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Abstract 

Many network engineers might presume that the TCP three way handshake is the one, 
inviolate method of establishing TCP connections. A smaller percentage of engineers are also 
familiar with the little-used "simultaneous-open" connection method of establishing TCP 
connections. Researchers have discovered a third means to initiate TCP sessions, dubbed the 
"split-handshake" method, which blends features of both the three way handshake and the 
simultaneous-open connection. Popular TCP/IP networking stacks respect this novel 
handshaking method, including Microsoft, Apple, and Linux stacks, with no modification. 
Given the novelty of the split-handshake technique, session aware devices have had very little 
formal testing to determine their effectiveness in relation to sessions established in this way. 
The authors audit a number of intrusion detection devices, NAT gateways, port scanners, and 
firewalls, and unexpected behavior was observed within each class of device and application. 
This inconsistent behavior leads to the conclusion that such network-aware devices and 
applications should undergo more rigorous testing by their respective manufacturers in an 
effort to reliably detect malicious traffic, handle network address translation more effectively, 
and detect the presence of servers offering this form of session establishment. 

Keywords: IDS, networking, security, simultaneous-open, split-handshake, TCP, TCP/IP, 
TCP evasions, TCP handshake, three way handshake 
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1. TCP, the Transport Control Protocol 

The Transport Control Protocol, or TCP, is the essential underpinning of the vast majority 
of Internet data traffic on the Internet. In 2007, TCP accounted for over 90% of all IPv4 data 
by volume, with IPv4 itself accounting for over 99% of Internet traffic [1]. In 2009, the 
volume of UDP traffic did increase, but TCP still accounts for about 89 to 97% of the total 
traffic [2]. TCP is clearly a ubiquitous and well-understood technology for transmitting a 
bewildering array of data types. E-mail, World Wide Web pages (both standard HTTP and 
secure HTTPS), most file transfers, and most Instant Messaging applications rely on TCP for 
transporting data between clients over the Internet. 

The reason for this widespread adoption of TCP is due to TCP's built-in controls for 
session establishment and tear down, where both hosts begin (and typically, end) connections 
with a proscribed sequence of packets, which in turn allows for session management 
including proper sequencing of data, congestion control, and other session quality-assuring 
tasks. By way of contrast, other common transport protocols such as the User Datagram 
Protocol [3] and the Internet Control Message Protocol [4] have no such native understanding 
of session setup and management.  

 

2. The TCP Handshake 

In order to facilitate the features of a connection-oriented protocol, all TCP connections 
begin with a "handshake," as described in RFC 793 [5]. Because there are three 
well-understood steps for this handshake, countless sources refer this as the "TCP Three Way 
Handshake." For example, a US-CERT advisory from 1996 includes a representative diagram 
of the classical understanding of TCP session establishment [6], noted here as Fig. 1. 

 

Figure 1. The three way handshake as described by US-CERT. 

TCP sessions typically begin with one host (normally referred to as the client) sending a 
synchronization packet, or SYN, to another host (the server). The SYN contains an initial 
sequence number (ISN), a pseudo-random number which represents the beginning of the TCP 
session from the perspective of the client. 

Next, the server acknowledges the client's SYN, and generates its own SYN. This 
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"SYN/ACK" packet contains both the server's ISN, as well as an acknowledgment number 
equal to the client's ISN plus 1. 

Finally, the client acknowledges the server's SYN/ACK, and sends a packet with its own 
ISN incremented by one, as well as its acknowledgement number equal to the server's ISN 
plus 1. 

Assuming all packets are sent and received without interruption, the typical TCP session 
setup is diagrammed in Fig. 2. 

 

Figure 2. The TCP three way handshake. 

 

3. Introducing the TCP Split-Handshake 

The TCP three way handshake, described thus far, should be familiar to most 
experienced network engineers. However, section 3.3 of RFC 793 [5] which introduces this 
"three way (or three message) handshake" includes an intriguing figure of a four-step process, 
reproduced here as Fig. 3: 

 
Figure 3. The four-step process as described by RFC 793 

Because TCP implementations are permitted to combine steps two and three, most (and 
presumably, all) do, which is where the term "three way" originates. However, this is clearly 
a four step process. By splitting the second packet (the first packet from the server), into 
separate acknowledgement (ACK) and synchronization (SYN) packets, one might expect an 
RFC 793-compliant client to silently accept packet two, explicitly ACK packet 3, thus 
completing the handshake more-or-less normally. However, this is not the case. This was a 
surprising finding, and carries with it some fairly serious implications for network security 
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devices and applications which depend on the common model of TCP session establishment. 

A proof-of-concept TCP listening agent was designed to test various client operating 
systems to determine how they might react to a split-handshake. This Ruby script, 
"fakestack.rb," is detailed in Appendix 1. Clients tested were fresh installations of Microsoft 
Windows XP, Service Pack 3; Apple Mac OS X v10.6 "Snow Leopard"; and Ubuntu 9.04 
"Jaunty Jackelope" Linux. 

In their default configurations, all three clients reacted to this proof-of-concept TCP 
server in the same manner, which appears inconsistent with the behavior described by the 
TCP three way handshake (described in previous section) and the TCP simultaneous-open 
connection (detailed in the next section). The procedure by which these sessions are 
established can be referred to as the "split-handshake," and is described in detail below. 

3.1 Description of the split-handshake 

First, a client sends a SYN packet (or "SYNs") the proof-of-concept server, as normal, 
picking a pseudo-random ISN. As discussed in Section 2, this is the normal means by which 
clients begin sessions with servers. Next, the server responds with a packet with the 
acknowledgement number incremented, and a random sequence number, but without the 
SYN flag set; only the ACK flag is set on the initial response from the server. The client 
silently accepts this packet, as is expected1.  In step three, the server sends a SYN packet 
with a newly generated sequence number and the correct acknowledgement number. 

Instead of merely ACKing this packet and entering the ESTABLISHED state, step four 
sees the client respond with a SYN/ACK packet, reusing its original sequence number (equal 
to the ISN), and setting its acknowledgement number to the server's ISN+1. The server then 
completes the handshake in step five by ACKing the client's SYN/ACK. It is in this way the 
TCP handshake was expanded to a "five way" sequence of packets, illustrated in Fig. 4. 

 

Figure 4. The Five Step TCP Split-Handshake 

This handshake differs rather radically from the proscribed behavior in RFC 793, Section 
3.4, and the effects of this are potentially profound in modern networks. The server never 
sends a SYN/ACK packet, but instead, that responsibility is assumed by the client in the 
tested configurations. From the point of view of any device which relies on the directionality 
of a literal SYN/ACK packet -- a packet with both the SYN and ACK bits set -- the roles of 
                                                        
1 TCP hosts correctly should not ACK ACKs, as this would quickly consume all processing and networking resources. 
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client and server will appear reversed, with the client's ephemeral port behaving as a server 
receptor, and the server's well-known port behaving as a client receptor.  

Further investigation reveals that step two (the server's initial ACK), appears to have no 
effect on establishing a new TCP session, and may optionally (or even randomly) dropped. 
Due to this behavior, this five-way handshake may itself be compressed to a four packet 
exchange. Fig. 5 illustrates this exchange, complete with example IP addresses and TCP ports. 
Note, the code listed in Appendix 1 may be used in either four way or five way mode, as the 
ACK packet may be commented out of the TCP flow. 

 

Figure 5. The Four Step Split Handshake 

 

4. TCP Simultaneous-Open 

The TCP three way handshake is not the only means by which TCP sessions may be 
established. RFC 793, Section 3.4, briefly touches on the notion of a pair of TCP hosts which 
simultaneously attempt to open a connection to each other via a SYN packet [5]. The 
"simultaneous-open" connection is more completely described by Stevens in TCP/IP 
Illustrated, Volume 1 [7]. Stevens imagines a scenario where both endpoints of the connection 
simultaneously (or nearly so) send each other SYN packets. This can be illustrated as in Fig. 
6. 

 

Figure 6. The simultaneous-open connection. 

In practice, this is rarely, if ever, seen on the Internet today. This is likely due to the 
warning accompanying the Stevens example, "Many Berkeley-derived implementations do 
not support the simultaneous open correctly [...] The transition from the SYN_SENT state to 
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the SYN_RCVD state in Figure 18.12 is not always tested in many implementations” [7]. 

In addition, applications require a fairly contrived set of circumstances to initiate a 
simultaneous-open connection. Both hosts need to send SYN packets at virtually the same 
time, but more importantly, the port pair would have to be mirrored between hosts. In other 
words, the simultaneous-open service would have to be running on Host A's port 8888 and 
Host B's 7777 (using the Stevens example ports), and in addition, each host would need to be 
using the other's well-known port as its own ephemeral ports. 

 

5. TCP Split Handshake Compared to Simultaneous-Open 

The proof-of-concept implementation of the split-handshake differs primarily from the 
simultaneous-open connection because it does not require any simultaneity among SYN 
packets, nor does it require knowledge of the client's port prior to receiving the client's SYN.  

Rather, in this split-handshake scenario, the server is passively listening for connections 
(representing the typical LISTENING state). It receives a SYN packet, and only then sends 
its SYN. The client moves from SYN_SENT to SYN_RECV, and sends a SYN/ACK. This 
behavior is no longer standard for the three way handshake, but is in accordance with the 
simultaneous-open behavior described by Stevens. However, instead of a SYN/ACK from the 
server, the client receives a mere ACK, and the session is established. This implies that the 
client has completed the usual three way handshake sequence, abandoning the "accidental" 
simultaneous-open connection sequence. 

In effect, the split-handshake merges features of both the standard three way handshake 
and simultaneous-open. Moving from one style of session establishment to another, and back 
again, is certainly not envisioned by RFC 793. It is precisely this fluid behavior which can 
cause unexpected behavior in some modern session aware network equipment and 
applications. 

 

6. Split Handshakes and Network Security Inspection Devices 

6.1 Devices Under Test 

In order to test the effectiveness of third party inspection in the face of the 
split-handshake, two dedicated security devices, the TippingPoint 2400 [8] and the Juniper 
SRX 5800 [9], and one software-based inspection device, Sourcefire Snort [10], were 
subjected to controlled testing. The TippingPoint device is a dedicated Intrusion Prevention 
System (IPS) appliance, which is designed to inspect communications between hosts for 
malicious network traffic. Once detected, the offending session is blocked from reaching the 
target. The Juniper device is a modular chassis-based system, equipped with an IPS 
component similar in function to the TippingPoint device, designed to detect and block 
network attacks, in addition to traditional stateful firewall and network address translation 
(NAT) functionality. The Snort system is a general purpose Ubuntu 9.04 Linux desktop 
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computer (described in Section 3), running the standard Snort intrusion detection system 
(IDS) service. The precise detection and blocking technologies enabling the TippingPoint and 
Juniper devices are proprietary, while the Snort engine is an open source C application 
available as an installable package from the "Universe" Ubuntu repository. 

6.2 Test Design, Equipment, and Methodology 

As the TippingPoint and Juniper systems are both dedicated, high-performance malicious 
traffic blocking systems, they are easily testable using the BreakingPoint Elite, a 
high-performance chassis-based network device testing system. Among other capabilities, the 
BreakingPoint Elite can deliver an array of attacks to test the effectiveness of network IPSes, 
and allows for several varieties of evasion techniques. The authors implemented the 
"SneakAck Handshake" evasion technique as a new feature of the BreakingPoint testing 
system [11], which allows test engineers to alter the BreakingPoint Security Component's 
TCP stack to allow TCP session establishment to behave as a split-handshake-enabled server, 
as described in Section 3. The BreakingPoint device routes traffic through the devices under 
test and acts as both the client and server; thus, as attacks are blocked and permitted, the 
results are automatically detected by the BreakingPoint device and a summary report is 
generated. 

In contrast to the two IPS devices, the Snort device was not subjected to the 
BreakingPoint test equipment, for three reasons. Firstly, the Snort device is itself both the 
detection engine and the endpoint, which complicates BreakingPoint testing. Secondly, the 
Snort device's role is not traditionally one of a blocking device, but a detection device, so 
there is no purpose in relying on the BreakingPoint equipment to log attack success and 
failures. Finally, the Snort rule set is easily customizable, so a custom rule can be used to 
detect the payload of the fakestack.rb script, which enables a precise testing methodology 
using only a single "attack." 

For the two IPSes, BreakingPoint representative test attacks were chosen which meet the 
following criteria: 

 a) Attacks are server-initiated. While many network attacks flow from a client to a server, 
there is a distinct class of "client-side" attacks [12], by which a malicious server attacks 
clients which connect to it. For example, a malicious web server might attack a browser 
application via an ActiveX control buffer overflow attack [13]. In order for an attacker to 
make effective use of the split-handshake, the attacking device should be the server, rather 
than the client, since the client cannot decide to use the three way handshake, a 
simultaneous-open connection, or the split-handshake. In the case of the Snort device, the 
"attack" is merely the HTTP payload of the fakestack.rb script as mentioned above. 

 b) Attacks are detected using the traditional TCP three way handshake. While the 
effectiveness of security devices in detecting client-side attacks regardless of evasion 
techniques is the subject of great interest to the authors, it is not the focus of this test. Thus, 
client-side attacks were chosen which are known to already be detectable by the devices 
under test. In the case of the Snort device, the custom Snort rule is already known to fire on 
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an identical payload delivered by a normal web server. 

In addition, to better control the results of the test, attacks which meet the above criteria 
are also initiated without establishing a session at all. In other words, the attack is played out 
of the context of a session, using only ACK packets. Normally, such attacks will never 
succeed, for obvious reasons. Using this procedure as a control can indicate if the device 
under test is aware of sessions at all, or is merely detecting malicious traffic based purely on 
the data carried by individual packets regardless of their effectiveness in compromising 
clients. 

6.3 Test Results 

Among the three inspection technologies tested, three distinct result sets were observed. 

6.3.1 Sourcefire Snort 

The Snort device performed as expected in all tested circumstances. The test payload was 
detected both in the normal three way handshake scenario as well as the split-handshake 
scenario. The stream5 preprocessor component of the Snort device was used, as documented 
in Chapter 2 of the SNORT User's Guide [10]. The Stream5 preprocessor is responsible for 
session tracking and reassembly, indicating that the Snort device is capable of detecting 
client-side attacks equally well under both conditions. In addition, the Snort device did not 
detect the attack when replayed via a packet capture similar to that of Appendix 2, but with 
the initial three way handshake suppressed. This indicates that Snort, in a customary 
configuration, is both stateful in terms of TCP sessions, and does not flag un-sequenced TCP 
traffic as malicious events. 

6.3.2 TippingPoint 2400 

Of the TCP-based client-side attacks which are known to be detectable by the 
TippingPoint 2400 when initiated using the traditional handshake, these were reliably 
detected when delivered via a session initiated by the split-handshake technique as well. 
However, this does not appear to be due to any special consideration of session establishment, 
the detectable attacks were also blocked in the absence of any session establishment prior to 
the malicious payloads. This indicates that the TippingPoint device is unaware of a session 
context when it comes to inspecting TCP packets for malicious traffic, and does not consider 
the presence of an established session when performing its intended detection functions.  

6.3.3 Juniper SRX 5800 

Of the three devices under test, the Juniper SRX 5800 produced the most dramatic results 
when running a typical configuration. Like the TippingPoint appliance, the Juniper system 
was tested against a BreakingPoint test attacks under normal conditions, and attacks were 
selected which met the above-listed criteria and were successfully blocked by the Juniper IPS 
component. 

Again, as a control, attacks are re-run without a proper session establishment phase of the 
TCP connection. Unlike the TippingPoint device, the Juniper system appears to be aware of 
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session state -- the non-established session attacks were (correctly) detected as invalid TCP 
traffic by the Juniper system, and dropped, indicating the Juniper system is not normally 
susceptible to Stick-style attacks of false positives.  

Finally, the detectable attacks were retested using the split-handshake methodology, and of 
these attacks, none were blocked. In this scenario, it appears that under a default 
configuration, nearly all protection against malicious servers that clients normally enjoy in an 
SRX-controlled network is obviated by employing the split-handshake technique. 

Initially, this indicates that the split-handshake is a very effective evasion technique, at 
least against the Juniper system in a default configuration. However, the Juniper system does 
have available an (apparently unique) IPS signature, the “TCP:AUDIT:S2C-SIMUL-SYN” 
attack object which is specifically intended to detect initial simultaneous-open sequence of 
packets [14]. This protocol anomaly object appears effective in shielding client-side targets 
from both simultaneous-open and split-handshake sessions, and after discussing the issue 
with Juniper engineers, the authors have learned this filter will be enabled by default for 
Juniper IPS products going forward. 

 

7. Split Handshakes and Network Address Translation (NAT) 

While the IPS/IDS implications of the split-handshake are interesting in and of 
themselves, other network devices are also responsible for tracking the state of new and 
newly-established sessions. Due to a perceived lack of adequate IPv4 address space, the 
Network Address Translation (NAT) strategy was developed. NAT devices allow endpoint 
TCP hosts with non-routable internal IP addresses to communicate across the Internet, and a 
pair of intervening NAT devices enables two machines with non-routable addresses to 
communicate to each other. Today, a large percentage of both home and office-based client 
end point hosts reside on networks with private address space with a NAT gateway. 

The standards for the behavior of NAT strategies and devices is codified in RFC 5382 
[15], which specifically requires that all conforming NAT gateways "handle the TCP 
simultaneous-open mode of connection initiation," in section 4.2. Because of this requirement, 
it can be presumed, then, that many NAT devices will allow for both simultaneous-open 
connections and split-handshake connections. 

7.1. Cisco PIX-515E 

To determine if split-handshake sessions are feasible over the Internet, informal testing 
was conducted using the Cisco PIX-515E, a firewall appliance with NAT capabilities, and a 
Cisco 2631 router configured to perform NAT. Like the TippingPoint and Juniper testing 
performed in Section 6, the Cisco PIX-515E was subjected to attacks using both normal TCP 
handshaking and split-handshaking. It was discovered that that the PIX was unable to 
recognize the split-handshake as a valid form of session establishment, and would not route 
packets through the NAT'ed address. 

7.2. Cisco 2631 
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Conversely, the Cisco 2631 router did allow the split-handshake packets to traverse the 
NAT. The router was used as an edge router connected to the Internet, with the fakestack.rb 
script running on an NAT'ed internal address. A client across the Internet, approximately 14 
hops away at the time of the test, was able to traverse several networks, successfully 
established a connection with the fakestack.rb server, and retrieved the payload as normal. 

More formal testing on the specific NAT implications of simultaneous-open was 
performed by Guha and Francis and documented much more completely in their work, 
"Characterization and Measurement of of TCP Traversal through NATs and Firewalls" [16]. 
Since support of simultaneous-open seems to be a prerequisite for support for the 
split-handshake, it can be presumed that any NAT device which is incapable of handling 
simultaneous-open is similarly incapable of handling the split-handshake technique. However, 
the converse of this cannot be assumed without specific NAT testing of split-handshake 
sessions. 

 

8. Split Handshakes and Port Scanning 

Port scanning is most often associated with malicious network behavior, though this 
stigma has faded considerably over time. Today, network engineers and attackers alike rely 
on port scanning techniques to determine the status of listening TCP ports on remote servers. 
For legitimate network engineers, port scanning is often a first step in diagnosing network 
application issues and testing host and network-based firewall configurations. Attackers, too, 
use port scanning to test firewall configurations, but usually with an aim to discover 
mis-configured or vulnerable services. 

8.1 Port Scanning Test Methodology 

To determine the effects of TCP handshake splitting on port scanning activities, two 
popular free port scanners were used, Insecure.Org's Nmap Security Scanner [17] and 
Foundstone's ScanLine [18]. Nmap is a highly portable, open source port scanner, and is 
arguably the industry standard for network engineers and attackers alike, as it offers a wide 
variety of options and several different styles of scanning network environments. ScanLine is 
more single-purpose and is a closed source Windows-based application, but is highly efficient 
on Microsoft Windows platforms for detecting the state of remote network ports. 

For both tests, the target of the scanning is a remote Ubuntu-based host running the 
fakestack.rb script. In order to differentiate between a listening, filtered, and closed port, host 
firewall rules on the fakestack.rb host will allow connections to listening port TCP/22 (which 
will produce a SYN/ACK when a SYN is received), the closed port of TCP/8081 (which will 
produce a RST when a SYN is received). The firewall will not interfere with connections to 
TCP/8080 (these will instead be handled by fakestack.rb), and will silently drop connections 
to TCP/8082 (which will result in no response from the server at all). This port configuration 
is summarized here in Table 7. 

Table 7. Target (server) host port status. The four ports, representing all possible initial states 
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TCP Port Status  
22 Open (normal stack) 
8080 Open (fakestack.rb) 
8081 Closed 
8082 Closed, Filtered 

 

8.2 Nmap 

Nmap has several modes for detecting listening TCP ports, and for testing purposes, the 
two most common modes were chosen, the TCP SYN scan (using the command line option 
"-sS"), and the TCP connect scan (using the command line option "-sT"). If a user has 
administrative privileges on the machine from which he is scanning, the SYN scan is chosen 
by default, and if not, the connect scan is attempted. The main difference between the two is 
that the SYN scan generates packets internally, and inspects packets directly, while the 
connect scan relies on the scanning host's operating system to initiate and complete TCP 
sessions. 

In the connection scan configuration, Nmap correctly determines the state of all four 
tested ports: TCP/22 and TCP/8080 are both reported as "open," TCP/8081 is reported as 
"closed," and TCP/8082 is reported as "filtered." Since the connection to TCP/8082 never 
moved out of the SYN_SENT state within the time limit, Nmap is able to make this 
determination by querying the OS's network state table. Similarly, since the network state 
table is ESTABLISHED for both ports TCP/22 and TCP/8080, nmap reports the port as open. 
Finally, since there is no state associated with TCP/8081, Nmap correctly interprets this as a 
closed port which must have seen a RST. 

By contrast, using Nmap's SYN scanning mode, Nmap fails to report TCP/8080's state 
correctly. Instead of "open" (as the port appears to be for the normal, underlying TCP stack), 
Nmap reports this port as "filtered." This is due to Nmap's reliance on detecting, specifically, 
a SYN/ACK packet in response to its initial SYN. 

In other words, port scanners which rely on a higher privileged process to create and 
receive packets will fail to detect a TCP port configured to respond with the split-handshake, 
while only port scanners with fewer privileges will successfully detect such listening ports. 

8.3 ScanLine 

In the ScanLine case, only Microsoft Windows platforms may be used to scan, so 
Microsoft Windows XP, Service Pack 3 (as described in Section 3), was chosen as the 
scanning host. ScanLine only supports one mode of TCP port scanning, which itself is tied to 
the underlying operating system's network state table. 

Because of this reliance on the operating system to make remote port status 
determination, ScanLine consistently detects the fakestack.rb port of TCP/8080 as well as the 
normal TCP/22 port as open, while TCP/8081 and TCP/8082 are both reported as closed. 
ScanLine, unlike Nmap, makes no effort to distinguish between "closed" and "filtered" ports, 
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so these negative results are to be expected. 

The results of the scanning of both Nmap and ScanLine are detailed in Table 8. 

Table 8. Port Scanner Results. The four ports, as reported by Nmap SYN Scan, Nmap Connection Scan 

TCP Port Status  Nmap -sS Nmap -sT ScanLine 
22 Open (normal stack) Open Open Open 
8080 Open (fakestack.rb) Filtered Open Open 
8081 Closed Closed Closed Closed 
8082 Closed, Filtered Filtered Filtered Closed 

 

9. Split Handshakes and Host Firewalls 

Finally, each of test client hosts described in Section 3 were tested with their respective 
default host-based firewalls enabled, in order to determine the usefulness of the 
split-handshake with a normal, though possibly non-default, configuration for such clients. 

9.1 Microsoft and Apple Host Firewalls 

On Microsoft Windows XP, the Windows Firewall is enabled by default as of Windows 
XP Service Pack 2 (and 3). Enabling and disabling the firewall appears to have no effect on 
the acceptance of split-handshake sessions. Identical behavior was observed for Apple OS X, 
although as of the OS X "Snow Leopard" release, it is important to note the firewall is 
disabled by default. For both firewalls, there is no combination of standard options which can 
disallow servers using the split-handshake functionality while simultaneously allowing the 
normal three way handshake. 

9.2 Linux Host Firewalls 

The default firewall for Ubuntu Linux (known as netfilter/IPTables), like the Apple 
firewall, is disabled by default. Enabling the firewall with default settings using the command 
line tool "ufw" (or "uncomplicated firewall") allows for normal client-initiated sessions, but 
will cause incoming SYNs in response to client SYNs to be silently discarded. This is 
unsurprising, given the recent discussions on the netfilter developer mailing list [19]. To 
summarize that discussion, netfilter/IPTables did not intend to support simultaneous-open as 
of May of 2009, but is expected to offer complete support "soon." 

As mentioned in Section 7, it may be presumed that any device which does not support 
simultaneous-open connections also cannot support split-handshakes, but with an important 
caveat that the converse cannot be said with certainty. 

 

10. Conclusions and Recommendations 

The research presented in this paper focuses on four main areas where the 
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split-handshake technique is shown to have a practical impact on the security posture of 
modern TCP/IP networks. 

For network inspection devices such as the intrusion detection and intrusion prevention 
systems audited in section 6, if the device maintains a notion of “client” and “server” based 
solely on the directionality of the SYN packet or SYN/ACK packet, this determination may 
prove to be incorrect when the true server side of the connection employs the split-handshake. 
This fallacy, in turn, can limit the effectiveness of the IDS/IPS system. Server-based attacks, 
such as those performed by a malicious web site or FTP server, will appear to be headed the 
wrong direction as far as the inspection logic is concerned – if the decision to block a packet 
or terminate a session depends on this logic, the malicious payload may be allowed through. 
Thus, IDS/IPS vendors should take care to account for the split-handshake when inspecting 
attacks which target client hosts. This can be accomplished most easily by classifying the 
split-handshake itself as malicious and blocking sessions which exhibit this technique for 
TCP session setup. Alternatively, if simultaneous-open or split-handshake functionality is 
desired for interoperability reasons, IDS/IPS manufacturers should take care to ensure the 
models employed to determine directionality are adequately tested under these uncommon 
circumstances.  

In the case of the network address translation problem documented in section 7, vendors 
of NAT devices should decide if the requirement to support simultaneous-open connections 
(as specified in RFC 5382) is a reasonable requirement to enforce. The decision to support 
only certain sections of RFCs in light of common security problems is certainly not without 
precedent. For example, it is not uncommon in moderately secure environments for hosts to 
silently drop incoming ICMP Echo Requests, even though RFC 1122 dictates that hosts must 
respond to ICMP Echo Requests [20]. At the very least, NAT device manufacturers should 
expose options to the user to support simultaneous-open (and by extension, split-handshake) 
sessions, so that network administrators may decide for themselves if the risk of allowing 
split-handshake sessions is worthwhile for their particular enterprises. 

Port scanners, as described in section 8, should accurately detect the presence of network 
services which support split-handshake sessions, if only to assist in accurately assessing the 
requirement for simultaneous-open for NAT devices. Indeed, it would be ideal if port 
scanners would classify split-open services as a special case of “open,” so that further 
investigation can be targeted to these services. As demonstrated in section 8, the most 
common port scanning technique of sending SYN packets and collecting SYN/ACK 
responses is inadequate to determine the true profile of services offered by a TCP/IP host, and 
this failure can leave malicious servers undetected. 

Finally, in the case of host-based firewalls, as illustrated in section 9, the design purpose 
of these applications is to shield hosts from undesired, often malicious, traffic. As with the 
case of NAT devices, these devices should expose a specific user option to enable or disable 
sessions which require split-open functionality, with a default deny rule. 
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11. Prior Work 

While there exists some research material discussing the practical effects of the 
simultaneous-open method of TCP session initiation (most notably, the exhaustive work by 
Guha et. al. in the creation of NAT standards), the authors are unable to locate any mention of 
the TCP split-handshake technique and its application in evading detection by network 
security devices prior to this research. While this technique appears novel, though, it is not 
the first unanticipated feature of TCP which can lend itself to a practical malicious 
application. 

The seminal work on such techniques is Ptacek and Newsham’s paper, “Insertion, 
Evasion, and Denial of Service: Eluding Network Intrusion Detection,” wherein the authors 
describe various methods to cause intrusion detection systems to misclassify traffic. 
Specifically, the Ptacek and Newsham describe an insertion attack, where overlapping IP 
fragments are designed specifically to avoid reassembly by an IDS, but can be reassembled 
by a victim host, and a method of evasion involving reordering and invalid TCP packets to 
achieve the same effect [21]. 

 

12. Further Research 

Only a very small subset of devices which may behave in unexpected ways with the 
split-handshake technique have been tested by the authors. There are likely hundreds of 
hardware devices and software applications, produced by dozens of vendors, which can be 
considered network session aware. Through this small group of network devices and 
applications, we can expect the behavior of such network aware devices to vary wildly, and 
often unexpectedly. There is much testing work to be done by these individual vendors and 
the network engineering and network security communities at large, and a method of evasion 
involving reordering and invalid TCP packets to achieve the same effect [21]. 
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Appendix 

Appendix 1. Fakestack.rb 

Fakestack.rb is a Ruby script designed to simulate a server which has implemented the TCP 
split-handshake connection procedure. It has been tested successfully using Ruby 1.8.6 and 
1.8.7, and requires the modules PcapRub and PacketFu, both available at 
<http://code.google.com/p/packetfu/>. 

In order to function correctly, the host running fakestack.rb must inhibit the operating system 
from responding to calls to fakestack.rb's listening port. This is easily accomplished on an 
Ubuntu Linux server using the "ufw" (uncomplicated firewall) iptables/netfilter control 
application. 

#!/usr/bin/env ruby 

# Go get PacketFu and PcapRub at http://code.google.com/p/packetfu 

require 'packetfu' 

# USAGE: sudo fakestack.rb eth0 8080 

$iface = ARGV[0] || "eth0" 

$port = (ARGV[1] || 8080).to_i 

puts "Watching for SYNs on #{$iface} to #{$port}..." 

cap = PacketFu::Capture.new(:iface => $iface, :start => true, :filter => "tcp 

and dst port #{$port}") 

$config = PacketFu::Utils.whoami?(:iface => $iface) 

$http_payload =  
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"PGh0bWw+PGJvZHk+CjxwPjxpPlRoaXMgd2FzIGEgdHJpdW1waCw8YnI+Ckkn\n"+ 

"bSBtYWtpbmcgYSBub3RlIGhlcmU6IEhVR0UgU1VDQ0VTUy48YnI+CihJdCdz\n"+ 

"IGhhcmQgdG8gb3ZlcnN0YXRlIG15IHNhdGlzZmFjdGlvbi4pCjwvaT48L3A+\n"+ 

"CjwvYm9keT48L2h0bWw+Cg==\n" 

$http_response =<<EOF 

HTTP/1.0 200 Ok\r 

Server: micro_httpd\r 

Date: #{Time.now.gmtime}\r 

Content-Type: text/html; utf-8\r 

Content-Length: #{$http_payload.unpack("m").first.size}\r 

Last-Modified: #{Time.now.gmtime}\r 

Connection: close\r 

\r 

#{$http_payload.unpack("m").first} 

EOF 

puts "Listening on port #{$port}..." 

loop do 

$established = false 

$disconnected = false 

$http_sent = false 

puts "Setting up the fake stack..." 

while($disconnected == false) do 

  cap.stream.each do |pkt| 

    packet = PacketFu::Packet.parse pkt 

    # Establish a session. 

    if packet.tcp_flags.syn == 1 && !$established 

      if packet.tcp_flags.ack == 0 

        puts "Got a SYN with seq = #{seq = packet.tcp_seq} from 

#{packet.ip_saddr}" 
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        puts "Generating packets..." 

        ack_packet = PacketFu::TCPPacket.new(:config => $config) 

        ack_packet.ip_daddr= packet.ip_saddr 

        ack_packet.tcp_src = $port 

        ack_packet.tcp_dst = packet.tcp_src 

        ack_packet.tcp_ack = seq + 1 

        puts "Duping and splitting SYN and ACK..." 

        syn_packet = ack_packet.dup 

        ack_packet.tcp_flags.syn = 0 

        ack_packet.tcp_flags.ack = 1 

        ack_packet.recalc 

        # Comment out the next two lines to avoid sending the ack. 

        puts "Sending ACK..." 

        ack_packet.to_w($iface) 

        syn_packet.tcp_flags.urg = 0 

        syn_packet.tcp_flags.ack = 0 

        syn_packet.tcp_flags.psh = 0 

        syn_packet.tcp_flags.rst = 0 

        syn_packet.tcp_flags.syn = 1 

        syn_packet.tcp_flags.fin = 0 

        syn_packet.tcp_ack = 0 

        syn_packet.tcp_seq = rand(0xffffffff)+1 # New sequence number 

        syn_packet.recalc 

        puts "Sending SYN..." 

        syn_packet.to_w($iface) 

      else  

        puts "Got a SYNACK with seq = #{seq = packet.tcp_seq} from 

#{packet.ip_saddr}" 

        ack_packet = PacketFu::TCPPacket.new(:config => $config) 
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        ack_packet.ip_daddr = packet.ip_saddr 

        ack_packet.tcp_src = $port 

        ack_packet.tcp_dst = packet.tcp_src 

        ack_packet.tcp_ack = seq + 1 

        ack_packet.tcp_seq = packet.tcp_ack 

        ack_packet.tcp_flags.ack = 1 

        ack_packet.recalc 

        puts "Acking the SYNACK. The handshake's a LIE!" 

        ack_packet.to_w($iface) 

        $established = true 

      end 

    elsif $established && !$http_sent 

      if packet.tcp_flags.ack == 1 

        if packet.tcp_flags.psh == 1 

          puts "Got a PSH/ACK with seq = #{seq = packet.tcp_seq}, probably the 

GET..." 

          puts packet.payload.inspect 

          ack_packet = PacketFu::TCPPacket.new(:config => $config) 

          ack_packet.ip_daddr = packet.ip_saddr 

          ack_packet.tcp_src = $port 

          ack_packet.tcp_dst = packet.tcp_src 

          ack_packet.tcp_ack = seq + packet.payload.size 

          ack_packet.tcp_seq = packet.tcp_ack 

          # Normal people: One packet GET 

          # IE8: Two packet GET, break right before the Keep-Alive. 

          # IE6: Three packets, it screws me up at the moment. Just use Firefox. 

          if packet.payload.size > 0 # Thanks for the 2 packet GET, IE. 

            ack_packet.tcp_flags.ack = 1 

            ack_packet.recalc 
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            puts "Acking the GET..." 

            ack_packet.to_w($iface) 

            http_packet = ack_packet.dup 

            http_packet.payload = $http_response[0,1400] # Enforce a max size. 

            http_packet.recalc 

            puts "Delivering the payload..." 

            http_packet.to_w($iface) 

            $http_sent = true 

          end 

        end 

      end 

    elsif $http_sent 

      if packet.tcp_flags.rst == 0 

        puts "Payload ack'ed with seq = #{seq = packet.tcp_seq}. RSTing, since 

FINs are for chumps." 

        rst_packet = PacketFu::TCPPacket.new(:config => $config) 

        rst_packet.ip_daddr = packet.ip_saddr 

        rst_packet.tcp_src = $port 

        rst_packet.tcp_dst = packet.tcp_src 

        rst_packet.tcp_ack = seq 

        rst_packet.tcp_seq = packet.tcp_ack 

        rst_packet.tcp_flags.rst = 1 

        rst_packet.tcp_flags.ack = 1 

        $disconnected = true 

        rst_packet.recalc 

        puts "Sent a RST" 

        rst_packet.to_w($iface) 

      else # Got a RST, thanks! 

        $disconnected = true 
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      end 

    end 

  end 

end 

end 

 


