiate the proposed mechanism from existing ones are: 

(i) both data exploration and query dissemination are integrated in one phase, (ii) the 

pheromone level is neither transported in the query message nor exchanged between neighbor 

nodes, this is a local parameter of each node, (iii) the pheromone level of a node is a simple 

value indicating the probability to continue relaying the query rather than using a pheromone 

matrix, (iv) most pheromone-based routing mechanisms are address-based, instead our 

proposal is data-based, which is more suitable for in-network processing, and (v) the list of 

visited nodes is not included in the query message, which is very common in pheromone-

based algorithms.  

From the point of view of the knowledge of a node, we have three information domains. 

In the first one, a node has a m-by-m matrix, where m is the number of nodes in the network, 

with the probability (or cost) to send messages from each node to another. In this case, the 

node has a global view of the network. In the second one, a node have a 1-by-n vector, where 

n is the number of neighbor’s nodes, with the probability to send messages to each neighbor. 

In the last one, a node has only a local parameter which represents the probability to send a 

message to all neighbors (i.e. broadcast). We focus on the last case, which is less memory 

demanding and energy-efficient, especially in dense WSNs. In the two first cases, sensor 

nodes incur in high energy consumption due to communication overhead for matrix / vector 
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updating.   

In this work we increase the analysis of PhINP mechanism of a previous work [19] both 

analyzing the parameter setting to obtain good performance (i.e., good trade-off between 

error and cost) and comparing the performance of PhINP with Gossip and Flooding 

mechanisms, applying the same in-network filtering strategies in all cases. 

Figure 2. Classification of pheromone-based routing mechanisms in wireless sensor networks. 

 

3. PhINP Mechanism 

We consider a network conformed by sensor nodes disseminated over a square area, in 

which there is not a defined network topology. It is established in an ad-hoc manner based on 

local interactions (broadcast radio links), which are function of both node positions and 

communication range. In this context, one node takes the role of sink when it is accessed by a 

user requiring information. The surface, representing the physical magnitude to be sensed, 

changes continuously in time. Nodes are tasked with storing data obtained from sensing. Sink 

node, initiating a query process, has no clue about the information's location. PhINP 

mechanism makes use of two phases, query dissemination, and data gathering, followed by 

pheromone-level update, which are described in the following subsections. The pheromone 

configuration policy is described in subsection 3.4.  

3.1 Query Dissemination 

This phase is based on iterative search space reduction, adapting the query dissemination 

to the data distribution. It efficiently combines both a pheromone-based strategy, to direct 

queries to nodes with relevant readings, and in-network filtering, to limit no relevant nodes to 

answer. The query message is conformed by type (query or data message), identification, and 

threshold value (e.g., maximum value). It is worth mentioning that, in order to implement the 

maximum function, nodes need to update the query threshold if their sensed value is larger 

(i.e., dynamic threshold). In order to reduce the communication cost, each node can relay the 

same query message only once. 

On receiving a query message, each node must make two decisions, a) if to answer the 

query, reporting its data to the sink after a period of time, and b) if to continue relaying the 

query to its neighbors. The first decision is based on both the query's threshold value and the 

node's reading, and the second one is based on the node's pheromone level. These two 
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decisions generate four different kind of behaviors, which are detailed in Figure 3, in case of 

searching for maximum readings. First, the node checks whether it has already received the 

same query or not by reading the message identification (id). To limit overloading the 

network, a received query is discarded if it has already been processed. This lets each node to 

forward a query message at most once. Next, the node reads the threshold value of the query 

message to determine the relevance of its reading. The information gain ΔE represents the 

difference between this threshold and the local sensed value. If ΔE < 0, the reading is 

considered relevant and the node self-configures to answer the query after a period of time 

(Figure 3 a,c). Otherwise, the node has not relevant readings for the requirement (Figure 3 

b,d). Finally, the node must decide if to relay the query to its neighbor nodes based on its 

pheromone level (λ). As higher λ, more likely to relay the query. If the node's pheromone 

level is low, the probability to continue relaying the query is low (Figure 3 c,d), otherwise, 

the query is likely relayed (Figure 3 a,b), updating the threshold value of query message if 

there is information gain (Figure 3 a), and increasing the hop level of the query message. 

Algorithm 1 describe all the node operations in query dissemination phase, and Figure 3 

shows the node behavior in opposite conditions (λ = 0.1 and λ = 0.9). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Query dissemination phase: (a) answer and relay query, (b) only relay, (c) only answer,  

and (d) no action. 

 

3.2 Data Gathering 

 At the end of query dissemination phase, each node learns its shortest hop-distance to the 

sink node (i.e. hop level), from multiple copies of the same query message received by 

multiple paths. The response phase is triggered by all nodes selected after query 

dissemination phase. The triggering time is inversely proportional to the hop distance 

between sink and the selected node plus a random small delay. This mechanism allows to 

disable (i.e. filter) the answers of previously selected nodes near to the sink node. In data 

gathering phase, a multi-path routing strategy limited by hop level is applied to guarantee that 
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sensor readings arrive at the sink, providing low latency and robustness to node failures and 

unreliable links. After receiving a data message, each node, based on the hop level 

information, decides whether to relay the message to sink node, if is so, it puts its hop level in 

the message to relay. This is done when the hop level of the receiving node is less than that 

included in message by sending node. Otherwise, the message is discarded. This process is 

detailed in Figure 4 and Algorithm 2. 

 

 

Algorithm 1 - Query dissemination algorithm  

 

1.   id  ←  getId (queryMsg) 

2.   hops  ←  getHops (queryMsg) 

3.   thresholdValue  ←  getThreshold (queryMsg) 

4.   ΔE  ←  (thresholdValue – sensedValue) 

5.  

6.   // Discard already forwarded queries 

7.   if  idTable [id]  ==  true  then 

8.      delete (queryMsg) 

9.   else 

10.      updateIdTable (id) 

11. end if 

12.  

13.  // Answer decision 

14.  if  ΔE  ≤  0  then 

15.     dataMsg  ←  createMsg (sensedValue) 

16.     scheduleSend (dataMsg) 

17.     answer  ←  true   

18.  end if 

19.  

20.  // Query relaying decision 

21.  if  λ  >  rand ()  then 

22.     if  ΔE  ≤  0  then 

23.        updateMsg (queryMsg, sensedValue) // Update threshold value 

24.     end if 

25.     updateMsg(queryMsg, hopCount)  // Update hop count 

26.     send (queryMsg) 

27.  else 

28.     delete (queryMsg) 

29.  end if 
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3.3 Pheromone-level Update 

After data gathering phase, each sensor node updates its pheromone level, which changes 

its probability of forwarding new query messages. The update rate is setup by the query 

process and, in general, it is assumed equal to the monitoring frequency (i.e., the frequency at 

which queries are disseminated). The first query message encourages all nodes to participate 

in this phase by setting their maximum pheromone level (λ = 1). This guarantees that all 

nodes receive the query (i.e. flooding) and that all nodes with relevant readings are properly 

selected to answer. After each iteration (i.e. query dissemination and data gathering phases), 

all nodes decrease their pheromone level by λdec up to a lower bound given by λmin. Only 

nodes which have been either selected to answer the query (i.e., send sensed data) or relayed 

data back to the sink, increase their pheromone level by λinc up to an upper bound given by 

λmax (such as in MAX-MIN Ant System [20]). In our proposal, the λmax level is limited to 1, 

and the λmin  level can be adjusted based on the application requirements. In this last case, it is 

a trade-off between query cost and error, because for low λmin values the query cost tends to 

be low but the error increases, and vice versa. The goal of this phase is to reinforce those 

paths directed towards nodes with relevant data, which is described in Algorithm 3. After a 

period of time, and in a synchronized and iterative way, all nodes are updated with a 

pheromone level of 1, and the process of space reduction search is initiated again. This 

mechanism avoids to lose new relevant readings from nodes with low pheromone level and 

distant from the formed trails. 

 

Algorithm 2 – Data gathering algorithm 

 

1.    hops  ←  getHops (dataMsg) 

2.    thresholdValue  ←  getThreshold (dataMsg) 

3.    ΔE  ←  thresholdValue – sensed 

4.    

5.    // Filter selected nodes to answer 

6.    if  ΔE  >  0  then 

7.     unscheduleSend (dataMsg) 

8.       answer  ←  false 

9.    end if 

10. 

11.  // Discard already received data messages 

12.   if  idTable [id]  ==  true  then 

13.       delete (dataMsg) 

14.   else 

15.       updateIdTable (id)  

16.   end if 

17. 

18.   // Data message relay decision  

19.   if  hops  >  minHops  then 
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20.       Msg ←  setHops (minHops - 1) 

21.       send (dataMsg) 

22.       relayDataMsg  ←  true   

23.    else 

24.       delete (dataMsg) 

25.    end if 

 

3.4 Pheromone Configuration Policy 

In order to obtain a good performance of  PhINP mechanism for different environments, 

the sink node, applying reinforcement learning and a pheromone configuration policy, adapts 

the behavior of the PhINP mechanism to the dynamic of the physical magnitude. That is, the 

sink node can change the time of convergence of PhINP. In this sense, if the sensor readings 

collected by sink node are the same after successive iterations, it realizes that the magnitude 

does not change, or that is very slow, and it applies a policy of configuration of the 

pheromone decrement and increment levels more conservative, and vice versa.   

 

Figure 4. Data gathering phase: data messages are relayed to the sink based on the node's hop level 

 

Algorithm 3 - Pheromone update algorithm 

 

1.  if  λ  >  λmin  then          // pheromone evaporation 
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2.      λ  =  λ – λdec 

3.  end if 

4. 

5.  if  answer == true  or  relayDataMsg  then    // pheromone reinforcement 

6.    if  λ  <  λmax  then 

7.        λ  =  λ  +  λinc   

8.    end if   

9.  end if 

 

4. Performance Evaluation 

 PhINP mechanism was evaluated using a discrete event network simulator developed on 

Omnet++ [21]. Query error, query cost and active nodes metrics were considered in order to 

compare the performance of this proposal with respect to existing ones. The first metric 

represents the gap between the best reported data to the sink after a query iteration and the 

actual optimal one (i.e., the relative error). The second metric considers the number of nodes 

on average involved in forwarding the query message. Note that the maximum query cost is 

equal to 1, which means that all nodes relayed the query once (i.e., flooding). This cost is 

proportional to energy consumption, as power requirements in sensor networks are dominated 

by wireless communications. The latter metric depicts the proportion of active nodes in the 

network, that is, nodes with residual energy to keep running.  

 The performance of PhINP was compared with broadcast-based flooding and gossip 

mechanisms. However, the same in-network filtering strategies were applied in all cases. The 

main difference between them is how the query message is disseminated through the sensor 

network. Flooding is a deterministic approach, where the probability of each node to relay the 

query message is equal to one. As a consequence, queries are disseminated to all nodes. 

Gossip is a probabilistic approach, where the probability of each node to relay the query is 

based on the gossip level, which is fixed and equal in all nodes. This parameter can take 

values from 0 to 1. A low gossip level means that the query has low probability to be relayed 

for each node and, as a consequence, few nodes participate in the query dissemination, and 

vice versa. Gossip mechanism, setting a gossip level equal to one, behaves as flooding. 

Finally, PhINP is an adaptive approach, in which the probability to relay the query is based 

on node's pheromone level. This parameter is individually adapted between λmin and λmax in 

each iteration, based on data distribution, in order to obtain paths or trails between sink and 

sensor nodes with relevant information. These levels are limited considering error-cost 

requirements. 

 The simulation scenario is conformed by nodes uniformly deployed over a square surface 

with a constant node density of 2.5x10
-3

 nodes/m
2
, assuming a circular communication range 

of 40 meters. Therefore, if the network size is increased, the coverage area is extended, 

maintaining the same density. For example, we consider a deployment of 25 sensor nodes in a 

surface of 100 x 100 m
2
. The sensed field is modeled as the sum of S decreasing exponential 

functions with different values of position, amplitude, and attenuation. Sensor readings 

depend on node positions in the field. The field model assumes multiple independent sources 
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such as air conditioners, lights, speakers, etc. Our simulations consider the case of S = 160 

and report the average results between 2000 and 5000 random simulations. In this sense, the 

higher the number of nodes in the network, higher resolution. 

 In the followings subsections, we analyze the convergence and sensitivity of PhINP, the 

performance compared with flooding and gossip mechanisms, and the robustness of PhINP 

respect to packet loss and failed nodes obtained through simulations. 

4.1 Convergence and Sensitivity 

 Since the proposed scheme first floods the whole network, the error remains null in the 

following iterations if there are no changes in the sensed field. In fact, the error remains near 

to 0 due to a low probability of disconnected nodes in some deployments. Under these 

conditions, the convergence of the algorithm can be analyzed. At each iteration, paths to 

relevant data are reinforced, decreasing the query cost. This behavior is shown in Figure 5 for 

different network sizes. Note that the cost is almost independent of the network size. Figure 5 

shows that, for a low λmin level, the algorithm convergence is slower (12 iterations instead of 

6) than for the high ones, but with a lower query cost (40% instead of 65%). As a 

consequence, there is a trade-off between convergence time and minimum cost.  

Since monitoring implies to be able to track changes in the sensed field, we evaluate the 

sensitivity and the dynamics of the proposed scheme to these changes. Ideally, once the 

scheme converges to some minimum query cost after a few iterations, it should be able to still 

detect new relevant data sources with a low error probability. The sensitivity to field changes 

depends on the minimum level of pheromone λmin that nodes can have. We evaluate this 

sensitivity for λmin = 0.1, considering a network with 400 nodes. To this end, after 

convergence (12 iterations), the amplitude of each data source is changed randomly up to 

90%. Figure 6 shows, that after changing the amplitude of data sources, a peak in the error 

ocurrs, which is minimized by network adaptation in the following iterations. The larger the 

λinc / λdec relationship, the faster is the convergence to the minimum error; however, the cost 

tends to increase in the following iterations. As a conclusion, a λinc / λdec relationship of 2 is 

adequate for continuous fields with slow spatio-temporal variation as the simulated one, 

however, for fields with high variation,  a larger value is more convenient.  

 From simulations, we conclude that, for the simulated environment, a good error-cost 

trade-off can be obtained using λdec = 0.1, λinc = 0.2 or 0.4 (according to the temporal field 

dynamic), λmin = 0.1 and λmax = 1. 

4.2 Performance 

 The performance of PhINP mechanism is compared with broadcast-based flooding and 

gossip query dissemination schemes for a network size of 400 nodes, which is shown in 

Figure 7. This comparison considers only query disseminating cost (i.e., query cost) as the 

cost of replies is negligible with respect to the query one. Flooding disseminates the query to 

all nodes, while gossip to only half of nodes (setting a gossip level = 0.5), which are 

randomly selected as the query is propagated through the network. PhINP is configured using 

λdec = 0.1, λinc = 0.2, λmin = 0.1 and λmax = 1. Our proposal performs like flooding in terms of 
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errors but shows a cost reduction of 60%. As expected, gossip is able to limit the query cost 

but with a high error. These results validate that our proposal is able to search and learn 

where relevant data are located and reduce the cost of disseminating the query to these areas.   

 Finally, network lifetime, analyzing the percentage of active sensor nodes, and search 

error are analyzed for gossip, flooding and PhINP mechanisms. We suppose that each sensor 

node is powered by two AA alkaline batteries, with 9360 Joules each one. A standard IEEE 

802.15.4 radio transceiver at 0 dBm power output approximately requires 0.12 mJ for the 

transmission or reception of a byte [22]. A packet size of 20 kB is defined, which enables the 

transmission or reception of 7800 packets per node, considering negligible the energy for 

sensing and computing. After that, a sensor node fails generating holes in the network. 

Additionally, we consider that the sink node has unlimited energy, because it could be 

connected to the power line. Figure 8 shows the query cost and the percentage of active nodes 

in the network as a function of the query iteration.  

 

 

 

 

 

 

 

(a)           (b) 

Figure 5. Convergence and sensitivity: query cost for (a) λmin = 0.1 and (b)  λmin = 0.5.  

 

 

 

 

 

 

 

          (a)                      (b) 

Figure 6. Convergence and sensitivity: query error (a) and cost (b) for different λinc / λdec relationships, 

applying amplitude changing of data sources after algorithm adaptation. 
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          (a)                      (b) 

Figure 7. Performance comparison respect to amplitude change 

We can note that PhINP mechanism has a similar performance that flooding respect to 

query error and cost. From 300 iterations, flooding suffers from a fast decrement of the 

percentage of active nodes, with a convergence to 60% of active nodes. Gossip and PhINP 

schemes, instead, outperform the percentage of active nodes with respect to flooding from 

400 iterations approximately, increasing the network lifetime. Analyzing the temporal energy 

levels in all sensor nodes, we note that nodes at 1-hop of the sink have high energy 

consumption, due to the high message exchange. In order to overcome this limitation, a 

strategy of sink node selection given a period of time can be applied (i.e. role changing). 

 

 

 

 

 

 

 

 

          (a)                      (b) 

Figure 8. Performance comparison of routing mechanisms based on query iteration. 

  A view of the query dissemination space in a deployment of 400 nodes is shown in 

Figure 9. In this case, all the wireless interconnections between nodes are indicated by gray 

lines. The sink node is located at the center, and the black lines indicate the links used in the 

query dissemination. For the case of gossip mechanism (Figure 9 a), a gossip level = 0.5 is 

defined. Figure 9 b shows the query cost of PhINP after 12 iterations, for λdec = 0.1, λinc = 0.2, 

λmin = 0.1 and λmax = 1. The big and green nodes represent nodes configured to answer due to 

they have relevant data. 
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4.3 Robustness 

 Finally, the robustness of PhINP to network changes is analyzed. To this end, we evaluate 

its performance under packet loss conditions. Figure 10 shows the query error and cost as a 

function of both the network size and packet loss probability using λdec = 0.1, λinc = 0.2, λmin = 

0.1 and λmax = 1. Probabilities up to 10% of packet loss keep the error below 5% for networks 

of up to 400 nodes. Under different packet loss conditions, the cost remains almost the same. 

The robustness of PhINP respects to failed nodes and query iteration is shown in Figure 8.  

 

      

 

 

 

 

 

 

 

(a)                            (b) 

Figure 9. Performance comparison: (a) Gossip algorithm, and (b) PhINP algorithm after adaptation 

 

 

 

 

 

 

 

(a)                            (b) 

Figure 10. Robustness: Query error (a) and cost (b) for different packet loss probabilities. 

 

5. Conclusion 

In this work, we propose a simple and efficient mechanism for monitoring spatio-

temporal continuous fields using wireless sensor networks. The scheme tackles the query 

dissemination problem applying in-network filtering, and reinforcing distribution paths using 

an iterative pheromone-based process. It is able to reduce the messages exchanged in the 
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network, by allowing some minimal error, in order to maximize the network lifetime. Results 

show that the query cost can be significantly reduced while keeping errors very low, 

outperforming flooding and gossip mechanisms. Ongoing works includes the implementation 

of dynamic increment and decrement pheromone values, based on the data distribution, in 

order to obtain a better distribution of energy consumption in the network, and the 

implementation of PhINP mechanism in real wireless sensor networks. 
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