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Abstract 

In the wireless sensor networks composed of battery-powered sensor nodes, one of the main 
issues is how to save power consumption at each node. The usual approach to this problem is to 
activate only necessary nodes (e.g., those nodes which compose a backbone network), and to 
put other nodes to sleep. One such algorithm using location information is GAF (Geographical 
Adaptive Fidelity). GAF is enhanced to HGAF (Hierarchical Geographical Adaptive Fidelity). 
In this paper, we study the energy-efficient partition of a 3 dimensional sensor field into cells. 
Further, we give a theoretical upper bound on the cell size for this problem. 

Keywords: Wireless sensor network, Geographical adaptive fidelity, Energy conservation, 
Network lifetime, Location information,  
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1. Introduction 

Wireless sensor networks have gained much attention in recent research and development. 
In the wireless sensor networks, battery-powered sensor nodes are placed on the observation 
area, and the sensed data is transmitted to the observer by multi-hop communication between 
nodes. Traditionally, the routing protocols for these networks have been evaluated in terms of 
packet loss rates, routing overhead, etc. However, since wireless sensor networks are usually 
deployed using battery-powered nodes, the optimization of routing protocol’s energy 
consumption is also important [1][2][3]. 

The usual technique for designing an energy-efficient routing protocol is to activate only 
necessary nodes (e.g., those nodes which compose a backbone network) and to put other nodes 
to sleep [4][5][6][7][8][9][10][11]. Among these protocols, in this paper we focus on GAF 
(Geographical Adaptive Fidelity) [11] and its extended version called HGAF (Hierarchical 
Geographical Adaptive Fidelity) [6][7][8][9]. In the GAF-based algorithms, the sensor field is 
partitioned by regions called cells, and the cell size affects the energy efficiency of the 
protocols. Table 1 summarizes the maximum cell sizes for the GAF-based methods that use 
regular polygon as cell shapes. As shown in Table 1, we successfully obtained the cell size of 

3 3 4( )R2  [7], which is 29.9% larger than that of eHGAF whose cell size is R2 [6]. 

Table 1. Maximum cell sizes for GAF, HGAF, eHGAF, and eHGAF with 

triangle cells. (R denotes the communication range of each sensor node) 

GAF-based protocol Maximum cell size 

GAF [11] 1
5 R2  

HGAF [6] 1
2 R2  

eHGAF [6] R2 

eHGAF with triangle cells [7] 3 3
4 R2  

 

In [9], we studied a theoretical upper bound on the cell size, and showed that the upper 
bound is πR2 − Δ , where R denotes the communication range of each sensor node and 

Δ = 4π − 3 3( ) 6{ }R2 . In [8], we gave an algorithm that uses two types of different cell 

shapes, and obtained that the cell size can be 3R2  at largest. Since the theoretical upper 
bound is approximately 1.91R2, the cell size obtained in [8] is fairly close to it. 
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In this paper, we extend the sensor field to 3-dimensional space, and study the 
power-efficient partitioning of the field into regular polyhedral cells. Further, we prove a 
theoretical upper bound on the cell size for this problem. 

The rest of this paper is organized as follows. Section 2 introduces related works. Section 3 
explains the outline of GAF and HGAF. Section 4 extends the sensor field to 3D space, and 
provides a theoretical upper bound on the cell size. And finally Section 5 offers concluding 
remarks. 

2. Related Works 

Similarly to GAF, the protocol SPAN saves power consumption by reducing the number of 
active nodes on the entire network [4]. In SPAN, each node makes its decisions based on the 
number of neighbor nodes and residual energy, and does not use geographical information. In 
[12], Liu et al. improved the connectivity among nodes by using honeycomb cells while 
maintaining the energy efficiency of GAF. In [13], Inagaki et al. extended GAF to HGAF by 
using a layered structure, and showed extensive simulation results. In [14], Nazrul Alam et al. 
examined various cell shapes for partitioning 3D sensor field, and studied the network lifetime 
etc. for each shape comprehensively. In [14], they focused on the number of active nodes as the 
metrics of energy consumption just as we do here, but their mechanism does not use the 
hierarchal structure for cell partition like HGAF does. 

3. Preliminaries 

Throughout the paper, as in [6][7][8][9][11], we assume that the radio range of each node 
is R and is unchanged during the operation, and that every node knows its own location 
information. The detailed explanation about the equations in this section can be found in 
[11][13]. 

3.1 GAF (Geographical Adaptive Fidelity) 

In GAF [11], the entire sensor field is divided into virtual sub-fields called cells. In each 
cell, a node called active node is chosen. These active nodes have the following two missions: 

(I) The active nodes compose a backbone network for inter-cell data transmissions. Every 
data across cell-boundaries is conveyed through this backbone in multi-hop manner. 

(II) Each active node acts as a gateway node of its own cell. Every transmission across the 
cell-boundary is via the gateway node. 

Each active node is not fixed, and is properly changed over by the other node in the same cell, 
according to the remaining amount of battery at the time. The election is dynamically 
performed by the leader-election algorithm [11]. The active nodes are steadily activated, while 
other nodes are activated only when necessary and are being asleep most of the time. In GAF, 
nodes are in one of three states: sleeping, discovery, and active. A state transition diagram is 
shown in Figure 1. Initially, nodes start out in the discovery state. In the discovery state, a node 
turns on its radio and exchanges discovery messages to find other nodes within the same cell. 
The discovery message contains a tuple of node id, cell id, estimated node active time, and 
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node state. In the active state, a node plays as an active node for Ta time at longest. In the 
sleeping state, a node turns off its radio and stays in sleep mode for Ts time. GAF leaves choices 
of many parameters including Td, Ta, node rank, Ts, etc. The reader should refer [11] for the 
details.  

 

 

Figure 1. State transitions in GAF 

From the viewpoint of energy consumption, it is preferable to make the cell as large as 
possible [6]. This is because the larger a cell becomes, the smaller the total number of active 
nodes in the entire sensor field is. The cell size, however, has an upper bound, and we cannot 
make it larger without limitation. The upper bound is subject to the communication range of 
each sensor nodes and the following two requirements: 

(Req.I) Any pair of active nodes can communicate with each other if their cells are adjacent. 

(Req.II) Any active node can communicate with every other node within the cell. 

The requirements (Req.I) and (Req.II) are necessary for assuring the missions (I) and (II) of 
active nodes, respectively. 

In GAF, the sensor field is simply divided by square shaped cells of the same size (see 
Figure 2). Let the size of cell be r × r . For GAF, the requirements (Req.I) and (Req.II) are 
respectively taken on concrete formulas as follows: 

                               r2 + (2r)2 ≤ R2,                     (Req.I-GAF) 

                                 r2 + r2 ≤ R2.                     (Req.II-GAF) 

The inequality (Req.I -GAF) is due to Figure 3(a), and the inequality (Req.II -GAF) is due to 
Figure 3(b).  From these inequalities, we have 

r ≤
R
5

, 

and thus the following claim holds: 

Claim 1. [11] In GAF, the cell size is bounded above by 1 5( )R2 .                    ■ 
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Figure 2. A sensor field divided by square cells 

 

 

                 

 

Figure 3. Examples supporting (Req.I) and (Req.II) for GAF 

 

3.2 HGAF(Hierarchical Geographical Adaptive Fidelity) 

In HGAF [6], the cell size can be 1 2( )R2  at largest, by relaxing the dominant condition 

(Req.I-GAF) of GAF. 

The key idea is to avoid the extreme case illustrated in Figure 3(a). In HGAF, each cell is 
further divided into smaller squares called subcells. A cell of size r × r  is divided into subcells 
of size d × d . For simplify the exposition, we consider only the case where r is divisible by d. 

A subcell is called an active subcell if it contains an active node of the cell. In HGAF, 
active subcells are maintained in the same position of the respective cells, and their positions 
are synchronously rotated (see Figure 4). By this modification, as for (Req.I), we have only to 
consider the case illustrated in Figure 5. As for (Req.II), the inequality is the same as that of 
GAF. Hence, we have 

                               d2 + (r + d)2 ≤ R2,                 (Req.I-HGAF) 

(a) the case where the distance between 
two active nodes of adjacent cells is the 
largest. 

 
(b) the case where the distance between 
an active node and a node in the same cell 
is the largest. 
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                                 r2 + r2 ≤ R2.                   (Req.II-HGAF) 

From (Req.I-HGAF), we have 

r ≤ R2 − d 2 − d , 

and r can be R at largest when we let d be infinitesimal (i.e., the partition of each cell into 
subcells is infinitely fine-grained). Hence, the constraint (Req.II-HGAF) becomes the 
dominant condition here, and thus the following claim holds: 

Claim 2. [6] In HGAF, the cell size is bounded above by 1 2( )R2 .                   ■ 

 

 

 
Figure 4. Rotation of active subcells 

. 

 

Figure 5. An example supporting (Req.I) for HGAF. Here, the distance  
         between two active nodes of adjacent cells is the largest. 

3.3 eHGAF(extended Hierarchical Geographical Adaptive Fidelity) 

In eHGAF [6], the cell size is improved and can be R2 at largest. Here, the dominant 
constraint for HGAF, (Req.II-HGAF), is relaxed by keeping active subcells centered. For 
simplicity, we assume that r is divisible by d and that the quotient is an odd number. 
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To place an active subcell in the center of its cell, the cell-boundaries are synchronously 
slid during the operation (see Figure 6). By this modification, for (Req.II), we have only to 
consider the case illustrated in Figure 7. As for (Req.I), the inequality is the same as that of 
HGAF. Hence, we have 

                              d2 + (r + d)2 ≤ R2,                 (Req.I-eHGAF) 

                               2
r + d

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

≤ R2 .                  (Req.II-eHGAF) 

From (Req.I-eHGAF), r can be R at largest when we let d be infinitesimal. From 
(Req.II-eHGAF), r can be 2R  at largest for infinitesimal d. Hence, the constraint 
(Req.I-eHGAF) becomes the dominant condition here, and thus the following claim holds: 

Claim 3. [6] In eHGAF, the cell size is bounded above by R2.                      ■ 

 

 
 

Figure 6. Cell-boundaries are synchronously slid during the operation 
so that the active subcells are kept in the center of respective cells. 

 

 

Figure 7. An example supporting (Req.II) for eHGAF. Here, the distance 
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         between an active node and a node in the same cell is the largest. 

 

3.4 eHGAF with Triangle Cells 

In eHGAF with triangle cells [7], the upper bound on the cell size is further improved. The 
cell size can be approximately 1.299R2 at largest, which is 29.9% larger than that of standard 
eHGAF [6]. 

The main idea is to change the base-shape of each cell (and subcell) to triangle cells. 
Previously in GAF, HGAF, and eHGAF, the cells are of square-shape. Although partitioning 
with squares is regular and natural, a plane can be tiled with other regular polygons such as 

regular triangle and regular hexagon. In GAF, the cell size can be 1 4 3( )R2 ≈ 0.144R2 if we 

use triangle cells, and be 3 3 26( )R2 ≈ 0.200R2 if we use hexagon cells. That is, for GAF, we 

cannot improve the upper bound on the cell size even if we adopt triangle/hexagon cells. 

In eHGAF, however, the upper bound on the cell size can be improved up to approximately 
1.299 R2 if we use triangle cells. See Figure 8. For simplify the exposition, we assume that r’ is 
divisible by d and that the quotient is (3c + 1) for some positive integer c (this assumption 
assures that an active subcell can be located in the center (barycenter) of the triangle cell). Here, 
when d is infinitesimal, we can think that the active subcell can be seen as the point just 
positioned at the barycenter of the regular triangle. In such a case, it is easy to check that the 
conditions (Req.I) and (Req.II) become identical, and we have the following one inequality: 

                                  r'≤
3
2

R     (d is infinitesimal). 

Since r’ is the height of a regular triangle, the maximum size of triangle-shaped cell is 
calculated as 

1
2

⋅
2
3

r'⋅ r'=
3 3

4
R2 ≈1.299R2. 

Hence, the following claim holds: 

Claim 4. [7] In eHGAF with triangle cells, the cell size is bounded above by 

3 3 4( )R2 ≈1.299R2.                                                       ■ 
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Figure 8. An example supporting (Req.I) for eHGAF with triangle cells. Here,  

       the distance between two active nodes of adjacent cells is the largest. 

 

 

4. Cell Partition of 3D Space 

4.1 Cell Partition of 3D Space by Regular Polyhedra 

In this section, we extend the sensor field to a 3 dimensional space. Here the sensor nodes 
are distributed over the 3 dimensional sensor field. The 3D sensor network recently attracts 
attention (e.g. [14][15][16]). Applications of such 3D sensor field include underwater, 
atmospheric and space applications where height of the network can be significant and nodes 
are distributed over a 3D space. We examine the energy efficient way of partitioning the field 
into cells by using regular polyhedra. It is not difficult to confirm that the same strategy used in 
Section 3 is applicable to the problem here.  

In what follows, we consider partitioning the 3D sensor field into cells for eHGAF 
protocol. Similarly to the argument in Section 3.4, we calculate the upper bound on the cell size 
with viewing the barycenter of regular polyhedron as the active subcell, assuming that the size 
of subcells is infinitesimal. To fill up a 3D space with regular polyhedra, we can chose tetra-, 
hexa-, octa-, dodeca-, and icosahedra.  

To begin with, we examine the case of regular hexahedron (regular cube), for it is natural 
to use cubes for filling up the 3D space. Let r denote the length of an edge of a regular cube 
(cell). Then, the distance between the barycenter of a cube and that of adjacent cube is given by 

r, and the distance between the barycenter of a cube and a vertex of the cube is 3 2( )r  (see 

Figure 9). Then, for eHGAF with cubic cells, the requirements (Req.I) and (Req.II) are 
respectively taken on concrete formulas as follows: 

                                  r ≤ R,                   (Req.I–hexahedron) 

                                 
3

2
r ≤ R .                 (Req.II–hexahedron) 
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Since the volume of the cube is r3, the cell size can be R3 at largest. Hence, the following holds: 

Claim 5. In eHGAF with hexahedral cells, the cell size is bounded above by R3.        ■ 

 

 

Figure 9. The distance between the barycenter of a cube and that of adjacent cube, 

and the distance between the barycenter of a cube and a vertex of the cube. 

 

 

Next, we examine the case of regular tetrahedron. Let r denote the length of an edge of a 
regular tetrahedron. Then, the distance between the barycenter of a tetrahedron and that of 

adjacent one is given by 1 6( )r , and the distance between the barycenter of a tetrahedron and 

its vertex is 6 4( )r . Then, for eHGAF with tetrahedral cells, the requirements (Req.I) and 

(Req.II) are respectively taken on concrete formulas as follows: 

                                 
r
6

≤ R ,                  (Req.I– tetrahedron) 

                                 
6

4
r ≤ R .                 (Req.II–tetrahedron) 

Since the volume of the tetrahedron is 2 12( )r3 , the cell size can be 3R3  at largest, and the 

following claim holds: 

Claim 6. In eHGAF with regular tetrahedral cells, the cell size is bounded above by 

3R3 ≈1.732R3 .                                                           ■ 

Similarly, we can calculate upper bounds on the cell size for eHGAF with other polyhedra. 
The upper bound on the cell size for eHGAF with regular octahedral cells is approximately 
0.866R3, that of dodecahedral cells is 0.694R3, and that of icosahedral cells is 0.627R3. 
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Therefore, we can say that regular tetrahedral cells are preferable for filling up the 3D 
sensor field.  

4.2 Theoretical Upper Bound on Cell Size 

In this section, we study the upper bound on the cell size for eHGAF with 3D space. We 
show that the cell size is asymptotically bounded above by 4π 3( )R3 − Δ  in average, 
where Δ = 5π 12( )R3. Here, we do not assume the shape of sensor field or that of cells. Please 
note that Δ  is the volume of the overlapped region of those two spheres of radius R such that 
the distance between their centers is R.  

To begin with, we introduce the following two propositions. 

Proposition 1. If a sensor field consists of a single cell, the size of entire sensor field can be 
4π 3( )R3  at largest.                                                        ■ 

Proposition 2. If a sensor field consists of 2 cells, the size of entire sensor field can be 
2 4π 3( )R3 − Δ  at largest.                                                    ■ 

An example for Proposition 1 is a sensor field whose shape is a sphere with radius R. An 
example for Proposition 2 is the one whose shape is the union of two spheres such that the 
radius is R for both spheres and that the distance between their centers is R. Please note that Δ  
is the volume of the overlapped region of two such spheres. 

By generalizing the above two propositions, we can prove the following lemma. 

Lemma 1. If a sensor field consists of n cells, the size of entire sensor field can be 
n 4π 3( )R3 − n −1( )Δ  at largest.                                               ■ 

The Lemma 1 can be proved by mathematical induction on n. The base case is due to 
Proposition 1 and 2. The inductive case can be proved by the following lemma: 

Lemma 2. Let Sk be a sensor field composed of k cells. Construct Sk-1 from Sk by the following 
3 steps: 

(Step 1) choose any single cell C of Sk, 

(Step 2) remove the sub region of C if it is covered only by the active node of C, and 

(Step 3) migrate the leftover region of C to the adjacent cell C’ if it can be covered by the 
active node of C’. 

Then, the following inequality holds: 

Sk − Sk−1 ≤ 4π 3( )R3 − Δ , 

where |S| denotes the volume of S.                                             ■ 

Lemma 2 can be easily checked by the following observation. Let C denote the cell that is 
chosen at (Step 1) in Lemma 2. Then, obviously, C ≤ 4π 3( )R3  holds. On the other hand, 
since C has to communicate with at least one cell C’ among its adjacent cells, some part of C is 
covered by the active node of C’. So, it is not difficult to confirm that one cannot remove the 
region whose volume is more than 4π 3( )R3 − Δ  at (Step 2) in Lemma 2, and thus Lemma 2 
holds. 

To prove Lemma 1, let P(k) denote the following proposition: 

If a sensor field consists of k cells, the size of entire sensor field can be 
k 4π 3( )R3 − k −1( )Δ  at largest. 

As for the proof of inductive case for Lemma 1, if we assume that P(k) holds and that P(k + 1) 
does not, then we can derive a contradiction by Lemma 2. 
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From Lemma 1, the average cell size can be calculated as 

n 4π 3( )R3 − n −1( )Δ{ } n . 

Hence, we can derive the following theorem. 

Theorem 1. In eHGAF for 3D space, the average cell size can be asymptotically 

4π 3( )R3 − Δ  at largest.                                                     ■ 

5. Concluding Remarks 

In this paper, we showed the following: 

1. The cell size of eHGAF for 3D sensor field can be 3R3 ≈1.732R3 at largest if we use 
regular tetrahedral cells. 

2. The theoretical upper bound on the cell size of eHGAF for 3D space is asymptotically 

4π 3( )R3 − Δ ≈ 2.880R3  where Δ = 5π 12( )R3. 

Here, R is the communication range of each sensor node. Although 1.732R3 is far less than 
2.880R3, it is better to use tetrahedral cells because the cell size would be much smaller if we 
use other polyhedral cells (e.g., R3 if we use hexahedral cells). Since the total number of active 
nodes in the entire sensor field inversely relate to the cell size, for eHGAF, we can say that the 
regular tetrahedral shape is the best for the cell shape if we partition the 3D sensor field with 
regular polyhedra.  

Intuitively, there is a trade-off relation between the cell size and the degree of an active 
node. For example, if we use tetrahedral cells for partitioning a 3D space, each active node can 
communicate directly with those active nodes of 4 neighboring cells, which means that the 
communication range of an active node is overlapped with those of 4 neighboring active nodes. 
If we use hexahedral (cubic) cells, then the communication range of each active node is 
overlapped with those of 6 neighboring active nodes, and hence the cell size should be smaller 
because the portion of redundantly covered area becomes larger. Therefore, if we use a cell 
shape whereby the degree of an active node is smaller than 4, the cell size can be larger, though 
the connectivity metrics of the entire network gets worse.  

Table 2 summaries the estimated network lifetime for each cell shape. Here, as in [14], we 
assume that the network lifetime is proportional to the inverse of the number of active nodes in 
the entire network. 

Table 2. Network lifetime for each cell shape. 

Cell shape Network lifetime compared to 
the theoretical upper bound 

tetrahedron 60.1% 
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hexahedron 34.7% 

octahedron 30.1% 

dodecahedron 24.1% 

icosahedron 21.8% 

theoretical 
upper bound 100% 
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