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Abstract 

Quality-of-service (QoS)-enabled publish/subscribe (pub/sub) middleware provides the infra-
structure needed to disseminate data predictably, reliably, and scalably in distributed 
real-time and embedded (DRE) systems. Maintaining QoS properties as the operating envi-
ronment fluctuates is challenging, however, since the chosen mechanism (e.g., transport pro-
tocol or caching algorithm for data persistence) may no longer provide the needed QoS. 
Moreover, some adaptation approaches are tailored for particular types of operating environ-
ments, such as environments whose configuration properties (e.g., number of data receivers 
or data sending rate) are known prior to runtime versus unknown until runtime. 

For DRE pub/sub systems operating in dynamic environments, adjustments to mechanisms 
must be timely, accurate for known environments, and resilient to environments unknown 
until runtime. Several adaptation approaches, such as policy-based [1] and reinforcement 
learning [2] have been developed to ensure end-to-end quality-of-service (QoS) for enterprise 
distributed systems in dynamic operating environments. Not all approaches are applicable for 
DRE pub/sub systems, however, due to their stringent accuracy, timeliness, and development 
complexity requirements. 

Supervised machine learning techniques, such as artificial neural networks (ANNs) [3] and 
support vector machines (SVMs) [4], are promising approaches to address the accuracy, time 
complexity, and development complexity concerns of adaptive enterprise DRE systems. This 
article describes the results of research that (1) empirically evaluates supervised machine 
learning techniques used to adapt the transport protocols of QoS-enabled pub/sub middleware 
autonomically in a dynamic environment and (2) integrates multiple techniques to increase 
accuracy for environments known a priori and not known until runtime. Our results show 
that both ANNs and SVMs provide constant time complexity, low latency, and reduced de-
velopment complexity. ANNs are generally more accurate in providing adaptation guidance 
for environments whose properties are known prior to runtime and provide sub-μsec response 
times, whereas SVMs provide higher accuracy with μsec latencies for environments whose 
properties are not known until runtime. Both approaches can be leveraged together with 
QoS-enabled pub/sub middleware to address the timeliness, accuracy, and development com-
plexity needs of enterprise DRE systems executing in dynamic environments. 

Keywords: Adaptation of Transport Protocols, Artificial Neural Networks, Autonomic Adap-
tation, Event-based Distributed Systems, Publish/Subscribe Middleware, Supervised Machine 
Learning, Support Vector Machines.  
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1 Introduction 

1.1 Emerging trends and challenges. 

Enterprise distributed real-time and embedded (DRE) publish/subscribe (pub/sub) sys-
tems provide the management of critical resources and data for the ongoing objectives of 
projects and organizations. Examples include shipboard computing environments, air traffic 
management systems, and recovery operations in the aftermath of regional or national disas-
ters. These enterprise DRE pub/sub systems often modify their operational behavior based on 
their external environment. For example, search and rescue missions as part of disaster re-
covery operations can adjust the image resolution of captured video streams used to detect 
and track survivors depending on the resources provided by the environment (e.g., computing 
power, network bandwidth) [5]. 

Many enterprise DRE pub/sub systems autonomically1 (1) monitor their environment 
and (2) adjust their operational behavior as the environment changes since manual adjustment 
is tedious, slow, and error prone. For example, a shift in network reliability can prompt qual-
ity-of-service (QoS)-enabled middleware, such as the OMG Data Distribution Service (DDS) 
[6], to change mechanisms (such as the transport protocol used to deliver data) since some 
mechanisms provide better reliability than others in certain environments. Likewise, applica-
tions leveraging cloud computing environments where elastically allocated resources (e.g., 
CPU speeds and memory) cannot be characterized accurately a priori may need to adjust to 
available resources (such as using compression algorithms optimized for the available CPU 
power and memory) at system startup. If adjustments take too long the mission(s) the system 
implements could be jeopardized.  

One way to autonomically adapt enterprise DRE pub/sub systems involves policy-based 
approaches [7][1][8] that externalize and codify logic to manage the behavior of the systems. 
Policy-based approaches provide deterministic response times to guide appropriate adjust-
ments given changes in the environment and can be optimized to ensure low-latency perfor-
mance. The complexity of developing and maintaining policy-based approaches for enterprise 
DRE systems can be unacceptably high, however, since developers must determine and im-
plement the policies which are applicable for certain environmental configurations. Moreover, 
developers must manage how the policies interact to provide needed adjustments. 

Machine learning techniques support algorithms that allow systems to adjust behavior 
based on empirical data, e.g., inputs from the environment. These techniques can be used to 
support autonomic adaptation by learning appropriate adjustments to various operating envi-
ronments. Unlike policy-based approaches, however, machine learning techniques automati-
cally recognize complex sets of environment properties, provide highly accurate support for 
environment properties not previously known or encountered, and make appropriate deci-
sions accordingly. 

Conventional machine learning techniques, such as decision trees [9] and reinforcement 
learning[2], have been used to address autonomic adaptation for non-DRE systems [10]. 
                                                        
1 An autonomic system operates by managing itself without external intervention (Kephart & Chess, 2003). 
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These techniques are not well-suited for enterprise DRE pub/sub systems, however, since 
they do not provide bounded times when determining adjustments [11]. Some techniques, 
such as reinforcement learning [12], explore the solution space until an appropriate solution is 
found, regardless of the elapsed time. Other techniques, such as decision trees, have time 
complexities that are dependent upon the specific data and cannot be determined a priori. 
Moreover, decision trees may contain decision branches that are much longer than others, 
thereby making the determination of appropriate adaptations unpredictable, which is unde-
sirable for DRE pub/sub systems. 

Supervised machine learning techniques with bounded times provide a promising way to 
addressing the accuracy, timeliness, and development complexity of DRE pub/sub systems. 
Some techniques, however, provide higher accuracy for environment configurations known a 
priori, whereas other techniques provide higher accuracy for environment configurations 
unknown until runtime. Since known and unknown environment configurations are relevant 
in dynamic operating environments, both types of techniques should be leveraged when they 
are most appropriate. 

1.2 Solution approach → Integrate multiple machine learning techniques to guide QoS me-
chanism adaptation for QoS-enabled pub/sub middleware in dynamic environments. 

In general, machine learning uses guidance from past known environments to handle new 
and unknown environments. This generality sacrifices some accuracy, however, that would 
otherwise be provided for known environments. Machine learning techniques that are specia-
lized for the environments they have seen—and on which they have been trained—are said to 
be overfitted [13], which makes the accuracy comparable to policy-based approaches (i.e., 
100% accurate). Overfitted techniques are particularly suited for environments known a pri-
ori where the technique can be specialized for the known cases. Generalized machine learn-
ing techniques, however, are more appropriate for handling environments unknown until run-
time. 

This paper describes how we integrate pub/sub middleware with both overfitted machine 
learning and generalized machine learning to (1) reduce the complexity of autonomic adap-
tive enterprise DRE pub/sub systems, (2) provide the constant time complexity required of 
DRE pub/sub systems, and (3) increase the adaptation accuracy over any one single machine 
learning technique. In particular, our approach tunes an artificial neural network (ANN) [3] 
(which is a technique modeled on the interaction of neurons in the human brain) to retain as 
much information about environment configurations and adjustments known a priori as 
possible (e.g., greatly increasing the number of connections between input environment cha-
racteristics and output adjustments typically used in an ANN). Our approach also tunes a 
support vector machine (SVM) to provide highly accurate adaptations for environments un-
known until runtime.  

This article expands on previous work [14] that outlined key benefits of overfitting neur-
al networks by (1) including additional experimental data and analysis for ANNs, (2) empiri-
cally evaluating SVMs, and (3) integrating both ANNs and SVMs to increase overall adapta-
tion accuracy. Our ADAptive Middleware And Network Transports (ADAMANT) technology 
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presented in this article utilizes the strengths of these two machine learning techniques and 
combines them with the DDS QoS-enabled pub/sub middleware to ensure accurate, timely, 
and predictable adaptation to both operating environment changes known a priori and those 
unknown until runtime, such as an increase in the data sending rate or number of data receiv-
ers. 

The remainder of this paper is organized as follows: Section 2 describes a representative 
search and rescue application to motivate the challenges that ADAMANT addresses; Section 
3 explains how ADAMANT addresses the challenges in Section 2; Section 4 presents empiri-
cal results of using ANNs and SVMs to determine appropriate adaptations and analysis of 
when to use each technique; Section 5 compares our work with related work; and Section 6 
presents concluding remarks. 

2 Motivating Example – Search and Rescue (SAR) Operations for Disaster Recovery 

To motivate the need for integrating pub/sub middleware with overfitted and generalized 
machine learning techniques to provide high accuracy for both environments known a priori 
and those unknown until runtime, we motivate our work in the context of search and rescue 
(SAR) operations. SAR operations are part of disaster recovery enterprise DRE pub/sub sys-
tems that manage relief efforts in the aftermath of a disaster, such as a hurricane, earthquake, 
or tornado. SAR operations help locate and extract survivors in a large metropolitan area after 
a regional catastrophe. SAR operations increasingly use unmanned aerial vehicles (UAVs), 
existing operational monitoring infrastructure (e.g., building or traffic light mounted cameras 
intended for security or traffic monitoring), and (temporary) datacenters to receive, process, 
and transmit event stream data from sensors and monitors to emergency vehicles that can be 
dispatched to areas where survivors are identified. In particular, our work focuses on confi-
guring the QoS-enabled pub/sub middleware used by the temporary ad hoc datacenter for 
data dissemination. 

Figure 1 shows an example SAR scenario where infrared scans along with GPS coordi-
nates are provided by UAVs and video feeds are provided by existing infrastructure cameras. 
These infrared scans and video feeds are sent to and disseminated by the ad hoc datacenter, 
where they are processed by fusion applications to detect and locate survivors. Once a survi-
vor is detected the application can use the video and infrared feeds to develop a three dimen-
sional view and highly accurate position information so that rescue operations can com-
mence. 

 
Figure 1. Motivating Search and Rescue (SAR) Example 
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A key requirement of data fusion applications within the datacenter is the tight timing 
bounds on correlated event streams such as the infrared scans coming from UAVs and video 
coming from cameras mounted atop traffic lights. The event streams need to match up closely 
so the survivor detection application can produce accurate results. If an infrared data stream 
is out of sync with a video data stream the survivor detection application can generate a false 
negative and fail to initiate needed rescue operations. 

Likewise, without timely data coordination the survivor detection software can generate 
a false positive, thereby unnecessarily expending scarce resources, such as rescue workers, 
rescue vehicles, and data center coordinators. The timeliness and reliability properties of the 
data are affected by the transport protocols utilized by the pub/sub middleware to disseminate 
the data. For example, some protocols provide better reliability and lower latency for certain 
operating environments (e.g., a low number of receivers and a low sending rate) whereas 
other protocols perform better for other operating environments (e.g., high number of receiv-
ers and a high sending rate) [15]. 

2.1 Key Challenges of Enterprise DRE Systems in Dynamic Environments 

Below we summarize key challenges that arise when developing autonomic enterprise 
DRE systems, such as the SAR motivating example described above. 

2.1.1 Challenge 1: Reduction of Development Complexity 

Developing autonomic behavior can incur high complexity due to the number and type of 
relevant environmental conditions. For example, the number of data receivers for SAR opera-
tions can affect the optimal transport protocols and parameter settings used since some pro-
tocols provide adequate QoS for a small number of receivers whereas other protocols provide 
adequate QoS for a larger number of receivers. Codifying this knowledge requires developers 
of SAR applications to manually (1) manage the appropriate protocols for given environ-
ments and (2) map these associations accurately into implementation artifacts (e.g., source 
code). The manual management of mapping between environment and protocol is tedious and 
error-prone, which increases development complexity and reduces system trustworthiness. 
ADAMANT addresses this challenge with adaptation techniques that automatically manage 
the associations between the operating environments for SAR operations and the appropriate 
transport protocols, thus helping to manage development complexity, as described in Section 
3.3.1. 

2.1.2 Challenge 2: Timely Adaptation to Dynamic Environments 

Due to the dynamic environment inherent in enterprise DRE systems, SAR operations 
(such as disseminating video and infrared data with both timeliness and reliability properties) 
must adjust in a bounded timely—ideally constant time—manner as the environment changes. 
SAR operations that cannot adjust quickly and in a bounded amount of time will fail to per-
form adequately when resources change, e.g., if resources are lost or withdrawn—or demand 
for information increases—operations must be configured to accommodate these changes 
with appropriate responsiveness to support the timeliness and reliability properties. If re-
sources increase or demand decreases, SAR operations should adjust as quickly as possible to 
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provide higher fidelity via enhanced timeliness and/or reliability of video or infrared data. 
Manual modification is often too slow and error-prone to maintain QoS. ADAMANT ad-
dresses this challenge via machine learning based on a fixed number of equations and that 
exhibit low latency and constant-time complexity, as described in Section 3.3.2. 

2.1.3 Challenge 3: Accurate Adaptation to Environments Known A Priori 

Application operations in enterprise DRE systems such as SAR operations must be able 
to adjust accurately to environment configurations known a priori. When changes in the en-
vironment of SAR operations occur, which have been previously encountered (e.g., used to 
train the adaptation approach) the system should be able to select the transport protocol that 
can provide the ideal QoS for that environment with respect to timeliness and reliability. If 
SAR operations fail to provide the appropriate adjustment for an environment configuration 
then the SAR operations could be jeopardized. ADAMANT addresses this challenge by using 
machine learning techniques specifically fine-tuned for the data on which they are trained, 
thus providing 100% accuracy for environments known a priori, as described in Section 
3.3.3. 

2.1.4 Challenge 4: Accurate Adaptation to Previously Unknown Environments 

SAR operations must be flexible enough to provide highly accurate adaptation guidance 
even for environment configurations that have not been previously encountered (e.g., increase 
in network loss as wireless networks may need to be used due to damage of wired networks 
from the catastrophe, increase of receivers for video and infrared data as additional local, 
state, and federal agencies are wanting to monitor the situation). Due to the dynamic and tur-
bulent nature of SAR operations, environment changes unknown until runtime can occur. As 
these unknown changes occur, the system must provide as much adaptation guidance as 
possible. Moreover, the guidance must provide greater than 50% accuracy. Otherwise, the 
guidance does more harm than good. ADAMANT addresses this challenge by using machine 
learning techniques designed to generalize from their training contexts, thus providing high 
accuracy for environments that are unknown until runtime, as described in Section 3.3.4. 

3 Integrating Pub/Sub Middleware with Multiple Supervised Machine Learning 
Techniques to Guide Transport Protocol Adaptation 

Our solution combines the benefits of (1) overfitted machine learning to increase accu-
racy in determining appropriate adjustments for environments known a priori and (2) genera-
lized machine learning to provide guidance for environments unknown until runtime. These 
technologies along with DDS are detailed in Section 3.1. This approach enables enterprise 
DRE pub/sub systems to adjust to their environments autonomically, whether the properties 
of the environment are known a priori or not. Moreover, we leverage techniques that provide 
the time complexity assurance needed for enterprise DRE pub/sub systems. In particular, we 
are using this approach within the context of our ADAptive Middleware And Network Trans-
ports (ADAMANT) software platform to make adjustments to transport protocols to support 
the QoS of pub/sub systems in dynamic environments. 

3.1 Overview of Supporting Technologies 
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ADAMANT incorporates the use of the supervised machine learning techniques of 
ANNs and SVMs to provide robust guidance for transport protocol selection in dynamic en-
vironments. Supervised machine learning involves training a machine learning technique on 
data that is known to be correct. The supervised machine learning is then able to generalize 
this learning to provide guidance for data on which it has not been trained. Modeled on the 
interaction of neurons in the human brain [3], an ANN is a supervised machine learning tech-
nique that provides high accuracy to environments known a priori and robustness to envi-
ronments unknown until runtime. Figure 2 illustrates the architecture of an ANN with an in-
put layer for relevant aspects of the operating environment, e.g., percent network loss, send-
ing rate and an output layer that represents the transport protocol that is generated based on 
the input of the operating environment. 

Connecting the input and output layers is a hidden layer. As the ANN is trained on inputs 
and correspondingly correct outputs, it strengthens or weakens connections between the lay-
ers to generalize its learning based on the inputs and outputs. Nodes in the hidden layer (aka 
hidden nodes) are the computational components that provide connections between the rele-
vant properties of the operating environment (e.g., CPU speed, network reliability) with the 
adjustments needed for those environments. In general, an increase in the number of hidden 
nodes allows for an increase in learning that the ANN is able to perform. The stopping error 
is a specified value used during training the ANN that indicates that the ANN should keep 
iterating over the data until the error between the response that the ANN generates and the 
correct response is the specified value. In general, as the stopping error decreases the accura-
cy of the responses increases. 

 

Figure 2. Artificial Neural Network to Determine Transport Protocol 

Moreover, Figure 2 outlines how an ANN is configured statically in the number of hid-
den layers and the number of nodes in each layer. This static configuration of an ANN direct-
ly affects the processing time complexity between the input of operating environment condi-
tions and the output of an appropriate transport protocol and settings. Therefore, ANNs are 
able to support bounded response times. 

Supervised machine learning uses guidance from past known environments to handle 
new and unknown environments. This generality sacrifices some accuracy, however, that 
would otherwise be provided for known environments. Overfitting the machine learning 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2010, Vol. 2, No. 3 

www.macrothink.org/npa 45

techniques specifically focuses learning on the environments that are known a priori. Para-
meters for the machine learning can be adjusted to provide high accuracy only for these par-
ticular environments (e.g., increasing the number of nodes in the hidden layer or decreasing 
the stopping error in an ANN). Over-fitting reduces development complexity and makes the 
accuracy comparable to policy-based approaches. 

SVMs are supervised learning methods used for classification and prediction. Given a set 
of training examples where each example is denoted as belonging to a particular class or 
grouping, an SVM builds a model that predicts into which grouping a new example should be 
categorized. The SVM generates the boundaries between the different groupings to maximize 
the differences between the groupings. This maximization helps to correctly classify new 
examples that have not been used in training the SVM model using the heuristic of locality, 
i.e., examples that belong in the same group should be fairly close to each other in the classi-
fication space. 

Figure 3 illustrates conceptually how an SVM makes its determination for classification 
boundaries. The examples in grouping A are represented by solid circles while the examples 
in grouping B are represented by hollow circles. For simplicity and clarity, the examples are 
classified using two attributes. The dashed line C1 and the solid line C2 represent two differ-
ent classifiers. An SVM produces a classifier similar to C2 since its margin between the two 
classification groupings is larger than with C1. A new example (i.e., a solid grey circle) that 
needs to be classified using the SVM belongs in classification grouping A. The example is 
close to the line C1 but on the opposite side of the rest of the examples for that grouping and 
is therefore incorrectly classified whereas with C2 the new example would be correctly clas-
sified. An SVM maximizes the margin of differences between classification groupings. 

 

Figure 3. Support Vector Machine Classification Example 

DDS specifies standards-based anonymous QoS-enabled pub/sub middleware for ex-
changing data in event-based distributed systems. DDS provides a global data store in which 
publishers and subscribers write and read data, respectively. DDS provides flexibility and 
modular structure by decoupling: (1) redundancy, by allowing any numbers of readers and 
writers, (2) location, via anonymous publish/subscribe, (3) platform, by supporting a plat-
form-independent model that can be mapped to different platform-specific models, such as 
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C++ running on VxWorks or Java running on Real-time Linux, and (4) time, by providing 
asynchronous, time-independent data distribution. 

The DDS architecture consists of two layers: (1) the data-centric pub/sub (DCPS) layer 
that provides APIs to exchange topic data based on specified QoS policies and (2) the data 
local reconstruction layer (DLRL) that makes topic data appear local. This paper focuses on 
DCPS since it is more broadly supported than the DLRL. The DCPS entities in DDS include 
Topics, which describe the type of data to be written or read; Data Readers, which subscribe 
to the values or instances of particular topics; and Data Writers, which publish values or in-
stances for particular topics. Various properties of these entities can be configured using 
combinations of the 22 QoS policies specified by DDS. Moreover, Publishers manage groups 
of data writers and Subscribers manage groups of data readers. 

3.2 Overview of ADAMANT 

The ADAMANT platform integrates and enhances the DDS QoS-enabled pub/sub mid-
dleware, autonomic adaptation of the transport protocols used by DDS, the Adaptive Network 
Transports (ANT) framework (which supports multiple transport protocols), and supervised 
machine learning techniques to select appropriate transport protocols in a timely and reliable 
manner whether for environments known or unknown before runtime. ADAMANT focuses 
on adapting the middleware and protocols in dynamic environments, thereby enhancing prior 
work [16] that focused on accurate start-time configuration of QoS-enabled middleware for 
elastically provisioned resources in cloud computing environments. Figure 4 shows the ar-
chitecture and control flow for ADAMANT, which provides feedback on multiple aspects of 
the operating environment (e.g., the number of receivers, data sending rate, percent network 
loss) through the use of a monitoring topic in DDS. The controller monitors the feedback and 
sends it on to the transport protocol optimizer. The optimizer determines if the environment 
configuration has been encountered previously and uses the appropriate machine learning 
technique that will provide the highest accuracy. 

The optimizer utilizes a combination of an ANN and an SVM to determine the transport 
protocol that ADAMANT should use to disseminate data for the given operating environment. 
As detailed in Section 4, ANNs provide perfect accuracy for environment configurations 
whose properties are known prior to runtime while providing bounded, sub-μsec response 
times. SVMs provide higher accuracy for environments whose properties are not known until 
runtime with bounded μsec latencies. The optimizer determines whether to use an ANN or 
SVM for protocol determination. 

The selected transport protocol is then sent to the adapter controller. The controller 
checks to see if the protocol recommendation differs from the current protocol used and, if so, 
passes the new protocol information to ANT, which updates ADAMANT to use the protocol 
for data dissemination. Figure 4 illustrates a logically centralized architecture for the auto-
nomic adaptation controller and the protocol optimizer. However, these components are 
physically distributed across the computing platforms in the system, i.e., each computing 
platform has its own local autonomic adaptation controller and protocol optimizer. Since the 
environment configuration changes are published to all the subscribers all the local control-
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lers and optimizers receive the same updates. Since the controllers and optimizers are deter-
ministic, all the controllers and optimizers will generate the same transport protocol to use. 
This physically distributed architecture allows for scalability in the number of publishers, 
subscribers, and computing platforms. 

  

Figure 4. ADAMANT Architecture and Control Flow 

The ANT framework supports various transport protocol properties, including multicast, 
packet tracking, NAK-based reliability, ACK-based reliability, flow control, group member-
ship, and membership fault detection. These properties can be configured dynamically to 
achieve greater flexibility and support configuration adaptation. ANT also supports a nega-
tive acknowledgment (NAK) based multicast protocol (NAKcast) that supports a timeout 
parameter to determine when a data receiver should send NAKs to the data sender. The time-
out parameter affects the timeliness of the transmitted data.  

The ANT framework was derived from the Ricochet [17] transport protocol, which uses 
a bi-modal multicast protocol and a novel type of forward error correction (FEC) called lat-
eral error correction (LEC) to provide QoS and scalability properties. Ricochet supports (1) 
time-critical multicast for high data rates with strong probabilistic delivery guarantees and (2) 
low-latency error detection along with low-latency error recovery. The Ricochet protocol has 
two tunable parameters. The R parameter determines the number of packets a receiver should 
receive before it sends out a repair packet to other receivers. The C parameter determines the 
number of receivers that will be sent a repair packet from any single receiver. Both parame-
ters together affect the timeliness and reliability of the transmitted data. 

With ANT’s flexible support of transport protocols, the protocols that ADAMANT uses 
can be varied depending on the QoS properties that are needed. The Ricochet and NAKcast 
transport protocols have been the focus of the protocols in ANT due to their support for ba-
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lancing the important QoS data dissemination properties of reliability and low latency [15]. 
Both of these properties are important for enterprise DRE pub/sub systems, such as SAR op-
erations, which publish and subscribe to data with timeliness concerns so that the data is not 
stale as well as reliably delivering enough data to be useful.  

3.3 Addressing the Key Challenges of Enterprise DRE Systems in Dynamic Environments 

The ADAMANT approach to integrating multiple machine learning techniques combines 
(1) over-fitting an ANN to retain a high degree of information about environment configura-
tions known a priori, (2) training an SVM to provide generalized adaptation guidance for 
environment configurations unknown until runtime, and (3) constant time complexity deter-
mination of whether an environment configuration is known or unknown at runtime so that 
the most accurate machine learning technique can be used. We over-fit the ANN by increas-
ing the number of hidden nodes and decreasing the stopping error used for training the ANN. 

As the ANN learns, it strengthens or weakens the connections between inputs, hidden 
nodes, and outputs to provide appropriate adjustments. The stopping error is an indication to 
the ANN that it should keep iterating over the data until the error between what the ANN ge-
nerates and the correct response is sufficiently low. Increasing the number of hidden nodes 
and decreasing the stopping error increases the level of specificity that the ANN maintains. 
ADAMANT resolves the challenges presented in Section 2.1 as follows described below. 

3.3.1 Solution 1: Machine Learning to Manage Development Complexity 

The supervised machine learning techniques of ANNs and SVMs address Challenge 1 
from Section 2.1.1 by decreasing the development complexity involved with codifying ad-
justments for multiple configurations of operating environments. Policy-based approaches for 
autonomic adaptation place the complexity burden on application developers, who must ma-
nually maintain operating environment configurations, appropriate adjustments needed, and 
the mapping between the configurations and the adjustments. Moreover, developers must 
accurately codify this mapping in their implementations. ANNs and SVMs relieve developers 
of this burden since they manage the complexity via training to react appropriately, i.e., de-
termining the appropriate transport protocol and parameter settings as an operating environ-
ment changes. 

3.3.2 Solution 2: Constant-time Complexity Machine Learning 

Machine learning techniques that utilize a static number of equations for learning address 
Challenge 2 from Section 2.1.2 by providing predictable time complexities for determining 
appropriate adjustments. In particular, ADAMANT applies SVMs and over-fitted ANNs to 
QoS-enabled pub/sub middleware to support enterprise DRE systems by incorporating the 
appropriate transport protocol adjustments according to feedback provided while the tech-
nique is trained. When an ANN or SVM is used to determine the appropriate transport proto-
col in an enterprise DRE system, the time to determine an appropriate adjustment is bounded 
by the constant number of equations involved. 

3.3.3 Solution 3: Over-fitted Machine Learning for Perfect Accuracy in Environments 
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Known A Priori 

Over-fitting a machine learning technique addresses Challenge 3 from Section 2.1.3 by 
increasing the adaptation accuracy for environments known a priori. ADAMANT increases 
the accuracy of ANNs for determining appropriate adjustments for known operating envi-
ronments by (1) decreasing the error value by which the training for the ANN stops and (2) 
increasing the number of hidden nodes that connect the operating environment properties, 
such as CPU speed and network bandwidth, with the appropriate adjustments, such as trans-
port protocols to support QoS. Specifically, over-fitting an ANN provides accuracy equal to 
policy-based approaches. 

3.3.4 Solution 4: Generalized Machine Learning for High Accuracy in Environments 
Known at Runtime 

ADAMANT’s use of a generalized machine learning technique addresses Challenge 4 
from Section 2.1.4 by increasing the adaptation accuracy for environments unknown until 
runtime. While over-fitted ANNs provide high accuracy for environments known a priori, the 
over-fitting reduces the accuracy for environments unknown until runtime. ADAMANT uses 
SVMs for determining appropriate adjustments for operating environments unknown until 
runtime. SVMs are designed to provide classification that maximizes the differences between 
data that are in different categories, e.g., an environment where the Ricochet transport proto-
col provides the best QoS vs. an environment where NAKcast provides the best QoS. This 
maximization of differences increases the probability that an unknown environment will be 
classified correctly if it is similar to other environments that have been classified correctly 
during the training of the SVM. 

The differentiation between known and unknown environments also helps to address 
Challenge 3 in Section 2.1.3 and Challenge 4 in Section 2.1.4 by determining which machine 
learning technique should be used for a given operating environment. This determination in-
creases the overall adaptation accuracy since over-fitted ANNs provide better accuracy for 
environments known a priori than SVMs while SVMs provide better accuracy than 
over-fitted ANNs for environments unknown until runtime. The distinction between environ-
ments known before and after runtime allows us to leverage the most accurate machine 
learning technique. 

ADAMANT leverages perfect hashing [18] for the environment configurations to deter-
mine in constant time whether or not an environment configuration is known or unknown. 
Perfect hashing utilizes the environment configurations, on which the ANN has been trained, 
as keys to map to the corresponding scaled environment configuration data, which is used by 
the ANN. If the key is mapped in the perfect hash then ADAMANT knows to use the ANN 
since it will provide perfect accuracy. If the key is not mapped then ADAMANT knows to 
use the SVM since it provides the highest accuracy for environment configurations, which 
have not been used for training. Perfect hashing provides the constant time complexity 
needed for DRE systems. 
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4 Experimental Results and Analysis 

This section presents the results of experiments that use ANNs and SVMs to determine 
development complexity, timeliness, and accuracy in selecting an appropriate transport proto-
col for ADAMANT given a particular operating environment. We conducted experiments for 
both environments known a priori (i.e., using the same data for training and testing of the 
machine learning technique) and environments unknown until runtime (i.e., using mutually 
exclusive data for training and testing). The experimental input data used to train the ANNs 
and SVMs include ADAMANT with multiple properties of the operating environment varied 
(e.g., CPU speed, network bandwidth, DDS implementation, percent data loss in the network), 
along with multiple properties of the application being varied (e.g., number of receivers, 
sending rate of the data) as would be expected for an ad hoc datacenter used for SAR opera-
tions. 

From previous experiments that empirically evaluate how transport protocols perform in 
different operating environments [15] we gathered 394 inputs where an input consists of data 
values for features that determine a particular operating environment (e.g., CPU speed, net-
work bandwidth, number of data receivers, sending rate). Table 1 delineates the inputs for 
both of the machine learning techniques that ADAMANT utilizes (i.e., ANNs and SVMs). 
The composite QoS metrics combine multiple QoS concerns into a single value. ReLate2 
combines reliability and average network packet latency while ReLate2Jit extends the Re-
Late2 metric to also include standard deviation of packet arrival times (i.e., packet jitter). 

We also provided the expected output to the machine learning techniques, i.e., the trans-
port protocol that provided the best QoS with respect to data reliability, average latency, and 
jitter (i.e., standard deviation of the latency of network packets) depending on which combi-
nation of these QoS properties were required. Both machine learning techniques used output 
a transport protocol and protocol settings given the operating environment inputs. An exam-
ple of one of the 394 inputs is the following: 15 data receivers, 5% network loss, 100Hz data 
sending rate, 3GHz CPU, 1Gb network, using the OpenSplice DDS implementation, and spe-
cifying the combination of reliability and average latency as the QoS properties of interest. 
Based on our experiments, the corresponding output would be the Ricochet transport protocol 
with the R and C parameters set to 4 and 6, respectively. 

Machine Learning Inputs Values 

Number of data receivers 3 - 25 

Network bandwidth 1 Gb/s, 100 Mb/s, 10 Mb/s 

DDS implementation OpenDDS, OpenSplice 

Percent end-host network loss 3 – 10 % 
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CPU type 850 MHz, 3 GHz 

Data sending rate 10 Hz, 25 Hz, 50 Hz, 100 Hz 

Available RAM 500 MB, 2 GB 

Composite QoS metric ReLate2, ReLate2Jit 

Table 1. Machine Learning Inputs 

4.1 Evaluating the Development Complexity of Policy-based Approaches 

Policy-based approaches support a fairly straightforward way to determine optimal trans-
port protocols for a given operating environment. After certain operating conditions are 
checked and met, these approaches guide the system to adapt its behavior. Figure 5 shows an 
example where the application checks for the following environment properties applicable to 
the experimental data we collected relevant to SAR operations: 

1. percentage loss in the network (i.e., network_loss_percent), 
2. number of data receivers (i.e., num_receivers), 
3. the rate of publishing data (i.e., sending_rate), 
4. the CPU processing speed (i.e., CPU_speed), 
5. the random-access memory available (i.e., RAM), 
6. the network bandwidth provided (i.e., net_bw), 
7. the DDS implementation used (i.e., DDS_impl), and 
8. the QoS properties of interest (i.e., metric). 

 

Figure 5. Policy-based Adaptation Example 

The time complexity of some policy-based approaches (e.g., the manual implementation 
outlined in Figure 5) can be optimized since (1) the bounded number of conditions that are 
checked and (2) the bounded number of the behaviors used to adapt the system is explicitly 
identified. For example, Figure 5 shows that nested if statements or a switch statement in a 
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programming language can be used to implement policy-based approaches. In general, poli-
cy-based approaches can provide bounded times in searching for an adaptation solution and 
therefore address the boundedness evaluation criterion of Challenge 2 in Section 2.1.2 for 
adaptation approaches (e.g., switch statements can be optimized for constant-time perfor-
mance). Policy-based approaches also are highly accurate for environments known a priori 
since developers can codify the exact behavior needed for a known environment, thereby 
addressing Challenge 3 in Section 2.1.3. 

Accidental complexity is exacerbated, however, when the conditions and responses for 
policy-based approaches are managed manually. Of the 8 environment properties shown in 
Figure 5, 6 properties can take an infinite range of potential values, which cause an infinite 
number of combinations to be checked. Manually managing 8 properties for a configuration 
increases the complexity since humans are typically only able to efficiently process 7 pieces 
of information at a time [19]. Moreover, if the policies need to be modified the chance of in-
troducing an error increases with the number of properties considered along with the number 
of ranges of values for each property. 

Even policy-based approaches that alleviate manual management of conditions and res-
ponses by helping to automate these interactions, such as the Policy-Based Approach to Arc-
hitectural Adaptation Management (PBAAM) [20] and the Spontaneous Object Framework 
(SOF) [21], still do not address the inherent complexity of determining appropriate policies 
and the accidental complexity of transforming these policies into implementation artifacts. 
Policy-based approaches therefore do not address the accidental development complexity 
criterion for adaptation approaches, whereas machine learning techniques manage this com-
plexity automatically as part of their learning thus decreasing development complexity. 

4.2 Evaluating the Accuracy of ANNs and SVMs 

We next empirically evaluated the accuracy of ANNs and SVMs for both environments 
known a priori and unknown until runtime. We ran experiments with various numbers of hid-
den nodes and stopping errors. We used the Fast Artificial Neural Network (FANN) library 
(leenissen.dk/fann) as our ANN implementation due to its configurability, documentation, 
ease of use, and open-source availability. FANN offers extensive configurability for the neur-
al network including the number of hidden nodes that connect the inputs with the output. We 
used the libSVM library (www.csie.ntu.edu.tw/~cjlin/libsvm) for our SVM implementation 
due to its configurability, documentation, tutorials, and open-source availability. 

4.2.1 Evaluating the Accuracy of ANNs and SVMs for Environments Known A Priori 

Below we evaluate the accuracy of ANNs and SVMs for environments known a priori. 
We first focus on ANNs and then SVMs. Our first step to measuring the accuracy of ANNs 
for environments known a priori was to train ANNs on the 394 inputs described in Section 4. 
We ran training experiments with the ANNs using different numbers of hidden nodes to de-
termine the most accurate ANN. For a given number of hidden nodes we trained the ANN 10 
different times. The weights of the ANNs determine how strong connections are between 
nodes. The weights are randomly initialized and these initial values have an effect on how 
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well and how quickly the ANN learns. 

Figure 6 shows the accuracies for the ANNs configured with 6, 12, 24, and 36 hidden 
nodes and a 0.0001 stopping error over 10 training runs. Additional experiments were con-
ducted with higher stopping errors (e.g., 0.01) but lower stopping errors consistently pro-
duced more accurate classifications as expected. Figure 6 also shows the effect of random 
initial weights on the accuracy of the ANN since the accuracy can vary across training runs. 
Accuracy was determined by querying the ANN with the 394 inputs on which it was trained. 

A 100% accurate classification was generated at least once with all ANN configurations. 
The ANN with 24 hidden nodes provided the best accuracy (as measured by the number of 
100% accurate classifications) across all the training runs even compared to using 36 hidden 
nodes—100% accuracy all but 2 times out of 10. The ANNs with 36 and 12 hidden nodes 
both provided 100% accuracy 7 out of 10 times. 

 

Figure 6. Accuracy of ANN with 6, 12, 24, & 36 Hidden Nodes & 0.0001 Stopping Error 

The amount of error between values generated by the ANN and the known correct values 
is another measure of accuracy. The transport protocol output produced by the ANN is consi-
dered accurate if it is closer numerically to the correct protocol than to any other protocol. 
The ANN produces numerical values that are compared to the numerical representation of the 
correct protocol. The differences between these values can be accumulated across the 394 
inputs and compared between different ANN configurations (e.g., 36 hidden nodes, 24 hidden 
nodes). 

Figure 7 shows the errors accumulated for all the data of a single training & test run (i.e., 
using the 394 inputs). The training runs here are only included if the ANN had 100% accu-
racy (as shown by Figure 6) in that run since we want 100% accuracy for environments 
known a priori. For example, the ANN configured with 6 hidden nodes had only 3 training 
runs where the ANN was accurate for 100% of the 394 inputs and thus only 3 data points 
exist for that ANN configuration. 
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Across all the runs where the ANNs produced 100% accuracy, the ANN with 36 hidden 
nodes produced the lowest average error (i.e., 8.99). The ANN with 24 hidden nodes, how-
ever, produced the second lowest average error (i.e., 9.18) with only a 2.1% increase over the 
lowest error value. In this regard there is not a significant difference in the cumulative errors 
between the ANNs configured with 36 and 24 hidden nodes. By contrast, the 3rd lowest aver-
age error (i.e., 10.65 using 12 hidden nodes) represents a 19% increase. 

 

Figure 7. Cumulative Errors for ANNs with 100% Accuracy 

As with the ANNs, we trained the SVMs on the 394 inputs to compare accuracy for en-
vironments known a priori. SVMs are a specialized kind of linear classifier that utilize ker-
nels, which create additional features from the inputs that can be used for training and classi-
fication [22]. A variety of kernels can be used, such as radial basis function (RBF) and poly-
nomial kernels, which produce different levels of accuracy. 

We ran training experiments with the SVMs using different kernels and scaling the data 
in different ways. In addition to RBF and polynomial kernels, we included a simple linear 
classifier as a baseline to compare to the SVMs. The libSVM library provides the flexibility 
to utilize the SVMs with RBF and polynomial kernels as well as a simple linear classifier. 

In addition, we scaled the data in 4 different ways: (1) no scaling (i.e., using the original 
environment configuration values), (2) scaling the input values (i.e., environment configura-
tions) to be between -1 and 1, (3) scaling the input to be between -1 and 1 and scaling the out-
put (i.e., the transport protocol specified) to be between 0 and 1, and (4) scaling both input 
and output to be between -1 and 1. Since there is no non-determinism with training SVMs 
there is no need to have multiple training runs for a single SVM configuration (e.g., SVM 
with polynomial kernels and no scaling of data). 

Figure 8 shows the accuracies for the linear classifier and the SVMs using the RBF and 
polynomial kernels. The SVM with the RBF kernel (SVM-RBF) was able to correctly predict 
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the appropriate transport protocol for 100% of the environment configurations. This result is 
somewhat surprising since SVMs are designed to generalize their learning and to handle en-
vironment configurations unknown until runtime. The SVM using the polynomial kernel 
(SVM-Polynomial) and the linear classifier produced their highest accuracy when the input 
data was scaled between -1 and 1 (92.39% and 91.17% accuracy respectively). Figure 8 also 
shows the affect that data scaling has on accuracy. SVM-RBF had its highest accuracy (100%) 
when the data was not scaled while the linear classifier and SVM-Polynomial had their high-
est accuracy when only the input data was scaled. SVM-Polynomial was not able to complete 
training when the data was not scaled and therefore has no accuracy for that case. SVM-RBF, 
SVM-Polynomial, and the linear classifier all had their lowest accuracies when the output 
data (i.e., the selected transport protocol) was scaled. 

 

Figure 8. Accuracy of Linear Classifier and SVMs with RBF and Polynomial Kernels 

Figure 6,Figure 7, and Figure 8 show that ANNs with 24 and 36 hidden nodes and an 
SVM with RBF kernels and unscaled data produce the highest accuracies when the environ-
ment configurations are known a priori. 

4.2.2 Evaluating the Accuracy of ANNs and SVMs for Environments Unknown until Run-
time 

Below we measure the accuracy of ANNs and SVMs for environment configurations that 
are unknown until runtime. This scenario splits out the 394 environment configurations into 
mutually exclusive training and testing data sets, which is referred to as n-fold 
cross-validation where n is the number of mutually exclusive training and testing data sets 
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for testing. A 10-fold cross-validation indicates 10 sets of training and testing data where for 
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each fold the training and testing data are mutually exclusive and the training data excludes 
1/10 of the total data, which is used only for testing. N-fold cross-validation provides insight 
into how well a machine learning technique generalizes for data on which it has not been 
trained. 

We started by examining the accuracy of ANNs for environments unknown until runtime 
using 10-fold cross-validation. Since we are focusing on generalizing the machine learning 
for environment configurations not previously encountered, we added ANN configurations to 
those listed in Section 4.2.1 to include a larger stopping error to see the effect on accuracy. 
Figure 9 shows the accuracy for the excluded data across the 10-folds for 10 different training 
runs. The ANNs in this figure all use the stopping error of 0.0001. Figure 10 shows the accu-
racy for the excluded data across the 10-folds using a stopping error of 0.01. We split out 
these data into 2 separate figures for clarity. 

 

Figure 9. ANN Accuracies for 10-fold Cross-validation (0.0001 Stopping Error) 
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Figure 10. ANN Accuracies for 10-fold Cross-validation (0.01 Stopping Error) 

As Figure 9 and Figure 10 show, the accuracy for determining the correct transport pro-
tocol given the unknown environment configurations was highest with the lower stopping 
error of 0.0001. The lowest accuracy for any run with a stopping error of 0.0001 was 75.89% 
(for 6 hidden nodes) while the lowest accuracy for any run with a stopping error of 0.01 was 
71.57% (again for 6 hidden nodes). The highest accuracy was obtained by 24 hidden nodes 
and stopping error of 0.0001 for training run 9 (i.e., 92.39%). This configuration also pro-
duced the highest average accuracy across all the training runs (i.e., 89.49%) with the ANN 
configuration of 36 hidden nodes and a stopping error of 0.0001 producing the second highest 
average accuracy across all the training runs (i.e., 87.79%). 

To evaluate the linear classifier and SVMs, we used the same 10-fold cross-validation 
data described earlier in this section. Figure 11 shows accuracies for the excluded data for the 
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again produces the highest accuracy for all the SVMs and the linear classifier (i.e., 87.56%). 
This accuracy was produced, however, when the input data was scaled to values between -1 
and 1. When no scaling of the data was performed, the accuracy of SVM-RBF decreased by 
14.49% (i.e., 74.87% accuracy). 

SVM-RBF produced the highest accuracies across all data scalings compared to 
SVM-Polynomial and the linear classifier. As was the case with known environments, 
SVM-Polynomial was unable to complete training when the data was unscaled. When the in-
put data was scaled between -1 and 1, SVM-RBF, SVM-Polynomial, and the linear classifier 
all produced their highest accuracies. 
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Figure 11. Linear Classifier and SVM Accuracies for 10-fold Cross-validation 

With the current experiments involving environments unknown until runtime, the ANN 
with 24 hidden nodes and a stopping error of 0.0001 produced the highest accuracy. To see if 
these results would hold with an increased percentage of unknown data, we created 2-fold 
cross-validation data. For this set of data, half of the environment configurations would be 
used to train the ANNs and SVMs and the other half would be used to test the ANNs and 
SVMs for accuracy. 

 

Figure 12. ANN Accuracies for 2-fold Cross-validation (0.0001 Stopping Error) 
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gured with 6, 12, 24, and 36 nodes and 0.0001 and 0.01 stopping errors respectively. The 
highest average accuracy across the 10 trainings run is produced by the ANN with 36 hidden 
nodes and a stopping error of 0.0001 (i.e., 78.35% average accuracy). The second highest 
average accuracy is now produced by the ANN with 24 hidden nodes and a stopping error of 
0.0001 (i.e., 77.69% average accuracy). It is also interesting to note that the ANN with 6 hid-
den nodes and a stopping error of 0.01 (i.e., 74.19% average accuracy) produced higher av-
erage accuracies than with a stopping error of 0.0001. This result indicates that the ANN with 
6 nodes generalizes its learning better with a higher stopping error. 

Figure 14 shows the accuracy of SVM-RBF, SVM-polynomial, and the linear classifier 
for 2-fold cross-validation. In this case, both SVM-RBF and SVM-Polynomial produce the 
highest accuracy (i.e., 86.29%) when the input data is scaled from -1 to 1. Scaling the input 
data this way again produces the highest accuracies for SVM-RBF, SVM-Polynomial and the 
linear classifier as it did for 10-fold cross-validation. SVM-RBF also produced the worst 
2-fold cross-validation accuracy when the input data was scaled from -1 to 1 and the output 
data was scaled from 0 to 1 (i.e., 49.49% accuracy). Overall, SVM-RBF and 
SVM-Polynomial produced the most accurate results for 2-fold cross-validation even when 
including the accuracy results for the ANNs. 

 

Figure 13. ANN Accuracies for 2-fold Cross-validation (0.01 Stopping Error) 
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Figure 14. Linear Classifier and SVM Accuracies for 2-fold Cross-validation 

4.3 Evaluating the Timeliness of ANNs and SVMs 

For the SAR motivating example, we are not only interested in accurate transport proto-
col guidance. We also need low latency, constant time-complexity to meet the needs of DRE 
systems as outlined in Section 2.1.2. We now empirically evaluate the runtime timeliness of 
ANNs and SVMs.  

To gather timing data, we used a 3 GHz CPU with 2GB of RAM running the Fedora 
Core 6 operating system with real-time extensions. Timeliness was determined by querying 
the ANNs and SVMs with all 394 inputs on which it was trained (i.e., timing was done for the 
case of environments known a priori). A high resolution timestamp was taken before and 
after each call made to the ANN, the SVM, or the linear classifier and the times were calcu-
lated by subtracting the timestamp taken before the call from the timestamp taken after the 
call. 

Figure 15 and Figure 16 show the average response times and standard deviation of the 
response times for ANNs, respectively, for 10 separate experiments where for each experi-
ment we query the ANN for each of the 394 inputs. The figures show that the ANN provides 
timely and consistent responses. The standard deviations for all the ANNs and all the classi-
fication runs are below 1 μs. As expected, the response times using more hidden nodes are 
slower than response times with fewer hidden nodes. The increase in latency is less than li-
near, however, e.g., response times using 12 hidden nodes are less than twice that using 6 
hidden nodes. 
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Figure 15. ANN Average Response Times (μsecs) 

 

Figure 16. Standard Deviation for ANN Response Times (μsecs) 

Figure 17 and Figure 18 show the average response times and standard deviations of the 
response times, respectively, for SVM-RBF, SVM-Polynomial, and the linear classifier where 
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differently, there is a difference in the average response time. The more data is scaled, the 
lower the average response time is (e.g., scaling all the data values to be between -1 and 1 vs. 
no scaling). SVM-RBF has the highest average response times. This result is not surprising 
since the RBF kernels create more complicated calculations to determine the appropriate 
transport protocol. The standard deviations for the response times are fairly consistent re-
gardless of scaling. SVM-RBF exhibits an unusually high standard deviation when the data is 
not scaled. This data might show an anomaly with the libSVM library with respect to timeli-
ness since we also needed to modify the implementation to remove sources of unbounded 
time complexity for testing timeliness (e.g., replace calls to malloc() with statically allo-
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cated memory since malloc() provides no bounded time guarantees). 

 

Figure 17. Linear Classifier and SVM Average Response Times (μsecs) 

 
Figure 18. Standard Deviation for Linear Classifier and SVM Response Times (μsecs) 
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ANN with 24 hidden nodes seems the most appropriate for environments known a priori. 
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signed to be more general and handle unknown input well whereas over-fitted ANNs are not 
expected to do as well. However, with the 2-fold cross-validation experiments, the ANN with 
36 hidden nodes and a stopping error of 0.0001 produced more accurate results averaged over 
10 training runs than the ANN with 24 hidden nodes and the same stopping error. These dif-
fering results indicate that if only ANNs are used for machine learning, we should use one 
type of ANN for environments known a priori (i.e., 24 hidden nodes and stopping error of 
0.0001) and one type for environments unknown until runtime (i.e., 36 hidden nodes and a 
stopping error of 0.0001). We speculate that the excluded environment configurations for the 
10-fold cross-validation was a small enough percentage of the overall data that it was not 
different enough to cause a different ANN configuration or an SVM to be more accurate. The 
results of the 2-fold cross-validation support this conclusion. 

The experimental results shown in Sections 4.2 and 4.3 illustrate that different supervised 
machine learning techniques provide different levels of accuracy depending on whether the 
environment configuration is known a priori or unknown until runtime. Based on these expe-
rimental data, we have chosen to use an ANN with 24 hidden nodes and a stopping error of 
0.0001 for environments known a priori due to its (1) perfect accuracy and (2) low latency 
constant classification time. We have also chosen to use an SVM with a polynomial kernel 
for environments unknown until runtime since this technique (1) provided the highest accu-
racy for all the configurations of ANNs and SVMs tested with the most generalized data for 
validation (i.e., 2-fold cross validation data) and (2) provided lower response latencies than 
the SVM with the RBF kernel. As noted in Section 3.2, we combine both of these machine 
learning techniques to increase the overall accuracy of ADAMANT and leverage con-
stant-time perfect hashing to determine if the environment configuration is known a priori or 
unknown until runtime and use the machine learning that will provide the highest accuracy. 

5 Related Work 

This section compares our work integrating multiple machine learning approaches for 
adapting QoS-enabled pub/sub middleware in ADAMANT with related work. 

The use of multiple data driven methods in concert to construct a system for classifica-
tion and detection is a concept that falls into the general description of the term Me-
ta-Learning [24]. Meta-Learning has been used in machine learning for building scalable 
systems that can possess multiple learning algorithms and effectively utilize them all to im-
prove classification. ADAMANT is designed in a similar method with using multiple ma-
chine learning techniques: an over-fitted ANN for environments known a priori and an SVM 
for environments unknown until runtime. The intelligent design and application of these Me-
ta-Learning systems is imperative to improving classification accuracy. ADAMANT extends 
Meta-Learning by improving classification accuracy and addressing the timeliness require-
ments of a dynamic DRE system. The ADAMANT Meta-Learning approach of combining 
multiple machine learning techniques is similar to the work on combining classifiers as pro-
posed by Kittler [25]. However, with Kittler’s work there is no consideration for timeliness 
which is crucial for DRE systems. Also, ADAMANT uses a very coarse grained, con-
stant-time complexity classification (e.g., perfect hashing) to determine which machine 
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learning technique to use for classification whereas Kittler’s approach fuses multiple classifi-
ers via combining results into multiple stages without regard for the timeliness of the indi-
vidual classifiers or the fusion of the classifiers. 

Our use of an over-fitted ANN takes advantage of the back-propagation algorithm [26] 
used in training ANNs. Research in deep-belief networks [27] helps improve the accuracy of 
ANNs by allowing for more complex error functions and more complex architectures (e.g., 
the number of layers for hidden nodes and their construction). The deep-belief networks pro-
vide the advantage of allowing a larger range of classification and thus can improve accuracy 
in certain areas. The time complexity of deep-belief networks, however, is not constant so it 
is not applicable for DRE systems. 

The SVM algorithm commonly used for classification produces a classifier that separates 
the decision space of the environment configurations as equitably as possible [28]. A common 
technique to affect accuracy is to map the features of the data into another decision space, in 
hopes of finding a classifier that provides increased accuracy. This technique for producing 
non-linear classifiers is called a kernel trick [29]. Among the possibilities of kernel tricks is 
translating the data to a polynomial kernel, as performed in our work. Other kernels are 
available, such as the Gaussian Kernel [30], which can produce even more complex map-
pings. As the complexity increases, the data becomes increasingly altered to the point where 
mapping to the original data for human understanding becomes hard. We chose to only use 
RBF and polynomial kernels since the benefits of additional kernels were unclear and added 
complexity to the testing and analysis. 

The Dynamic Control of Behavior based on Learning (DCBL) middleware [31] incorpo-
rates reinforcement machine learning in support of autonomic control for QoS management. 
Reinforcement machine learning allows DCBL to handle unexpected changes, as well as re-
duce the overall system knowledge required by the system developers. System developers are 
required to create an XML description of the system, which DCBL then uses together with an 
internal representation of the managed system to select appropriate QoS dynamically. 

In contrast to ADAMANT, however, DCBL is applicable to a single computer, rather 
than scalable QoS-enabled pub/sub middleware for DRE systems. Moreover, reinforcement 
learning used by DCBL does not provide constant time or even bounded time complexities 
unlike our work, which provides fast, constant-time complexity decision making. DCBL also 
requires developers to specify in an XML file the selection of operating modes given a QoS 
level along with execution paths, which increases accidental development complexity. In con-
trast, ADAMANT ameliorates this complexity by having supervised machine learning tech-
niques determine the appropriate operating modes for a given environment. 

RAC [12] incorporates reinforcement learning to aid in the configuration of web services 
by autonomically configuring the services via performance parameter settings to change both 
the services’ workload and the virtual machine configurations. The reinforcement learning 
component of RAC is enhanced with an additional runtime initialization period at system 
startup. As with DCBL, however, RAC’s use of reinforcement learning causes unbounded 
response times due to online exploration of the solution space and modification of decisions 
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while the system is running. In contrast, ADAMANT leverages constant-time complexity 
supervised machine learning to provide predictable and fast decision making. 

Bellavista et al. [32] have conducted research centering on their embedded middleware 
called Mobile agent-based Ubiquitous multimedia Middleware (MUM). The purpose of 
MUM is to handle the complexities of wireless hand-off management for wireless devices 
moving among different points of attachment to the Internet. In this sense, MUM adapts its 
functionality for an application as it moves through its environments. In contrast, our work on 
ADAMANT focuses on the needs of DRE pub/sub systems to adapt in a low latency, 
bounded time manner based on the QoS of the application and the resources presented in the 
environment. 

Boonma et al. [33] have specialized a DDS implementation called TinyDDS for the de-
mands of wireless sensor networks (WSNs). TinyDDS defines a subset of DDS interfaces for 
efficiency and simplicity for WSNs. Additionally, TinyDDS includes a pluggable framework 
for non-functional properties, e.g., power-efficient routing capability, event correlation and 
filtering mechanisms, and data aggregation functionality. However, TinyDDS provides no 
guidance for adapting to a change in environment resources as is the case with ADAMANT. 

Li and Nahrstedt [34] present the Middleware Control Framework (MCF) which en-
hances the effectiveness of QoS adaptation using runtime monitoring, control, and reconfi-
guration of the parameters of available QoS mechanisms (e.g., network bandwidth usage, 
CPU usage for object tracking algorithms). The goal of MCF is to satisfy system-wide prop-
erties, such as fairness among concurrent applications, as well as application-specific re-
quirements, such as maintaining the performance of services critical to the system. MCF uses 
a combination of control-theoretic and fuzzy logic to address the system-wide properties and 
the application-specific requirements respectively. However, unlike ADAMANT which fo-
cuses on low latency, constant-time complexity adaptation, MCF does not address the crucial 
area of bounded adaptation times for DRE systems. 

The Dynamic TAO and Open ORB middleware projects [35] outline approaches taken to 
incorporate reflection into middleware. Reflective middleware uses a collection of compo-
nents that can be configured and reconfigured by the application. System and application 
code inspect the internal configuration of the middleware and adapt the middleware in re-
sponse to changes in the environment. ADAMANT utilizes some of the overarching concepts 
of reflective middleware in that ADAMANT monitors the QoS and reasons about its current 
state to make changes as needed. In addition, ADAMANT addresses the critical timeliness 
concerns of DRE pub/sub systems when making changes unlike the work with Dynamic TAO 
and Open ORB. 

6 Concluding Remarks 

This article describes how the ADAptive Middleware And Network Transports (ADA-
MANT) software platform utilizes the strengths of multiple supervised machine learning 
techniques to adapt the transport protocols of enterprise DRE systems autonomically in a 
dynamic environment to increase accuracy for environments known a priori and unknown 
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until runtime. The empirical results in this paper show how a combination of over-fitted ar-
tificial neural networks (ANNs) and support vector machines (SVMs) help address the de-
velopment complexity, timeliness, and accuracy of adaptive enterprise DRE systems for both 
environments known a prori and only at runtime. The following is a summary of lessons 
learned from our experience evaluating machine learning techniques for adapting ADA-
MANT when executing in dynamic environments: 

• Scaling data has an impact on accuracy. With our initial training of ANNs we were only 
able to achieve 92% accuracy for known environments regardless of the number of hid-
den nodes or the stopping error. When we scaled the data to be between the values of -1 
and 1 we were able to achieve 100% accuracy for environments known a priori with sev-
eral different ANN configurations. Scaling data also has an effect on SVMs and linear 
classifiers. Unscaled data provided the greatest accuracy for the SVM using RBF kernel 
for environments known a priori. For environments unknown until runtime, however, the 
greatest accuracy for SVM-RBF was when the input data was scaled between the values 
of -1 and 1. 

• Determining between environments known a priori and unknown until runtime based 
only on ANN output values is challenging. We initially hypothesized that the numeric 
output of an over-fitted ANN would be able to indicate if a configuration environment 
was known a priori or unknown until runtime. Since the ANN was over-fitted to particu-
lar data and provided a low error relative to the expected numerical output for an envi-
ronment known a priori, we assumed that an environment configuration unknown until 
runtime would produce a numerical output that would distinguish it as not previously 
known. We have not been able, however, to leverage the numerical output to make this 
distinction. We are continuing research in this area to eliminate the need for the additional 
mechanism to determine environments known a priori and only at runtime (e.g., perfect 
hashing). 

• More generalized machine learning techniques are more applicable to environments 
known at runtime (e.g., SVMs do much better than ANNs for 2-fold cross validation). 
SVMs are particularly designed to generalize their learning and thus be accurate when 
encountering previously unknown environments. Our empirical results bore out this as-
sumption when there was a large variance between the environments known a priori and 
only at runtime. If the environments unknown until runtime were a small enough subset 
of the environments known a priori, however, then over-fitted ANNs provided the best 
accuracy. 

• ANNs might do well for environments unknown until runtime if these environments are 
few compared to the environments known a priori. Building on the previous lesson 
learned, an adaptive DRE system might be able to retrain an ANN during runtime using a 
low priority thread so that the environment configurations unknown until runtime quickly 
become part of the environments known a priori and any unknown configurations back-
logged during retraining remain a small subset of the environments already included in 
training. 
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Our current work, software downloads, and additional information can be found at 
www.dre.vanderbilt.edu/~jhoffert/ADAMANT. 
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