
Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 197

 The TCP Split Handshake: Practical Effects on
Modern Network Equipment

Tod Beardsley (Corresponding author)

BreakingPoint Systems

3900 North Capital of Texas Highway, Austin, Texas 78746, United States

Tel: 1-512-821-6000 E-mail: todb@breakingpoint.com

Jin Qian

BreakingPoint Systems

3900 North Capital of Texas Highway, Austin, Texas 78746, United States

Tel: 1-512-821-6000 E-mail: jqian@breakingpoint.com

Abstract

Many network engineers might presume that the TCP three way handshake is the one,
inviolate method of establishing TCP connections. A smaller percentage of engineers are also
familiar with the little-used "simultaneous-open" connection method of establishing TCP
connections. Researchers have discovered a third means to initiate TCP sessions, dubbed the
"split-handshake" method, which blends features of both the three way handshake and the
simultaneous-open connection. Popular TCP/IP networking stacks respect this novel
handshaking method, including Microsoft, Apple, and Linux stacks, with no modification.
Given the novelty of the split-handshake technique, session aware devices have had very little
formal testing to determine their effectiveness in relation to sessions established in this way.
The authors audit a number of intrusion detection devices, NAT gateways, port scanners, and
firewalls, and unexpected behavior was observed within each class of device and application.
This inconsistent behavior leads to the conclusion that such network-aware devices and
applications should undergo more rigorous testing by their respective manufacturers in an
effort to reliably detect malicious traffic, handle network address translation more effectively,
and detect the presence of servers offering this form of session establishment.

Keywords: IDS, networking, security, simultaneous-open, split-handshake, TCP, TCP/IP,
TCP evasions, TCP handshake, three way handshake

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 198

1. TCP, the Transport Control Protocol

The Transport Control Protocol, or TCP, is the essential underpinning of the vast majority
of Internet data traffic on the Internet. In 2007, TCP accounted for over 90% of all IPv4 data
by volume, with IPv4 itself accounting for over 99% of Internet traffic [1]. In 2009, the
volume of UDP traffic did increase, but TCP still accounts for about 89 to 97% of the total
traffic [2]. TCP is clearly a ubiquitous and well-understood technology for transmitting a
bewildering array of data types. E-mail, World Wide Web pages (both standard HTTP and
secure HTTPS), most file transfers, and most Instant Messaging applications rely on TCP for
transporting data between clients over the Internet.

The reason for this widespread adoption of TCP is due to TCP's built-in controls for
session establishment and tear down, where both hosts begin (and typically, end) connections
with a proscribed sequence of packets, which in turn allows for session management
including proper sequencing of data, congestion control, and other session quality-assuring
tasks. By way of contrast, other common transport protocols such as the User Datagram
Protocol [3] and the Internet Control Message Protocol [4] have no such native understanding
of session setup and management.

2. The TCP Handshake

In order to facilitate the features of a connection-oriented protocol, all TCP connections
begin with a "handshake," as described in RFC 793 [5]. Because there are three
well-understood steps for this handshake, countless sources refer this as the "TCP Three Way
Handshake." For example, a US-CERT advisory from 1996 includes a representative diagram
of the classical understanding of TCP session establishment [6], noted here as Fig. 1.

Figure 1. The three way handshake as described by US-CERT.

TCP sessions typically begin with one host (normally referred to as the client) sending a
synchronization packet, or SYN, to another host (the server). The SYN contains an initial
sequence number (ISN), a pseudo-random number which represents the beginning of the TCP
session from the perspective of the client.

Next, the server acknowledges the client's SYN, and generates its own SYN. This

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 199

"SYN/ACK" packet contains both the server's ISN, as well as an acknowledgment number
equal to the client's ISN plus 1.

Finally, the client acknowledges the server's SYN/ACK, and sends a packet with its own
ISN incremented by one, as well as its acknowledgement number equal to the server's ISN
plus 1.

Assuming all packets are sent and received without interruption, the typical TCP session
setup is diagrammed in Fig. 2.

Figure 2. The TCP three way handshake.

3. Introducing the TCP Split-Handshake

The TCP three way handshake, described thus far, should be familiar to most
experienced network engineers. However, section 3.3 of RFC 793 [5] which introduces this
"three way (or three message) handshake" includes an intriguing figure of a four-step process,
reproduced here as Fig. 3:

Figure 3. The four-step process as described by RFC 793

Because TCP implementations are permitted to combine steps two and three, most (and
presumably, all) do, which is where the term "three way" originates. However, this is clearly
a four step process. By splitting the second packet (the first packet from the server), into
separate acknowledgement (ACK) and synchronization (SYN) packets, one might expect an
RFC 793-compliant client to silently accept packet two, explicitly ACK packet 3, thus
completing the handshake more-or-less normally. However, this is not the case. This was a
surprising finding, and carries with it some fairly serious implications for network security

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 200

devices and applications which depend on the common model of TCP session establishment.

A proof-of-concept TCP listening agent was designed to test various client operating
systems to determine how they might react to a split-handshake. This Ruby script,
"fakestack.rb," is detailed in Appendix 1. Clients tested were fresh installations of Microsoft
Windows XP, Service Pack 3; Apple Mac OS X v10.6 "Snow Leopard"; and Ubuntu 9.04
"Jaunty Jackelope" Linux.

In their default configurations, all three clients reacted to this proof-of-concept TCP
server in the same manner, which appears inconsistent with the behavior described by the
TCP three way handshake (described in previous section) and the TCP simultaneous-open
connection (detailed in the next section). The procedure by which these sessions are
established can be referred to as the "split-handshake," and is described in detail below.

3.1 Description of the split-handshake

First, a client sends a SYN packet (or "SYNs") the proof-of-concept server, as normal,
picking a pseudo-random ISN. As discussed in Section 2, this is the normal means by which
clients begin sessions with servers. Next, the server responds with a packet with the
acknowledgement number incremented, and a random sequence number, but without the
SYN flag set; only the ACK flag is set on the initial response from the server. The client
silently accepts this packet, as is expected1. In step three, the server sends a SYN packet
with a newly generated sequence number and the correct acknowledgement number.

Instead of merely ACKing this packet and entering the ESTABLISHED state, step four
sees the client respond with a SYN/ACK packet, reusing its original sequence number (equal
to the ISN), and setting its acknowledgement number to the server's ISN+1. The server then
completes the handshake in step five by ACKing the client's SYN/ACK. It is in this way the
TCP handshake was expanded to a "five way" sequence of packets, illustrated in Fig. 4.

Figure 4. The Five Step TCP Split-Handshake

This handshake differs rather radically from the proscribed behavior in RFC 793, Section
3.4, and the effects of this are potentially profound in modern networks. The server never
sends a SYN/ACK packet, but instead, that responsibility is assumed by the client in the
tested configurations. From the point of view of any device which relies on the directionality
of a literal SYN/ACK packet -- a packet with both the SYN and ACK bits set -- the roles of

1 TCP hosts correctly should not ACK ACKs, as this would quickly consume all processing and networking resources.

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 201

client and server will appear reversed, with the client's ephemeral port behaving as a server
receptor, and the server's well-known port behaving as a client receptor.

Further investigation reveals that step two (the server's initial ACK), appears to have no
effect on establishing a new TCP session, and may optionally (or even randomly) dropped.
Due to this behavior, this five-way handshake may itself be compressed to a four packet
exchange. Fig. 5 illustrates this exchange, complete with example IP addresses and TCP ports.
Note, the code listed in Appendix 1 may be used in either four way or five way mode, as the
ACK packet may be commented out of the TCP flow.

Figure 5. The Four Step Split Handshake

4. TCP Simultaneous-Open

The TCP three way handshake is not the only means by which TCP sessions may be
established. RFC 793, Section 3.4, briefly touches on the notion of a pair of TCP hosts which
simultaneously attempt to open a connection to each other via a SYN packet [5]. The
"simultaneous-open" connection is more completely described by Stevens in TCP/IP
Illustrated, Volume 1 [7]. Stevens imagines a scenario where both endpoints of the connection
simultaneously (or nearly so) send each other SYN packets. This can be illustrated as in Fig.
6.

Figure 6. The simultaneous-open connection.

In practice, this is rarely, if ever, seen on the Internet today. This is likely due to the
warning accompanying the Stevens example, "Many Berkeley-derived implementations do
not support the simultaneous open correctly [...] The transition from the SYN_SENT state to

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 202

the SYN_RCVD state in Figure 18.12 is not always tested in many implementations” [7].

In addition, applications require a fairly contrived set of circumstances to initiate a
simultaneous-open connection. Both hosts need to send SYN packets at virtually the same
time, but more importantly, the port pair would have to be mirrored between hosts. In other
words, the simultaneous-open service would have to be running on Host A's port 8888 and
Host B's 7777 (using the Stevens example ports), and in addition, each host would need to be
using the other's well-known port as its own ephemeral ports.

5. TCP Split Handshake Compared to Simultaneous-Open

The proof-of-concept implementation of the split-handshake differs primarily from the
simultaneous-open connection because it does not require any simultaneity among SYN
packets, nor does it require knowledge of the client's port prior to receiving the client's SYN.

Rather, in this split-handshake scenario, the server is passively listening for connections
(representing the typical LISTENING state). It receives a SYN packet, and only then sends
its SYN. The client moves from SYN_SENT to SYN_RECV, and sends a SYN/ACK. This
behavior is no longer standard for the three way handshake, but is in accordance with the
simultaneous-open behavior described by Stevens. However, instead of a SYN/ACK from the
server, the client receives a mere ACK, and the session is established. This implies that the
client has completed the usual three way handshake sequence, abandoning the "accidental"
simultaneous-open connection sequence.

In effect, the split-handshake merges features of both the standard three way handshake
and simultaneous-open. Moving from one style of session establishment to another, and back
again, is certainly not envisioned by RFC 793. It is precisely this fluid behavior which can
cause unexpected behavior in some modern session aware network equipment and
applications.

6. Split Handshakes and Network Security Inspection Devices

6.1 Devices Under Test

In order to test the effectiveness of third party inspection in the face of the
split-handshake, two dedicated security devices, the TippingPoint 2400 [8] and the Juniper
SRX 5800 [9], and one software-based inspection device, Sourcefire Snort [10], were
subjected to controlled testing. The TippingPoint device is a dedicated Intrusion Prevention
System (IPS) appliance, which is designed to inspect communications between hosts for
malicious network traffic. Once detected, the offending session is blocked from reaching the
target. The Juniper device is a modular chassis-based system, equipped with an IPS
component similar in function to the TippingPoint device, designed to detect and block
network attacks, in addition to traditional stateful firewall and network address translation
(NAT) functionality. The Snort system is a general purpose Ubuntu 9.04 Linux desktop

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 203

computer (described in Section 3), running the standard Snort intrusion detection system
(IDS) service. The precise detection and blocking technologies enabling the TippingPoint and
Juniper devices are proprietary, while the Snort engine is an open source C application
available as an installable package from the "Universe" Ubuntu repository.

6.2 Test Design, Equipment, and Methodology

As the TippingPoint and Juniper systems are both dedicated, high-performance malicious
traffic blocking systems, they are easily testable using the BreakingPoint Elite, a
high-performance chassis-based network device testing system. Among other capabilities, the
BreakingPoint Elite can deliver an array of attacks to test the effectiveness of network IPSes,
and allows for several varieties of evasion techniques. The authors implemented the
"SneakAck Handshake" evasion technique as a new feature of the BreakingPoint testing
system [11], which allows test engineers to alter the BreakingPoint Security Component's
TCP stack to allow TCP session establishment to behave as a split-handshake-enabled server,
as described in Section 3. The BreakingPoint device routes traffic through the devices under
test and acts as both the client and server; thus, as attacks are blocked and permitted, the
results are automatically detected by the BreakingPoint device and a summary report is
generated.

In contrast to the two IPS devices, the Snort device was not subjected to the
BreakingPoint test equipment, for three reasons. Firstly, the Snort device is itself both the
detection engine and the endpoint, which complicates BreakingPoint testing. Secondly, the
Snort device's role is not traditionally one of a blocking device, but a detection device, so
there is no purpose in relying on the BreakingPoint equipment to log attack success and
failures. Finally, the Snort rule set is easily customizable, so a custom rule can be used to
detect the payload of the fakestack.rb script, which enables a precise testing methodology
using only a single "attack."

For the two IPSes, BreakingPoint representative test attacks were chosen which meet the
following criteria:

 a) Attacks are server-initiated. While many network attacks flow from a client to a server,
there is a distinct class of "client-side" attacks [12], by which a malicious server attacks
clients which connect to it. For example, a malicious web server might attack a browser
application via an ActiveX control buffer overflow attack [13]. In order for an attacker to
make effective use of the split-handshake, the attacking device should be the server, rather
than the client, since the client cannot decide to use the three way handshake, a
simultaneous-open connection, or the split-handshake. In the case of the Snort device, the
"attack" is merely the HTTP payload of the fakestack.rb script as mentioned above.

 b) Attacks are detected using the traditional TCP three way handshake. While the
effectiveness of security devices in detecting client-side attacks regardless of evasion
techniques is the subject of great interest to the authors, it is not the focus of this test. Thus,
client-side attacks were chosen which are known to already be detectable by the devices
under test. In the case of the Snort device, the custom Snort rule is already known to fire on

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 204

an identical payload delivered by a normal web server.

In addition, to better control the results of the test, attacks which meet the above criteria
are also initiated without establishing a session at all. In other words, the attack is played out
of the context of a session, using only ACK packets. Normally, such attacks will never
succeed, for obvious reasons. Using this procedure as a control can indicate if the device
under test is aware of sessions at all, or is merely detecting malicious traffic based purely on
the data carried by individual packets regardless of their effectiveness in compromising
clients.

6.3 Test Results

Among the three inspection technologies tested, three distinct result sets were observed.

6.3.1 Sourcefire Snort

The Snort device performed as expected in all tested circumstances. The test payload was
detected both in the normal three way handshake scenario as well as the split-handshake
scenario. The stream5 preprocessor component of the Snort device was used, as documented
in Chapter 2 of the SNORT User's Guide [10]. The Stream5 preprocessor is responsible for
session tracking and reassembly, indicating that the Snort device is capable of detecting
client-side attacks equally well under both conditions. In addition, the Snort device did not
detect the attack when replayed via a packet capture similar to that of Appendix 2, but with
the initial three way handshake suppressed. This indicates that Snort, in a customary
configuration, is both stateful in terms of TCP sessions, and does not flag un-sequenced TCP
traffic as malicious events.

6.3.2 TippingPoint 2400

Of the TCP-based client-side attacks which are known to be detectable by the
TippingPoint 2400 when initiated using the traditional handshake, these were reliably
detected when delivered via a session initiated by the split-handshake technique as well.
However, this does not appear to be due to any special consideration of session establishment,
the detectable attacks were also blocked in the absence of any session establishment prior to
the malicious payloads. This indicates that the TippingPoint device is unaware of a session
context when it comes to inspecting TCP packets for malicious traffic, and does not consider
the presence of an established session when performing its intended detection functions.

6.3.3 Juniper SRX 5800

Of the three devices under test, the Juniper SRX 5800 produced the most dramatic results
when running a typical configuration. Like the TippingPoint appliance, the Juniper system
was tested against a BreakingPoint test attacks under normal conditions, and attacks were
selected which met the above-listed criteria and were successfully blocked by the Juniper IPS
component.

Again, as a control, attacks are re-run without a proper session establishment phase of the
TCP connection. Unlike the TippingPoint device, the Juniper system appears to be aware of

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 205

session state -- the non-established session attacks were (correctly) detected as invalid TCP
traffic by the Juniper system, and dropped, indicating the Juniper system is not normally
susceptible to Stick-style attacks of false positives.

Finally, the detectable attacks were retested using the split-handshake methodology, and of
these attacks, none were blocked. In this scenario, it appears that under a default
configuration, nearly all protection against malicious servers that clients normally enjoy in an
SRX-controlled network is obviated by employing the split-handshake technique.

Initially, this indicates that the split-handshake is a very effective evasion technique, at
least against the Juniper system in a default configuration. However, the Juniper system does
have available an (apparently unique) IPS signature, the “TCP:AUDIT:S2C-SIMUL-SYN”
attack object which is specifically intended to detect initial simultaneous-open sequence of
packets [14]. This protocol anomaly object appears effective in shielding client-side targets
from both simultaneous-open and split-handshake sessions, and after discussing the issue
with Juniper engineers, the authors have learned this filter will be enabled by default for
Juniper IPS products going forward.

7. Split Handshakes and Network Address Translation (NAT)

While the IPS/IDS implications of the split-handshake are interesting in and of
themselves, other network devices are also responsible for tracking the state of new and
newly-established sessions. Due to a perceived lack of adequate IPv4 address space, the
Network Address Translation (NAT) strategy was developed. NAT devices allow endpoint
TCP hosts with non-routable internal IP addresses to communicate across the Internet, and a
pair of intervening NAT devices enables two machines with non-routable addresses to
communicate to each other. Today, a large percentage of both home and office-based client
end point hosts reside on networks with private address space with a NAT gateway.

The standards for the behavior of NAT strategies and devices is codified in RFC 5382
[15], which specifically requires that all conforming NAT gateways "handle the TCP
simultaneous-open mode of connection initiation," in section 4.2. Because of this requirement,
it can be presumed, then, that many NAT devices will allow for both simultaneous-open
connections and split-handshake connections.

7.1. Cisco PIX-515E

To determine if split-handshake sessions are feasible over the Internet, informal testing
was conducted using the Cisco PIX-515E, a firewall appliance with NAT capabilities, and a
Cisco 2631 router configured to perform NAT. Like the TippingPoint and Juniper testing
performed in Section 6, the Cisco PIX-515E was subjected to attacks using both normal TCP
handshaking and split-handshaking. It was discovered that that the PIX was unable to
recognize the split-handshake as a valid form of session establishment, and would not route
packets through the NAT'ed address.

7.2. Cisco 2631

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 206

Conversely, the Cisco 2631 router did allow the split-handshake packets to traverse the
NAT. The router was used as an edge router connected to the Internet, with the fakestack.rb
script running on an NAT'ed internal address. A client across the Internet, approximately 14
hops away at the time of the test, was able to traverse several networks, successfully
established a connection with the fakestack.rb server, and retrieved the payload as normal.

More formal testing on the specific NAT implications of simultaneous-open was
performed by Guha and Francis and documented much more completely in their work,
"Characterization and Measurement of of TCP Traversal through NATs and Firewalls" [16].
Since support of simultaneous-open seems to be a prerequisite for support for the
split-handshake, it can be presumed that any NAT device which is incapable of handling
simultaneous-open is similarly incapable of handling the split-handshake technique. However,
the converse of this cannot be assumed without specific NAT testing of split-handshake
sessions.

8. Split Handshakes and Port Scanning

Port scanning is most often associated with malicious network behavior, though this
stigma has faded considerably over time. Today, network engineers and attackers alike rely
on port scanning techniques to determine the status of listening TCP ports on remote servers.
For legitimate network engineers, port scanning is often a first step in diagnosing network
application issues and testing host and network-based firewall configurations. Attackers, too,
use port scanning to test firewall configurations, but usually with an aim to discover
mis-configured or vulnerable services.

8.1 Port Scanning Test Methodology

To determine the effects of TCP handshake splitting on port scanning activities, two
popular free port scanners were used, Insecure.Org's Nmap Security Scanner [17] and
Foundstone's ScanLine [18]. Nmap is a highly portable, open source port scanner, and is
arguably the industry standard for network engineers and attackers alike, as it offers a wide
variety of options and several different styles of scanning network environments. ScanLine is
more single-purpose and is a closed source Windows-based application, but is highly efficient
on Microsoft Windows platforms for detecting the state of remote network ports.

For both tests, the target of the scanning is a remote Ubuntu-based host running the
fakestack.rb script. In order to differentiate between a listening, filtered, and closed port, host
firewall rules on the fakestack.rb host will allow connections to listening port TCP/22 (which
will produce a SYN/ACK when a SYN is received), the closed port of TCP/8081 (which will
produce a RST when a SYN is received). The firewall will not interfere with connections to
TCP/8080 (these will instead be handled by fakestack.rb), and will silently drop connections
to TCP/8082 (which will result in no response from the server at all). This port configuration
is summarized here in Table 7.

Table 7. Target (server) host port status. The four ports, representing all possible initial states

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 207

TCP Port Status
22 Open (normal stack)
8080 Open (fakestack.rb)
8081 Closed
8082 Closed, Filtered

8.2 Nmap

Nmap has several modes for detecting listening TCP ports, and for testing purposes, the
two most common modes were chosen, the TCP SYN scan (using the command line option
"-sS"), and the TCP connect scan (using the command line option "-sT"). If a user has
administrative privileges on the machine from which he is scanning, the SYN scan is chosen
by default, and if not, the connect scan is attempted. The main difference between the two is
that the SYN scan generates packets internally, and inspects packets directly, while the
connect scan relies on the scanning host's operating system to initiate and complete TCP
sessions.

In the connection scan configuration, Nmap correctly determines the state of all four
tested ports: TCP/22 and TCP/8080 are both reported as "open," TCP/8081 is reported as
"closed," and TCP/8082 is reported as "filtered." Since the connection to TCP/8082 never
moved out of the SYN_SENT state within the time limit, Nmap is able to make this
determination by querying the OS's network state table. Similarly, since the network state
table is ESTABLISHED for both ports TCP/22 and TCP/8080, nmap reports the port as open.
Finally, since there is no state associated with TCP/8081, Nmap correctly interprets this as a
closed port which must have seen a RST.

By contrast, using Nmap's SYN scanning mode, Nmap fails to report TCP/8080's state
correctly. Instead of "open" (as the port appears to be for the normal, underlying TCP stack),
Nmap reports this port as "filtered." This is due to Nmap's reliance on detecting, specifically,
a SYN/ACK packet in response to its initial SYN.

In other words, port scanners which rely on a higher privileged process to create and
receive packets will fail to detect a TCP port configured to respond with the split-handshake,
while only port scanners with fewer privileges will successfully detect such listening ports.

8.3 ScanLine

In the ScanLine case, only Microsoft Windows platforms may be used to scan, so
Microsoft Windows XP, Service Pack 3 (as described in Section 3), was chosen as the
scanning host. ScanLine only supports one mode of TCP port scanning, which itself is tied to
the underlying operating system's network state table.

Because of this reliance on the operating system to make remote port status
determination, ScanLine consistently detects the fakestack.rb port of TCP/8080 as well as the
normal TCP/22 port as open, while TCP/8081 and TCP/8082 are both reported as closed.
ScanLine, unlike Nmap, makes no effort to distinguish between "closed" and "filtered" ports,

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 208

so these negative results are to be expected.

The results of the scanning of both Nmap and ScanLine are detailed in Table 8.

Table 8. Port Scanner Results. The four ports, as reported by Nmap SYN Scan, Nmap Connection Scan

TCP Port Status Nmap -sS Nmap -sT ScanLine
22 Open (normal stack) Open Open Open
8080 Open (fakestack.rb) Filtered Open Open
8081 Closed Closed Closed Closed
8082 Closed, Filtered Filtered Filtered Closed

9. Split Handshakes and Host Firewalls

Finally, each of test client hosts described in Section 3 were tested with their respective
default host-based firewalls enabled, in order to determine the usefulness of the
split-handshake with a normal, though possibly non-default, configuration for such clients.

9.1 Microsoft and Apple Host Firewalls

On Microsoft Windows XP, the Windows Firewall is enabled by default as of Windows
XP Service Pack 2 (and 3). Enabling and disabling the firewall appears to have no effect on
the acceptance of split-handshake sessions. Identical behavior was observed for Apple OS X,
although as of the OS X "Snow Leopard" release, it is important to note the firewall is
disabled by default. For both firewalls, there is no combination of standard options which can
disallow servers using the split-handshake functionality while simultaneously allowing the
normal three way handshake.

9.2 Linux Host Firewalls

The default firewall for Ubuntu Linux (known as netfilter/IPTables), like the Apple
firewall, is disabled by default. Enabling the firewall with default settings using the command
line tool "ufw" (or "uncomplicated firewall") allows for normal client-initiated sessions, but
will cause incoming SYNs in response to client SYNs to be silently discarded. This is
unsurprising, given the recent discussions on the netfilter developer mailing list [19]. To
summarize that discussion, netfilter/IPTables did not intend to support simultaneous-open as
of May of 2009, but is expected to offer complete support "soon."

As mentioned in Section 7, it may be presumed that any device which does not support
simultaneous-open connections also cannot support split-handshakes, but with an important
caveat that the converse cannot be said with certainty.

10. Conclusions and Recommendations

The research presented in this paper focuses on four main areas where the

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 209

split-handshake technique is shown to have a practical impact on the security posture of
modern TCP/IP networks.

For network inspection devices such as the intrusion detection and intrusion prevention
systems audited in section 6, if the device maintains a notion of “client” and “server” based
solely on the directionality of the SYN packet or SYN/ACK packet, this determination may
prove to be incorrect when the true server side of the connection employs the split-handshake.
This fallacy, in turn, can limit the effectiveness of the IDS/IPS system. Server-based attacks,
such as those performed by a malicious web site or FTP server, will appear to be headed the
wrong direction as far as the inspection logic is concerned – if the decision to block a packet
or terminate a session depends on this logic, the malicious payload may be allowed through.
Thus, IDS/IPS vendors should take care to account for the split-handshake when inspecting
attacks which target client hosts. This can be accomplished most easily by classifying the
split-handshake itself as malicious and blocking sessions which exhibit this technique for
TCP session setup. Alternatively, if simultaneous-open or split-handshake functionality is
desired for interoperability reasons, IDS/IPS manufacturers should take care to ensure the
models employed to determine directionality are adequately tested under these uncommon
circumstances.

In the case of the network address translation problem documented in section 7, vendors
of NAT devices should decide if the requirement to support simultaneous-open connections
(as specified in RFC 5382) is a reasonable requirement to enforce. The decision to support
only certain sections of RFCs in light of common security problems is certainly not without
precedent. For example, it is not uncommon in moderately secure environments for hosts to
silently drop incoming ICMP Echo Requests, even though RFC 1122 dictates that hosts must
respond to ICMP Echo Requests [20]. At the very least, NAT device manufacturers should
expose options to the user to support simultaneous-open (and by extension, split-handshake)
sessions, so that network administrators may decide for themselves if the risk of allowing
split-handshake sessions is worthwhile for their particular enterprises.

Port scanners, as described in section 8, should accurately detect the presence of network
services which support split-handshake sessions, if only to assist in accurately assessing the
requirement for simultaneous-open for NAT devices. Indeed, it would be ideal if port
scanners would classify split-open services as a special case of “open,” so that further
investigation can be targeted to these services. As demonstrated in section 8, the most
common port scanning technique of sending SYN packets and collecting SYN/ACK
responses is inadequate to determine the true profile of services offered by a TCP/IP host, and
this failure can leave malicious servers undetected.

Finally, in the case of host-based firewalls, as illustrated in section 9, the design purpose
of these applications is to shield hosts from undesired, often malicious, traffic. As with the
case of NAT devices, these devices should expose a specific user option to enable or disable
sessions which require split-open functionality, with a default deny rule.

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 210

11. Prior Work

While there exists some research material discussing the practical effects of the
simultaneous-open method of TCP session initiation (most notably, the exhaustive work by
Guha et. al. in the creation of NAT standards), the authors are unable to locate any mention of
the TCP split-handshake technique and its application in evading detection by network
security devices prior to this research. While this technique appears novel, though, it is not
the first unanticipated feature of TCP which can lend itself to a practical malicious
application.

The seminal work on such techniques is Ptacek and Newsham’s paper, “Insertion,
Evasion, and Denial of Service: Eluding Network Intrusion Detection,” wherein the authors
describe various methods to cause intrusion detection systems to misclassify traffic.
Specifically, the Ptacek and Newsham describe an insertion attack, where overlapping IP
fragments are designed specifically to avoid reassembly by an IDS, but can be reassembled
by a victim host, and a method of evasion involving reordering and invalid TCP packets to
achieve the same effect [21].

12. Further Research

Only a very small subset of devices which may behave in unexpected ways with the
split-handshake technique have been tested by the authors. There are likely hundreds of
hardware devices and software applications, produced by dozens of vendors, which can be
considered network session aware. Through this small group of network devices and
applications, we can expect the behavior of such network aware devices to vary wildly, and
often unexpectedly. There is much testing work to be done by these individual vendors and
the network engineering and network security communities at large, and a method of evasion
involving reordering and invalid TCP packets to achieve the same effect [21].

Acknowledgements

The testing equipment to verify the research was supported by BreakingPoint Systems.
Special thanks are offered to BreakingPoint’s security and application protocol departments,
Juniper Networks, and the “Austin Hackers Anonymous!” group, for their invaluable insight
and verification of the split-handshake effect, involving reordering and invalid TCP packets
to achieve the same effect [21].

References

[1] John, Wolfgang & Tafvelin, Sven, “Analysis of Internet Backbone Traffic and Header
Anomalies Observed”. IMC '07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, Pp 111-116. October 2007.

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 211

[2] Cooperative Association for Internet Data Analysis (CAIDA), “Analyzing UDP Usage in
Internet Traffic”. Available at: http://www.caida.org/research/traffic-analysis/tcpudpratio/

[3] Postel, Jon, “User datagram protocol”. ARPANET Working Group Requests for
Comments, no. 768. August 1980.

[4] Postel, Jon, “Internet control message protocol”. ARPANET Working Group Requests for
Comments, no. 792. September 1981.

[5] Postel, Jon, “Transmission control protocol”. ARPANET Working Group Requests for
Comments, no. 793. September 1981.

[6] United States Computer Emergency Response Team (US-CERT), “CERT advisory
CA-1996-21 TCP SYN Flooding and IP Spoofing Attacks”. Available at:
http://www.cert.org/advisories/CA-1996-21.html

[7] Stevens, Richard (1994). 18.8 Simultaneous open. In TCP/IP Illustrated, Volume 1: The
Protocols (pp. 250-252). Boston; Addison-Wesley.

[8] TippingPoint, “TippingPoint Intrusion Prevention Systems”. Available at:
http://www.tippingpoint.com/products_ips.html

[9] Juniper Networks, “SRX-Series Hardware: Documentation”. Available at:
http://www.juniper.net/techpubs/hardware/srx-series.html

[10] Snort Project, “Snort User's Manual”. Available at:
http://www.snort.org/assets/125/snort_manual-2_8_5_1.pdf

[11] Beardsley, Tod, “TCP Portals: The Handshake's a Lie!”. BreakingPoint Labs Blog.
Available at:
http://www.breakingpointsystems.com/community/blog/tcp-portals-the-three-way-handshake
-is-a-lie

[12] Riden, Jamie, “Client-Side Attacks”. The Honeynet Project. Available at:
http://www.honeynet.org/node/157

[13] Vreugdenhil, P. & TippingPoint, “Microsoft Office OWC10.Spreadsheet ActiveX
msDataSourceObject() Heap Corruption Vulnerability”. ZDI Advisories. Available at:
http://www.zerodayinitiative.com/advisories/ZDI-09-054/

[14] Juniper Networks, “TCP: S2C Ambiguity Simultaneous SYN”. Attack Objects Index.
Available at:
https://services.netscreen.com/restricted/sigupdates/nsm-updates/HTML/TCP:AUDIT:S2C-S
IMUL-SYN.html

[15] Guha, S. ed., “NAT Behavioral Requirements for TCP”. Network Working Group
Requests for Comments, no. 5382. October 2008.

[16] Guha, S., & Francis, P, “Characterization and Measurement of TCP Traversal Through
NATs and Firewalls”. IMC '05: Proceedings of the 5th ACM SIGCOMM conference on

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 212

Internet measurement, Pp 199-211. September 2005.

[17] Lyon, Gordon, ed., “Nmap Reference Guide”. Available at:
http://nmap.org/book/man.html

[18] Foundstone, Inc., “ScanLine v1.01: Command Line Port Scanner”. Available at:
http://www.foundstone.com/us/resources/proddesc/scanline.htm

[19] Kadlecsik, Jozef, “TCP simultaneous open using iptables NAT?”. Available at:
http://marc.info/?l=netfilter&m=124386207628596&w=2

[20] Braden, R. ed., “Requirements for Internet Hosts – Communications Layers”. Network
Working Group Requests for Comments, no. 1122. October 1989.

[21] Ptacek, T. & Newsham, T., “Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection”. Available at: http://insecure.org/stf/secnet_ids/secnet_ids.html

Appendix

Appendix 1. Fakestack.rb

Fakestack.rb is a Ruby script designed to simulate a server which has implemented the TCP
split-handshake connection procedure. It has been tested successfully using Ruby 1.8.6 and
1.8.7, and requires the modules PcapRub and PacketFu, both available at
<http://code.google.com/p/packetfu/>.

In order to function correctly, the host running fakestack.rb must inhibit the operating system
from responding to calls to fakestack.rb's listening port. This is easily accomplished on an
Ubuntu Linux server using the "ufw" (uncomplicated firewall) iptables/netfilter control
application.

#!/usr/bin/env ruby

Go get PacketFu and PcapRub at http://code.google.com/p/packetfu

require 'packetfu'

USAGE: sudo fakestack.rb eth0 8080

$iface = ARGV[0] || "eth0"

$port = (ARGV[1] || 8080).to_i

puts "Watching for SYNs on #{$iface} to #{$port}..."

cap = PacketFu::Capture.new(:iface => $iface, :start => true, :filter => "tcp

and dst port #{$port}")

$config = PacketFu::Utils.whoami?(:iface => $iface)

$http_payload =

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 213

"PGh0bWw+PGJvZHk+CjxwPjxpPlRoaXMgd2FzIGEgdHJpdW1waCw8YnI+Ckkn\n"+

"bSBtYWtpbmcgYSBub3RlIGhlcmU6IEhVR0UgU1VDQ0VTUy48YnI+CihJdCdz\n"+

"IGhhcmQgdG8gb3ZlcnN0YXRlIG15IHNhdGlzZmFjdGlvbi4pCjwvaT48L3A+\n"+

"CjwvYm9keT48L2h0bWw+Cg==\n"

$http_response =<<EOF

HTTP/1.0 200 Ok\r

Server: micro_httpd\r

Date: #{Time.now.gmtime}\r

Content-Type: text/html; utf-8\r

Content-Length: #{$http_payload.unpack("m").first.size}\r

Last-Modified: #{Time.now.gmtime}\r

Connection: close\r

\r

#{$http_payload.unpack("m").first}

EOF

puts "Listening on port #{$port}..."

loop do

$established = false

$disconnected = false

$http_sent = false

puts "Setting up the fake stack..."

while($disconnected == false) do

 cap.stream.each do |pkt|

 packet = PacketFu::Packet.parse pkt

 # Establish a session.

 if packet.tcp_flags.syn == 1 && !$established

 if packet.tcp_flags.ack == 0

 puts "Got a SYN with seq = #{seq = packet.tcp_seq} from

#{packet.ip_saddr}"

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 214

 puts "Generating packets..."

 ack_packet = PacketFu::TCPPacket.new(:config => $config)

 ack_packet.ip_daddr= packet.ip_saddr

 ack_packet.tcp_src = $port

 ack_packet.tcp_dst = packet.tcp_src

 ack_packet.tcp_ack = seq + 1

 puts "Duping and splitting SYN and ACK..."

 syn_packet = ack_packet.dup

 ack_packet.tcp_flags.syn = 0

 ack_packet.tcp_flags.ack = 1

 ack_packet.recalc

 # Comment out the next two lines to avoid sending the ack.

 puts "Sending ACK..."

 ack_packet.to_w($iface)

 syn_packet.tcp_flags.urg = 0

 syn_packet.tcp_flags.ack = 0

 syn_packet.tcp_flags.psh = 0

 syn_packet.tcp_flags.rst = 0

 syn_packet.tcp_flags.syn = 1

 syn_packet.tcp_flags.fin = 0

 syn_packet.tcp_ack = 0

 syn_packet.tcp_seq = rand(0xffffffff)+1 # New sequence number

 syn_packet.recalc

 puts "Sending SYN..."

 syn_packet.to_w($iface)

 else

 puts "Got a SYNACK with seq = #{seq = packet.tcp_seq} from

#{packet.ip_saddr}"

 ack_packet = PacketFu::TCPPacket.new(:config => $config)

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 215

 ack_packet.ip_daddr = packet.ip_saddr

 ack_packet.tcp_src = $port

 ack_packet.tcp_dst = packet.tcp_src

 ack_packet.tcp_ack = seq + 1

 ack_packet.tcp_seq = packet.tcp_ack

 ack_packet.tcp_flags.ack = 1

 ack_packet.recalc

 puts "Acking the SYNACK. The handshake's a LIE!"

 ack_packet.to_w($iface)

 $established = true

 end

 elsif $established && !$http_sent

 if packet.tcp_flags.ack == 1

 if packet.tcp_flags.psh == 1

 puts "Got a PSH/ACK with seq = #{seq = packet.tcp_seq}, probably the

GET..."

 puts packet.payload.inspect

 ack_packet = PacketFu::TCPPacket.new(:config => $config)

 ack_packet.ip_daddr = packet.ip_saddr

 ack_packet.tcp_src = $port

 ack_packet.tcp_dst = packet.tcp_src

 ack_packet.tcp_ack = seq + packet.payload.size

 ack_packet.tcp_seq = packet.tcp_ack

 # Normal people: One packet GET

 # IE8: Two packet GET, break right before the Keep-Alive.

 # IE6: Three packets, it screws me up at the moment. Just use Firefox.

 if packet.payload.size > 0 # Thanks for the 2 packet GET, IE.

 ack_packet.tcp_flags.ack = 1

 ack_packet.recalc

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 216

 puts "Acking the GET..."

 ack_packet.to_w($iface)

 http_packet = ack_packet.dup

 http_packet.payload = $http_response[0,1400] # Enforce a max size.

 http_packet.recalc

 puts "Delivering the payload..."

 http_packet.to_w($iface)

 $http_sent = true

 end

 end

 end

 elsif $http_sent

 if packet.tcp_flags.rst == 0

 puts "Payload ack'ed with seq = #{seq = packet.tcp_seq}. RSTing, since

FINs are for chumps."

 rst_packet = PacketFu::TCPPacket.new(:config => $config)

 rst_packet.ip_daddr = packet.ip_saddr

 rst_packet.tcp_src = $port

 rst_packet.tcp_dst = packet.tcp_src

 rst_packet.tcp_ack = seq

 rst_packet.tcp_seq = packet.tcp_ack

 rst_packet.tcp_flags.rst = 1

 rst_packet.tcp_flags.ack = 1

 $disconnected = true

 rst_packet.recalc

 puts "Sent a RST"

 rst_packet.to_w($iface)

 else # Got a RST, thanks!

 $disconnected = true

Network Protocols and Algorithms
ISSN 1943-3581

2010, Vol. 2, No. 1

www.macrothink.org/npa 217

 end

 end

 end

end

end

